JPH048913A - Non-contact bearing using superconductor - Google Patents

Non-contact bearing using superconductor

Info

Publication number
JPH048913A
JPH048913A JP11142390A JP11142390A JPH048913A JP H048913 A JPH048913 A JP H048913A JP 11142390 A JP11142390 A JP 11142390A JP 11142390 A JP11142390 A JP 11142390A JP H048913 A JPH048913 A JP H048913A
Authority
JP
Japan
Prior art keywords
superconductor
magnetized
bearing
shaft
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142390A
Other languages
Japanese (ja)
Inventor
Seiji Yasuhara
安原 征治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP11142390A priority Critical patent/JPH048913A/en
Publication of JPH048913A publication Critical patent/JPH048913A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To make it needless to have a means to prevent movement in the axial direction by constituting a part or the whole of a shaft and a bearing of a magnetized superconductor and making the polarity of the magnetized shaft and bearing in the same direction. CONSTITUTION:A superconductor bearing 1 and a rotating shaft 2 are magnetized by applying an outer magnetic field so that polarities of both magnets are to be in the same direction. Consequently, the superconductor rotating shaft 2 comes to a standstill in the center of the magnetized superconductor bearing 1 and can be supported noncontactly, need not be prevented from moving in the axial direction and its structure can be simplified and lightened in weight.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超電導体を用いた非接触軸受に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a non-contact bearing using a superconductor.

(従来の技術) 従来、超電導体のマイスナー効果を利用した非接触軸受
についてはすでにいくつかの報告がなされている。この
従来の非接触軸受では、軸または軸受部に永久磁石と超
電導体のいずれかを用いて、永久磁石と超電導体を対面
させて配置するものである。このような配置では、軸を
浮揚させる力として、主に超電導体に対するマイスナー
効果が利用されている。
(Prior Art) Several reports have been made regarding non-contact bearings that utilize the Meissner effect of superconductors. In this conventional non-contact bearing, either a permanent magnet or a superconductor is used in the shaft or the bearing part, and the permanent magnet and the superconductor are arranged facing each other. In such an arrangement, the Meissner effect on the superconductor is mainly utilized as the force for levitating the shaft.

第3図は従来のマイスナー効果を利用した非接触軸受装
置の説明図である。回転軸11は超電導体で、軸受12
は永久磁石で構成されている。回転軸11の直角方向に
対しては非接触軸受としての作用はあるが、軸方向の力
に対してはほとんど作用しないため、軸端部に超電導体
15および14を別に配置する必要がある。
FIG. 3 is an explanatory diagram of a conventional non-contact bearing device using the Meissner effect. The rotating shaft 11 is a superconductor, and the bearing 12
is made up of permanent magnets. Although it acts as a non-contact bearing in the direction perpendicular to the rotating shaft 11, it hardly acts against forces in the axial direction, so it is necessary to separately arrange the superconductors 15 and 14 at the end of the shaft.

第4図は回転軸が縦の、従来のマイスナー効果を利用し
た非接触軸受装置の例の説明図である。
FIG. 4 is an explanatory diagram of an example of a conventional non-contact bearing device using the Meissner effect, in which the rotation axis is vertical.

回転軸21に永久磁石22.23が取り付けられ、超電
導体の軸受24,25、および軸方向の力に対抗する超
電導体26が配置されている。
A permanent magnet 22, 23 is attached to the rotating shaft 21, superconductor bearings 24, 25 and a superconductor 26 are arranged to counteract the axial force.

(発明が解決しようとする問題点) 上記のマイスナー効果を利用した非接触軸受では、軸は
浮上して回転はするが、軸方向の力に対してはマイスナ
ー効果が働かない。このため、軸方向への移動により永
久磁石と超電導体との位置が相対する位置からずれて、
軸受としての作用を損なうことがあった。そのため第3
図および第4図に示すように、軸端部にも永久磁石と超
電導体の組合せを配置して、マイスナー効果を軸方向に
も働かせて軸の移動を防止する必要があった。本発明は
、軸方向への移動をも制御し得る非接触軸受を提供する
ことを目的とする。
(Problems to be Solved by the Invention) In the above non-contact bearing that utilizes the Meissner effect, the shaft floats and rotates, but the Meissner effect does not work against forces in the axial direction. Therefore, due to the movement in the axial direction, the positions of the permanent magnet and the superconductor shift from their opposing positions,
The function as a bearing may be impaired. Therefore, the third
As shown in FIG. 4 and FIG. 4, it was necessary to arrange a combination of a permanent magnet and a superconductor at the end of the shaft to apply the Meissner effect in the axial direction as well to prevent the shaft from moving. An object of the present invention is to provide a non-contact bearing that can also control movement in the axial direction.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために、超電導体を用いる非接触
軸受において、超電導体のマイスナー効果とピン止め効
果の大きい超電導材料の磁石化する性質を利用し、その
一部ないし全部がともに磁石化された超電導体で構成さ
れ、磁石化した前記軸と前記軸受の極性を同一方向に揃
えた構成とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, in a non-contact bearing using a superconductor, a superconducting material having a large Meissner effect and a large pinning effect of the superconductor is magnetized. Taking advantage of the properties of the superconductor, a part or all of the superconductor is made of a magnetized superconductor, and the polarity of the magnetized shaft and the bearing are aligned in the same direction.

(作用) 本発明の非接触軸受装置の働きについて第5図に示す。(effect) The function of the non-contact bearing device of the present invention is shown in FIG.

軸受に相当する円筒体31および軸に相当する円柱体3
5は超電導体で形成されている。
A cylindrical body 31 corresponding to a bearing and a cylindrical body 3 corresponding to a shaft
5 is made of superconductor.

ここで用いられる超電導材料としては臨界電流密度が大
きく、ピン止め効果の大きいものが望ましい。このよう
な超電導材料で作られた円筒体31ないしは円柱体35
を磁石化するためには、外部から磁場を印加する必要が
ある。外部磁場の印加の方法としては、円筒体31ない
しは円柱体35を冷却して超電導状態にし、超電導体内
部に侵入するほどの強い外部磁場を印加した後に外部磁
場を取り除くことにより超電導体内に磁場をトラップさ
せ磁石化する方法、常電導状態で外部磁場を印加しなが
ら冷却することにより超電導状態とした後に外部磁場を
取り除いて超電導体内に磁場をトラ、プさせ、磁石化す
る方法などがある。第5図では前者の磁石化方法を用い
た場合を示す。
It is desirable that the superconducting material used here has a large critical current density and a large pinning effect. Cylindrical body 31 or cylindrical body 35 made of such superconducting material
In order to magnetize it, it is necessary to apply a magnetic field from the outside. The method for applying an external magnetic field is to cool the cylindrical body 31 or 35 to a superconducting state, apply an external magnetic field strong enough to penetrate inside the superconductor, and then remove the external magnetic field to create a magnetic field inside the superconductor. There are methods of trapping and magnetizing the superconductor, and methods of turning the superconductor into a superconducting state by cooling it in a normal conducting state while applying an external magnetic field, and then removing the external magnetic field to trap and trap the magnetic field inside the superconductor and magnetizing it. FIG. 5 shows a case where the former magnetization method is used.

第5図(a)に示すように、冷媒34中で超電導状態に
ある円筒体31にコイル32により超電導体内部に侵入
するほどの強い外部磁場を円筒体31の軸方向に加える
。第5図(b)に示すように、外部磁場を取り除くと超
電導円筒体内部に入り込んだ磁場は超電導体の強いピン
止め効果によりトラップされ、円筒体31が磁石化する
。第5図(C)に示すように、この磁石化した円筒体3
1内に、同様な手段により磁石化した円柱体35を入れ
ると、円柱体35は円筒体31の中心部に浮上し、静止
する。
As shown in FIG. 5(a), a coil 32 applies an external magnetic field strong enough to enter the inside of the superconductor to the cylinder 31 which is in a superconducting state in a coolant 34 in the axial direction of the cylinder 31. As shown in FIG. 5(b), when the external magnetic field is removed, the magnetic field that has entered the superconducting cylinder is trapped by the strong pinning effect of the superconductor, and the cylinder 31 becomes a magnet. As shown in FIG. 5(C), this magnetized cylindrical body 3
When a cylindrical body 35 magnetized by a similar method is inserted into the cylinder 1, the cylindrical body 35 floats to the center of the cylindrical body 31 and remains stationary.

円筒体31、および円柱体35とも磁石化しているため
、N@S極との吸引反発作用、およびマイスナー効果の
相乗作用により、円筒体31内の中心位置にバランスを
保ち静止する。この様な状態の下では、円柱体35を軸
方向に動かしても中心に戻る性質がある。これは、軸に
直角な方向はマイスナー効果が働き、また軸方向には磁
石化した円柱体35と磁石化した円筒体31のN−8極
の吸引、反発作用が働くことによる効果と考えられる。
Since both the cylindrical body 31 and the cylindrical body 35 are magnetized, they remain balanced and stationary at the center position within the cylindrical body 31 due to the attraction and repulsion effect with the N@S pole and the synergistic effect of the Meissner effect. Under such conditions, even if the cylindrical body 35 is moved in the axial direction, it has the property of returning to the center. This is thought to be due to the Meissner effect acting in the direction perpendicular to the axis, and the attraction and repulsion of the N-8 poles of the magnetized cylindrical body 35 and magnetized cylindrical body 31 in the axial direction. .

本発明はこのように磁石化された超電導体の特殊な性質
を利用するものである。以上の説明では、軸受に相当す
るものは超電導体で作られた円筒体としたが、これは多
角形の筒体でも良い。また、軸に相当するものを磁石化
した超電導円柱体としたが他の断面形状のものも可能で
ある。
The present invention utilizes the special properties of such magnetized superconductors. In the above description, the bearing corresponds to a cylindrical body made of a superconductor, but it may also be a polygonal cylindrical body. Further, although the shaft corresponds to a magnetized superconducting cylindrical body, other cross-sectional shapes are also possible.

(実施例) 以下、本発明の実施例について説明する。第1図は本発
明の実施例の軸受装置を示す説明図である。軸受1およ
び回転軸2として酸化物超電導体を用いる。ここで用い
られる超電導材料としては臨界電流密度が大きく、ピン
止め効果の大きいものが望ましく、たとえば、第6図に
製造方法を示したようなビスマス系超電導材料などが用
いられる。もちろん、このほかの超電導材料でも要求さ
れる性能を満たせば用いることができる。
(Example) Examples of the present invention will be described below. FIG. 1 is an explanatory diagram showing a bearing device according to an embodiment of the present invention. Oxide superconductors are used as the bearing 1 and the rotating shaft 2. It is desirable that the superconducting material used here has a large critical current density and a large pinning effect, such as a bismuth-based superconducting material whose manufacturing method is shown in FIG. 6. Of course, other superconducting materials can also be used if they meet the required performance.

超電導体軸受1および超電導体回転軸2を外部磁場印加
により磁石化する。このとき、両者の磁石の極性が同一
方向になるように磁石化する。磁石化した超電導回転軸
2は磁石化した超電導軸受1の中心に静止し、非接触軸
受として作動する。
The superconductor bearing 1 and the superconductor rotating shaft 2 are magnetized by applying an external magnetic field. At this time, both magnets are magnetized so that their polarities are in the same direction. The magnetized superconducting rotating shaft 2 rests at the center of the magnetized superconducting bearing 1 and operates as a non-contact bearing.

第2図は縦型の回転軸の場合の、本発明の他の実施例を
示す図である。
FIG. 2 is a diagram showing another embodiment of the present invention in the case of a vertical rotating shaft.

[発明の効果] 本発明の非接触軸受装置では軸方向の移動を防ぐ必要が
なくなるため、構造が簡単となり、永久磁石を使用しな
いことで軽量化がはかれるなどの効果がある。
[Effects of the Invention] In the non-contact bearing device of the present invention, there is no need to prevent movement in the axial direction, so the structure is simplified, and the weight can be reduced by not using a permanent magnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の装置の説明図、第3
図及び第4図は従来の非接触軸受装置の説明図、第5図
は本発明の装置の作動説明図、第6図は本発明で使用さ
れる超電導材料の一例の製造法を示す図である。 1.6.12・・・軸受、2,5.11・・・回転軸、
3.7.33・・・断熱容器、31・・・円筒体、32
・・・コイル、4.8,16,27.34−・・冷媒、
22゜23・・・永久磁石、35・・・円柱体。 第3図 第4図 第1図 第2図 第5図
FIGS. 1 and 2 are explanatory diagrams of the apparatus according to the embodiment of the present invention, and FIG.
4 and 4 are explanatory diagrams of a conventional non-contact bearing device, FIG. 5 is an explanatory diagram of the operation of the device of the present invention, and FIG. 6 is a diagram showing a manufacturing method of an example of the superconducting material used in the present invention. be. 1.6.12...bearing, 2,5.11...rotating shaft,
3.7.33...Insulating container, 31...Cylindrical body, 32
... Coil, 4.8, 16, 27.34-... Refrigerant,
22゜23...Permanent magnet, 35...Cylindrical body. Figure 3 Figure 4 Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)超電導体を用いる非接触軸受において、軸および
軸受部の一部ないし全部がともに磁石化された超電導体
で構成され、磁石化した前記軸と前記軸受の極性を同一
方向に揃えた構成とすることを特徴とする非接触軸受。
(1) In a non-contact bearing using a superconductor, a part or all of the shaft and the bearing part are composed of a magnetized superconductor, and the polarity of the magnetized shaft and the bearing are aligned in the same direction. A non-contact bearing characterized by:
JP11142390A 1990-04-26 1990-04-26 Non-contact bearing using superconductor Pending JPH048913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142390A JPH048913A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142390A JPH048913A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Publications (1)

Publication Number Publication Date
JPH048913A true JPH048913A (en) 1992-01-13

Family

ID=14560805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142390A Pending JPH048913A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Country Status (1)

Country Link
JP (1) JPH048913A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129617A (en) * 1979-03-28 1980-10-07 Hitachi Ltd Magnetic bearing
JPH01169034A (en) * 1987-12-25 1989-07-04 Mitsui Constr Co Ltd Support structure of aerial suspension structure
JPH01267922A (en) * 1988-04-19 1989-10-25 Omron Tateisi Electron Co Electromagnetic relay
JPH0210809A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of superconducting magnet and superconducting magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129617A (en) * 1979-03-28 1980-10-07 Hitachi Ltd Magnetic bearing
JPH01169034A (en) * 1987-12-25 1989-07-04 Mitsui Constr Co Ltd Support structure of aerial suspension structure
JPH01267922A (en) * 1988-04-19 1989-10-25 Omron Tateisi Electron Co Electromagnetic relay
JPH0210809A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of superconducting magnet and superconducting magnet

Similar Documents

Publication Publication Date Title
US5126317A (en) Bearing system employing a superconductor element
JP3961032B2 (en) Magnetic bearing device for rotor shaft
US5330967A (en) Superconducting bearing device stabilized by trapped flux
EP1038114B1 (en) Magnetic bearing and its use
DE4436831A1 (en) Unit for magnetic orientation of rotor shaft
JP3665878B2 (en) Bearing device and starting method thereof
JPH08284956A (en) Super-conductive magnetic bearing device
JPH048913A (en) Non-contact bearing using superconductor
JPS54139007A (en) Magnetic bearing mechanism for small rotor
DE10050371A1 (en) Device with a ferromagnetic and mechanically resilient component in the cryogenic temperature range
CN216951299U (en) Two-half-degree-of-freedom hybrid magnetic bearing
JPH048912A (en) Non-contact bearing using superconductor
JP3084132B2 (en) Magnetic levitation device
EP0715397B1 (en) Switched reluctance motor
JP3271330B2 (en) Magnet magnetizing device
JP3151492B2 (en) Slide device
KR100293316B1 (en) High-TCSuperconducting Bearings for Strong Levitational Force
DE10006228A1 (en) Magnetic bearing for rotor shaft e.g. in semiconductor processing apparatus has rotor bearing part which partially surrounds stator bearing part to allow exchange of rotor
JP3192207B2 (en) Magnetic bearing
JPH04331815A (en) Superconductive bearing device
JPH05219766A (en) Magnetic levitation method
JP3616856B2 (en) Bearing device
JPH05172145A (en) Super-conductive magnetic bearing device
JP3114175B2 (en) Shaft and bearing
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material