JPH08288124A - Superconducting magnetic levitation apparatus and magnetizing method of its superconductor - Google Patents

Superconducting magnetic levitation apparatus and magnetizing method of its superconductor

Info

Publication number
JPH08288124A
JPH08288124A JP7112346A JP11234695A JPH08288124A JP H08288124 A JPH08288124 A JP H08288124A JP 7112346 A JP7112346 A JP 7112346A JP 11234695 A JP11234695 A JP 11234695A JP H08288124 A JPH08288124 A JP H08288124A
Authority
JP
Japan
Prior art keywords
superconductor
permanent magnet
superconducting
magnetic levitation
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7112346A
Other languages
Japanese (ja)
Inventor
Masao Nakajima
正男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7112346A priority Critical patent/JPH08288124A/en
Publication of JPH08288124A publication Critical patent/JPH08288124A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To provide the magnetizing method of the superconductor of a superconducting magnetic levitation apparatus by which the superconductor can be magnetized by a permanent magnet into an arbitrary magnetic pole pattern easily and, further, a high power superconducting magnet can be obtained and to provide a supereconducting type magnetic levitation apparatus which can be utilized as a high power superconducting magnet as it is after the magnetization is completed. CONSTITUTION: Composite structure ring shaped permanent magnets 12 and 13 are provided by magnetizing a rotary disc 11 into different poles in radial directions. The radial anisotropic magnets 12 and 13 are held with very small gap lengths between them to form high flux density repulsive magnetic fields on the side of a fixed disc 10 facing the rotary disc 11. The rotary disc 11 is brought into contact with the fixed disc 11 which faces the rotary disc 11 directly to magnetize the disc 10 by the high flux density repulsive magnetic fields. With this constitution, a superconducting magnet which can be magnetized easily and has a high power can be obtained and a superconducting magnetic levitation apparatus which has a high floating force can be obtained by using the high power superconducting magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気軸受や電力貯蔵
装置などに広く利用できる超電導方式の磁気浮上装置に
おける超電導体の磁化方法の改良と超電導磁気浮上装置
に係り、同軸配置させる複合リング状永久磁石を、超電
導体対向面側に反発磁界を発生するようにラジアル方向
に相互に着磁しかつ同磁極を対向させて同軸配置し、こ
れを直接超電導体対向面に当接させて超電導体を磁化す
ることにより、強力な反発磁界にて磁化でき、強力な超
電導磁石を得ることが可能な超電導磁気浮上装置におけ
る超電導体の磁化方法並びにかかる着磁に使用した複合
リング状永久磁石を回転盤とする超電導磁気浮上装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method of magnetizing a superconductor in a superconducting magnetic levitation device which can be widely used for magnetic bearings, electric power storage devices and the like, and to a superconducting magnetic levitation device. Permanent magnets are mutually magnetized in the radial direction so as to generate a repulsive magnetic field on the surface facing the superconductor, and the same magnetic poles are arranged so as to face each other coaxially. Magnetizing a superconducting magnet in a superconducting magnetic levitation device that can be magnetized in a strong repulsive magnetic field by magnetizing a superconducting magnetic levitation device, and a composite ring-shaped permanent magnet used for such magnetization is a rotating disk. And a superconducting magnetic levitation device.

【0002】[0002]

【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、磁気浮上効果及びピン止め効果による超電導浮上力
を利用した非接触の超電導浮上型回転装置は、原理的に
それがエネルギー不要、低摩擦、高速回転等を可能とす
るため、磁気軸受装置や、電力貯蔵装置用大型フライホ
イール等への利用が研究されている。
2. Description of the Related Art Conventionally, a lot of research has been conducted on techniques utilizing the physical characteristics of superconductors. In particular, recently, a non-contact type utilizing the superconducting levitation force by the magnetic levitation effect and the pinning effect has been developed. The superconducting levitation type rotating device has been studied for use in magnetic bearing devices, large flywheels for electric power storage devices, etc., because it enables energy-free, low friction, and high-speed rotation in principle.

【0003】特に、液体窒素温度領域で超電導現象が得
られる酸化物超電導体の発見によって、冷却体として安
価で取扱いの容易な液体窒素が使用できるようになった
こと、及び強い超電導浮上力を持つ高温超電導バルク材
料が開発されたことが超電導体に対する浮上力を利用し
た研究の大きな契機となった。
In particular, the discovery of an oxide superconductor capable of obtaining a superconducting phenomenon in the liquid nitrogen temperature region has made it possible to use liquid nitrogen, which is inexpensive and easy to handle, as a cooling body, and has a strong superconducting levitation force. The development of high-temperature superconducting bulk material has been a major impetus for research utilizing the levitation force for superconductors.

【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。さらに、強力な磁場でもって超電
導体を磁化することにより、磁気的により一層強力な超
電導磁石とすることによっても達成できる。
The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors. Further, by magnetizing the superconductor with a strong magnetic field, it is possible to achieve a magnetically stronger superconducting magnet.

【0005】[0005]

【発明が解決しようとする課題】超電導磁気浮上装置に
おいて、超電導体はその周囲温度が臨界温度以下になる
と、超電導現象を起こし、永久磁石による磁場によって
磁化されて超電導磁石となり、永久磁石との間に反発ま
たは吸引作用が働き、磁気浮上が起こる。従って、回転
側の永久磁石体と固定側の超電導体を対向させた該装置
では、超電導体は予め永久磁石体の磁極配置に合わせて
磁化しておく必要がある。
In the superconducting magnetic levitation device, when the surrounding temperature of the superconductor falls below the critical temperature, the superconducting phenomenon occurs, and the superconductor is magnetized by the magnetic field of the permanent magnet to become the superconducting magnet. Magnetic levitation occurs due to repulsion or suction action on the. Therefore, in the device in which the permanent magnet body on the rotating side and the superconductor body on the fixed side are opposed to each other, the superconductor body must be magnetized in advance according to the magnetic pole arrangement of the permanent magnet body.

【0006】例えば、円板形イットリウム系超電導体を
環状に複数環配置した固定盤と、リング状永久磁石を複
数リング埋め込んだ回転盤とからなる磁気浮上装置にお
いて、超電導体を所要の磁極パターンで磁化する方法を
考慮するに、超電導体の着磁で一般的なコイル着磁で
は、環状に配置された超電導体に種々の磁極を形成する
のに複雑な巻線を行う必要があり、実用化するには極め
て困難であるため、永久磁石を用いて着磁されていた。
しかも、永久磁石を用いた着磁では、コイルのように強
力な磁場にて着磁できないため、当該磁気浮上装置にお
いて強力な磁気浮上力と駆動エネルギーが得られない問
題があった。
[0006] For example, in a magnetic levitation device comprising a fixed plate in which a plurality of disc-shaped yttrium-based superconductors are annularly arranged and a rotary plate in which a plurality of ring-shaped permanent magnets are embedded, a superconductor is formed in a required magnetic pole pattern. Considering the magnetizing method, in general coil magnetization for superconductor magnetization, it is necessary to perform complicated windings to form various magnetic poles in the superconductor arranged in an annular shape. Since it is extremely difficult to do so, it was magnetized using a permanent magnet.
Moreover, the magnetization using a permanent magnet cannot be magnetized with a strong magnetic field like a coil, and thus there is a problem that a strong magnetic levitation force and driving energy cannot be obtained in the magnetic levitation device.

【0007】この発明は、超電導磁気浮上装置における
超電導体の着磁の問題点に鑑み、永久磁石を用いた着磁
において、任意の磁極パターンで着磁が容易に実施でき
かつ強力な超電導磁石を得ることが可能な超電導磁気浮
上装置における超電導体の磁化方法、並びに当該着磁が
完了後そのまま強力な超電導磁石として利用できる超電
導磁気浮上装置の提供を目的としている。
In view of the problem of magnetizing a superconductor in a superconducting magnetic levitation apparatus, the present invention provides a strong superconducting magnet which can be easily magnetized with an arbitrary magnetic pole pattern in magnetizing using a permanent magnet. An object of the present invention is to provide a method of magnetizing a superconductor in a superconducting magnetic levitation device that can be obtained, and a superconducting magnetic levitation device that can be used as a powerful superconducting magnet as it is after the magnetization is completed.

【0008】[0008]

【課題を解決するための手段】発明者は、従来は回転盤
の複合永久磁石リングを直接超電導体に接触させて超電
導体対向方向つまり回転軸方向に平行な磁界にて着磁が
行われていたが、この場合、超電導体の磁化磁界強度は
主に永久磁石の固有の表面磁束密度に依存し、大きな磁
力による着磁は不可能であることに鑑み、容易に着磁で
きかつ強力な超電導磁石を得ることが可能な着磁方法を
目的に種々検討した結果、超電導磁気浮上装置におい
て、回転盤として内外径の異なる複数のリング状永久磁
石をラジアル方向に着磁し、同磁極を対向させて同軸配
置した構成とすることにより反発磁界を形成し、また、
その複数のリング状磁石の間隙幅を狭小に保てば、超電
導体への供給磁束が集中して高磁束密度の磁界が得ら
れ、この結果強力な超電導磁石ができ、大きな浮上力の
回転盤となることを知見し、この発明を完成した。
The inventor has conventionally magnetized a composite permanent magnet ring of a rotating disk by directly contacting the superconductor with a magnetic field parallel to the superconductor opposing direction, that is, the rotation axis direction. However, in this case, the magnetizing magnetic field strength of the superconductor mainly depends on the surface magnetic flux density peculiar to the permanent magnet, and it cannot be magnetized by a large magnetic force. As a result of various studies aimed at magnetizing methods capable of obtaining magnets, in a superconducting magnetic levitation device, a plurality of ring-shaped permanent magnets with different inner and outer diameters were radially magnetized as a rotating disk, and the same magnetic poles were made to face each other. To form a repulsive magnetic field by arranging them coaxially.
If the gap width between the ring-shaped magnets is kept small, the magnetic flux supplied to the superconductor will be concentrated and a magnetic field with a high magnetic flux density will be obtained. As a result, a powerful superconducting magnet will be created and a rotating disk with a large levitation force will be produced. The present invention has been completed by discovering that

【0009】また、発明者は上述の着磁を完了した超電
導体は強力な超電導磁石となり、そのままかかる複合リ
ング状永久磁石からなる回転盤とで構成されるすぐれた
超電導磁気浮上装置が得られることを知見しこの発明を
完成した。
Further, the inventor has found that the superconductor which has completed the above-mentioned magnetization becomes a strong superconducting magnet, and an excellent superconducting magnetic levitation device composed of a rotating disk made of such a composite ring-shaped permanent magnet is obtained as it is. That is, the present invention has been completed.

【0010】すなわち、この発明は、環状に配置した超
電導体からなる固定盤と、これに対向配置する同軸配置
の複合リング状永久磁石からなる回転盤とから構成さ
れ、回転盤の複合リング状永久磁石が、超電導体対向面
側に反発磁界を発生するようにラジアル方向に着磁さ
れ、同磁極を対向させて同軸配置されたことを特徴とす
る超電導磁気浮上装置である。また、発明者は、上記の
構成において、複合リング状永久磁石を構成する内外リ
ング状永久磁石の同極相対する周面間の隙間が回転盤外
端面から固定盤対向面側へ順次拡大している超電導磁気
浮上装置を併せて提案する。
That is, the present invention is composed of a fixed plate made of a superconductor arranged in an annular shape and a rotary plate made of a composite ring-shaped permanent magnet coaxially arranged opposite to the fixed plate. The superconducting magnetic levitation device is characterized in that the magnet is magnetized in the radial direction so as to generate a repulsive magnetic field on the surface facing the superconductor, and is arranged coaxially with the magnetic poles facing each other. In addition, in the above-mentioned configuration, the inventor has found that the gap between the peripheral surfaces of the inner and outer ring-shaped permanent magnets forming the composite ring-shaped permanent magnet, which have the same poles facing each other, is gradually expanded from the outer end surface of the rotary disk to the surface opposite the fixed disk. We also propose a superconducting magnetic levitation device.

【0011】また、この発明は、同軸配置の複合リング
状永久磁石と超電導体とを対向させた超電導方式磁気浮
上装置において、複合リング状永久磁石を超電導体対向
面側に反発磁界を発生するようにラジアル方向に着磁し
て同磁極を対向させて配置し、リング状永久磁石の当該
対向面に形成した磁極パターンを超電導体対向面に当接
させて超電導体を磁化することを特徴とする超電導磁気
浮上装置における超電導体の磁化方法である。
Further, according to the present invention, in a superconducting magnetic levitation device in which a coaxially arranged composite ring-shaped permanent magnet and a superconductor are opposed to each other, the composite ring-shaped permanent magnet is adapted to generate a repulsive magnetic field on the superconductor-opposing surface side. The magnetic poles are magnetized in the radial direction to face each other, and the magnetic pole pattern formed on the facing surface of the ring-shaped permanent magnet is brought into contact with the facing surface of the superconductor to magnetize the superconductor. This is a method of magnetizing a superconductor in a superconducting magnetic levitation device.

【0012】[0012]

【作用】この発明は、同軸配置させる複合リング状永久
磁石を、超電導体対向面側に反発磁界を発生するように
ラジアル方向に着磁して同磁極を対向させ、これを直接
超電導体対向面に当接させて超電導体を磁化することを
特徴とするが、この発明の作用を図面に基づいて詳述す
る。図1はこの発明方法の一実施例を示す超電導磁気浮
上装置の縦断説明図である。図1における超電導磁気浮
上装置は、クライオタンク1の底面上に、超電導体とし
て例えばYBaCuO系酸化物超電導体を用いた円板形
超電導体を環状に埋め込んだ固定盤10が固定配置さ
れ、上側の回転盤11には複合リング状永久磁石を用い
ている。
According to the present invention, the composite ring-shaped permanent magnets arranged coaxially are magnetized in the radial direction so as to generate a repulsive magnetic field on the opposing surface side of the superconductor so that the same magnetic poles face each other. It is characterized in that the superconductor is magnetized by being brought into contact with, and the operation of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of a superconducting magnetic levitation apparatus showing an embodiment of the method of the present invention. In the superconducting magnetic levitation apparatus in FIG. 1, a fixed platen 10 in which a disc-shaped superconductor using a YBaCuO-based oxide superconductor, for example, as a superconductor is annularly embedded is fixedly disposed on the bottom surface of the cryotank 1, and the upper side is fixed. A composite ring-shaped permanent magnet is used for the turntable 11.

【0013】回転盤11の複合リング状永久磁石は、こ
こでは内外径が異なり磁石間の距離を所定の寸法に設定
した2つのリング状永久磁石12,13を同軸配置して
あり、ラジアル方向に相互に着磁、すなわち、各磁石は
半径方向に着磁され、かつ外側のリング状永久磁石12
の内周面と内側のリング状永久磁石13の外周面とは同
磁極に着磁してある。この内外のリング状永久磁石1
2,13の間隙に発生する磁束は、相反発し合ってラジ
アル方向から回転軸方向に屈曲し集束する。かかる磁束
はもちろん回転盤11の上下の端面より発生しており、
収束性が強く極めて強力な磁界が発生している。
The composite ring-shaped permanent magnet of the turntable 11 has two ring-shaped permanent magnets 12, 13 whose inner and outer diameters are different and the distance between the magnets is set to a predetermined dimension. Mutually magnetized, that is, each magnet is magnetized in the radial direction and has an outer ring-shaped permanent magnet 12
The inner peripheral surface and the outer peripheral surface of the inner ring-shaped permanent magnet 13 are magnetized to the same magnetic pole. The inner and outer ring-shaped permanent magnets 1
The magnetic fluxes generated in the gaps 2 and 13 repel each other and are bent from the radial direction to the rotation axis direction to be focused. Such magnetic flux is of course generated from the upper and lower end surfaces of the turntable 11,
A strong magnetic field with strong convergence is generated.

【0014】着磁に際して、固定盤10はクライオタン
ク1内で充填された液体窒素等の冷媒2にてその臨界温
度以下に冷却されて超電導励起状態となり、リング状永
久磁石12,13からなる回転盤11をこの超電導体に
直接当接することにより、上述のごとく供給磁束が集中
して高磁束密度の磁界が得られた永久磁石12,13に
より着磁することができ、より強大な超電導磁石が得ら
れ、より強力な磁気浮上力を有する超電導磁気浮上装置
が得られる。
When magnetized, the fixed platen 10 is cooled to a temperature below its critical temperature by a coolant 2 such as liquid nitrogen filled in the cryotank 1 to be in a superconducting excited state, and is rotated by ring-shaped permanent magnets 12 and 13. By directly contacting the board 11 with the superconductor, the supply magnetic flux is concentrated as described above, and the permanent magnets 12 and 13 having a magnetic field of high magnetic flux density can magnetize the superconducting magnet. A superconducting magnetic levitation device having a stronger magnetic levitation force can be obtained.

【0015】なお、永久磁石体の固有温度特性として、
着磁磁石はその周囲温度が高温では小さく、低温領域で
は大きな磁気エネルギーを保有することから、上記の超
電導体を磁化するとき、この磁石温度特性差を利用して
回転盤11のリング状永久磁石12,13も超電導体と
同様に低温雰囲気内に配置して冷却し、得られた大きな
磁石磁場にて超電導体を着磁することにより、強力な超
電導磁石を得ることができる。着磁を完了した後、永久
磁石の冷却媒体のみを除去して、冷却媒体の摩擦抵抗を
取り除き、特に磁石周辺を真空状態にすれば、より一層
摩擦損失の少ない、かつ強力な磁気浮上力と駆動エネル
ギーが得られることになる。
The intrinsic temperature characteristic of the permanent magnet body is as follows.
The magnetized magnet has a small ambient temperature and a large magnetic energy in a low temperature region. Therefore, when magnetizing the above-mentioned superconductor, the magnetized temperature characteristic difference is utilized to make the ring-shaped permanent magnet of the rotating disk 11. Similarly to the superconductor, 12 and 13 are also placed in a low temperature atmosphere to be cooled, and the superconductor is magnetized by the obtained large magnetic field, so that a strong superconducting magnet can be obtained. After the magnetization is completed, only the cooling medium of the permanent magnet is removed to remove the frictional resistance of the cooling medium. Especially, if the surroundings of the magnet are placed in a vacuum state, the magnetic levitation force with less friction loss can be obtained. Driving energy will be obtained.

【0016】この発明において、着磁時並びに磁気浮上
時により一層高密度磁界を得るためには、回転盤11の
内側磁石13外周と外側磁石12内周面間の間隙を狭小
に保持するか、あるいは、永久磁石12,13の軸方向
厚み及び径方向厚みを増大させればよい。また、この発
明では、永久磁石による磁束の集束効果により超電導体
と永久磁石、特に超電導体を偏平構造とすることが可能
である。さらに、複合リング状永久磁石の内外周面が回
転軸に対して平行である場合、超電導体の厚みが薄くて
すむことから、回転盤を2個の固定盤で挟んだ構成とす
ることもできる。一般に回転盤を複合リング状永久磁石
で構成する場合、内側リングほど機械応力が強大で、こ
のために強い剛性が要求されるが、この発明において、
軸方向厚みを大きくした磁石リングは機械強度面および
磁気集束性において特に優れており、適合している。
In the present invention, in order to obtain a higher density magnetic field during magnetization and magnetic levitation, the gap between the outer circumference of the inner magnet 13 and the inner circumference of the outer magnet 12 of the rotary disk 11 is kept small. Alternatively, the axial thickness and the radial thickness of the permanent magnets 12 and 13 may be increased. Further, in the present invention, it is possible to make the superconductor and the permanent magnet, particularly the superconductor, have a flat structure by the effect of focusing the magnetic flux by the permanent magnet. Furthermore, when the inner and outer peripheral surfaces of the composite ring-shaped permanent magnet are parallel to the rotation axis, the thickness of the superconductor can be small, so that the rotary disk can be sandwiched between two fixed disks. . In general, when the rotating disk is composed of a composite ring-shaped permanent magnet, the inner ring has a larger mechanical stress, which requires strong rigidity.
A magnet ring having a large axial thickness is particularly suitable and suitable in terms of mechanical strength and magnetic focusing property.

【0017】また、図2A,Bに示すごとく、リング状
永久磁石12,13の同極相対する内外周面は回転軸に
平行でなくともよい。超電導体対向面側を超電導体対向
方向に向かって開くように、図2Aのようにリング状永
久磁石12,13の縦断面の厚みを軸方向に変えて、あ
るいは図2Bのように該厚みは変えずに三角錐状に形成
して、内周面を傾斜させ、周面間の隙間が回転盤外端面
から固定盤対向面側へ順次拡大することにより、平行な
場合では磁石の超電導体側もその反対側にも相逆方向に
平等な反発磁界が存在するが、同上の傾斜させた場合は
所要の超電導体側の反発磁束のみを増強でき、磁化に不
必要な反対面の磁束を低減して磁束を効率良く活用でき
超電導体への磁化特性が大幅に向上する効果を有する。
As shown in FIGS. 2A and 2B, the inner and outer peripheral surfaces of the ring-shaped permanent magnets 12 and 13 facing each other with the same pole may not be parallel to the rotation axis. The thickness of the longitudinal section of the ring-shaped permanent magnets 12 and 13 is changed in the axial direction as shown in FIG. 2A so that the surface facing the superconductor is opened in the direction opposite to the superconductor, or the thickness is changed as shown in FIG. 2B. Without changing it, it is formed into a triangular pyramid shape, the inner peripheral surface is inclined, and the gap between the peripheral surfaces is gradually expanded from the outer end surface of the rotating disk to the surface facing the fixed disk. There is also an equal repulsive magnetic field in the opposite direction on the opposite side, but if it is tilted the same way, only the repulsive magnetic flux on the desired superconductor side can be increased, and the magnetic flux on the opposite surface unnecessary for magnetization can be reduced. It has the effect that the magnetic flux can be used efficiently and the magnetization characteristics of the superconductor are significantly improved.

【0018】この発明において、着磁及び可動体に用い
る永久磁石体としては、従来の鋳造磁石やフェライト磁
石等が用いられるが、特に超電導体への対向面に強力な
磁束を発生させ、装置の小型化を可能にする最大エネル
ギー積の高いラジアル異方性Nd−Fe−B系等の希土
類永久磁石が好ましく、特に、着磁時に同時に冷却する
場合は−100℃以下での低温磁気特性にすぐれたラジ
アル異方性Pr−Fe−B系磁石が最適である。永久磁
石体を支持する回転盤は、1つのリング状磁石あるいは
複数のリング状磁石を同心状に支持でき、超電導体との
相対的な回転を阻害しない構成であればいずれの形態で
も良く、材質にはAl、Cu等の非磁性材が用いられ
る。
In the present invention, a conventional cast magnet, ferrite magnet, or the like is used as the permanent magnet body used for the magnetization and the movable body. Especially, a strong magnetic flux is generated on the surface facing the superconductor, and A rare earth permanent magnet such as a radial anisotropic Nd-Fe-B system having a high maximum energy product that enables downsizing is preferable, and particularly when cooled simultaneously at the time of magnetization, it has excellent low-temperature magnetic characteristics at -100 ° C or less. A radial anisotropic Pr-Fe-B magnet is optimal. The turntable that supports the permanent magnet body may have any configuration as long as it can concentrically support one ring-shaped magnet or a plurality of ring-shaped magnets and does not impede relative rotation with the superconductor. A non-magnetic material such as Al or Cu is used for.

【0019】前述した図1の複合リング状永久磁石から
なる回転盤11の上面説明図を図3Aに示すが、回転盤
11の他の構成として、図3Bに示すように、内外径の
異なる複数の小径のリング状永久磁石12,13を、超
電導体対向面側に反発磁界を発生するように、ラジアル
方向に着磁して同磁極が対向するよう同軸配置した複数
の複合リング状永久磁石構成体14を、環状に配置した
構成も用いることができる。
FIG. 3A shows a top view of the rotary disk 11 made up of the composite ring-shaped permanent magnet of FIG. 1 described above. As another structure of the rotary disk 11, as shown in FIG. 3B, a plurality of disks having different inner and outer diameters are used. 2. A plurality of composite ring-shaped permanent magnets in which the small-diameter ring-shaped permanent magnets 12 and 13 are coaxially arranged so that the same magnetic poles are magnetized in the radial direction so as to generate a repulsive magnetic field on the surface facing the superconductor. A configuration in which the body 14 is annularly arranged can also be used.

【0020】[0020]

【実施例】図1と同様に、図示しない断熱材で底面と外
周部を被覆したクライオタンク1内には、超電導体とし
てYBaCuO系を用いた円板形超電導体を環状に埋め
込んだ固定盤10が固定配置され、内外径が異なり磁石
間の距離を所定の寸法に設定した2つのリング状永久磁
石12,13からなる回転盤11が固定盤10に対向さ
せてある。磁石として、外径62mm、内径58mm、
高さ15mm、並びに外径54mm、内径50mm、高
さ15mmのNd−Fe−B系磁石を用いたところ、そ
の各々の間隙面側の表面磁束密度は4000ガウス、3
200ガウスに対してその合成反発磁界は両リングの共
通端面より1mmの位置にて5500ガウスと38%強
い磁界が得られた。この複合リング状永久磁石をラジア
ル方向に着磁し同磁極を対向させて同軸配置する両永久
磁石間の間隙に反発磁束を生じさせた回転盤11を直接
固定盤10の超電導体へ密着させることにより、該永久
磁石間の対向磁路の狭小な磁化領域において高密度な磁
化が可能となった。
EXAMPLE As in FIG. 1, a fixing plate 10 in which a disc-shaped superconductor using YBaCuO system as a superconductor is annularly embedded in a cryotank 1 whose bottom and outer peripheral portions are covered with a heat insulating material (not shown). Is fixedly arranged, and a rotary disk 11 composed of two ring-shaped permanent magnets 12 and 13 having different inner and outer diameters and a distance between magnets set to a predetermined dimension is opposed to the fixed disk 10. As a magnet, outer diameter 62mm, inner diameter 58mm,
When Nd-Fe-B magnets having a height of 15 mm, an outer diameter of 54 mm, an inner diameter of 50 mm, and a height of 15 mm were used, the surface magnetic flux densities on the respective gap surfaces were 4000 gauss, 3
With respect to 200 gauss, the synthetic repulsive magnetic field was 5500 gauss, which was 38% stronger at a position 1 mm from the common end face of both rings. This composite ring-shaped permanent magnet is magnetized in the radial direction, the magnetic poles are opposed to each other, and the rotary disk 11 having a repulsive magnetic flux generated in the gap between the coaxially arranged permanent magnets is brought into close contact with the superconductor of the fixed disk 10 directly. As a result, it is possible to achieve high-density magnetization in the narrow magnetization region of the opposing magnetic path between the permanent magnets.

【0021】[0021]

【発明の効果】この発明は、回転盤にラジアル方向に着
磁され同磁極を対向させて同軸配置された複合構成のリ
ング状永久磁石を採用し、かつこのラジアル異方性磁石
間隙幅を狭小に保持することにより固定盤対向面側に高
磁束密度の反発磁界を形成し、この回転盤を直接対向す
る超電導体を有する固定盤に当接させて、高磁束密度の
反発磁界にて磁化することにより、容易に着磁できかつ
強力な超電導磁石を得ることが可能で、その強力な超電
導磁石にて大きな浮上力を有する超電導磁気浮上装置が
得られる。
The present invention employs a ring-shaped permanent magnet having a composite structure in which a rotary disk is magnetized in the radial direction and coaxially arranged with the same magnetic poles facing each other, and the gap width of the radial anisotropic magnet is narrowed. The repulsive magnetic field with a high magnetic flux density is formed on the surface facing the fixed plate by holding it at this position, and this rotating plate is directly contacted with the fixed plate having a superconductor to oppose to magnetize with the repulsive magnetic field with a high magnetic flux density. As a result, it is possible to easily magnetize and obtain a strong superconducting magnet, and it is possible to obtain a superconducting magnetic levitation device having a large levitation force with the strong superconducting magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による着磁方法の一実施例を示す超電
導磁気浮上装置の縦断説明図である。
FIG. 1 is a vertical cross-sectional explanatory view of a superconducting magnetic levitation device showing an embodiment of a magnetizing method according to the present invention.

【図2】AとBはこの発明による複合リング状永久磁石
からなる回転盤の例を示す縦断説明図である。
FIG. 2A and FIG. 2B are longitudinal explanatory views showing an example of a rotary disk made of a composite ring-shaped permanent magnet according to the present invention.

【図3】AとBはこの発明による複合リング状永久磁石
からなる回転盤の例を示す上面説明図である。
3A and 3B are top plan views showing an example of a rotary disk made of a composite ring-shaped permanent magnet according to the present invention.

【符号の説明】[Explanation of symbols]

1 クライオタンク 2 冷媒 10 固定盤 11 回転盤 12,13 リング状永久磁石 14 複合リング状永久磁石構成体 DESCRIPTION OF SYMBOLS 1 Cryo tank 2 Refrigerant 10 Fixed plate 11 Rotating plate 12, 13 Ring-shaped permanent magnet 14 Composite ring-shaped permanent magnet structure

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 環状に配置した超電導体からなる固定盤
と、これに対向配置する複合リング状永久磁石からなる
回転盤とから構成され、回転盤の複合リング状永久磁石
が超電導体対向面側に反発磁界を発生するようにラジア
ル方向に着磁され、同磁極を対向させて同軸配置された
ことを特徴とする超電導磁気浮上装置。
1. A fixed plate made of a superconductor arranged in an annular shape and a rotary plate made of a composite ring permanent magnet facing the fixed plate. The composite ring permanent magnet of the rotary plate has a superconductor facing surface side. A superconducting magnetic levitation device, which is magnetized in a radial direction so as to generate a repulsive magnetic field, and is coaxially arranged with the magnetic poles facing each other.
【請求項2】 請求項1において、複合リング状永久磁
石を構成する内外リング状永久磁石の同極相対する周面
間の隙間が回転盤外端面から固定盤対向面側へ順次拡大
していることを特徴とする超電導磁気浮上装置。
2. The gap according to claim 1, between the peripheral surfaces of the inner and outer ring-shaped permanent magnets forming the composite ring-shaped permanent magnet, which have the same poles facing each other, is gradually expanded from the outer end surface of the rotary disk to the surface opposite to the fixed disk. A superconducting magnetic levitation device characterized by the above.
【請求項3】 同軸配置の複合リング状永久磁石と超電
導体とを対向させた超電導磁気浮上装置において、超電
導体対向面側に反発磁界が発生するよう、複合リング状
永久磁石をラジアル方向に着磁しかつ同磁極を対向させ
て、リング状永久磁石の当該対向面に形成した磁極パタ
ーンを超電導体対向面に当接させて超電導体を磁化する
ことを特徴とする超電導磁気浮上装置における超電導体
の磁化方法。
3. In a superconducting magnetic levitation apparatus in which a coaxially arranged composite ring-shaped permanent magnet and a superconductor are opposed to each other, the composite ring-shaped permanent magnet is mounted in a radial direction so that a repulsive magnetic field is generated on the superconductor-opposing surface side. A superconductor in a superconducting magnetic levitation device, characterized in that the superconductor is magnetized and the magnetic poles are opposed to each other, and a magnetic pole pattern formed on the facing surface of a ring-shaped permanent magnet is brought into contact with the superconductor facing surface to magnetize the superconductor. Magnetizing method.
JP7112346A 1995-04-12 1995-04-12 Superconducting magnetic levitation apparatus and magnetizing method of its superconductor Pending JPH08288124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7112346A JPH08288124A (en) 1995-04-12 1995-04-12 Superconducting magnetic levitation apparatus and magnetizing method of its superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7112346A JPH08288124A (en) 1995-04-12 1995-04-12 Superconducting magnetic levitation apparatus and magnetizing method of its superconductor

Publications (1)

Publication Number Publication Date
JPH08288124A true JPH08288124A (en) 1996-11-01

Family

ID=14584396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7112346A Pending JPH08288124A (en) 1995-04-12 1995-04-12 Superconducting magnetic levitation apparatus and magnetizing method of its superconductor

Country Status (1)

Country Link
JP (1) JPH08288124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068598A (en) * 2010-09-27 2012-04-05 Fdk Corp Faraday rotator and optical isolator
CN103441648A (en) * 2013-08-07 2013-12-11 中国科学院电工研究所 High-temperature superconducting magnetic levitation motor
CN105656358A (en) * 2016-02-15 2016-06-08 余启佳 Magnetic suspension JIEFANG CA6371 car simulation model
CN105656357A (en) * 2016-02-15 2016-06-08 余启佳 Magnetic levitation soybean milk machine
CN107776434A (en) * 2017-11-08 2018-03-09 西南交通大学 Permanent magnetic guideway, superconducting magnetic suspension system and unilateral high-intensity magnetic field generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068598A (en) * 2010-09-27 2012-04-05 Fdk Corp Faraday rotator and optical isolator
CN103441648A (en) * 2013-08-07 2013-12-11 中国科学院电工研究所 High-temperature superconducting magnetic levitation motor
CN103441648B (en) * 2013-08-07 2015-07-22 中国科学院电工研究所 High-temperature superconducting magnetic levitation motor
CN105656358A (en) * 2016-02-15 2016-06-08 余启佳 Magnetic suspension JIEFANG CA6371 car simulation model
CN105656357A (en) * 2016-02-15 2016-06-08 余启佳 Magnetic levitation soybean milk machine
CN107776434A (en) * 2017-11-08 2018-03-09 西南交通大学 Permanent magnetic guideway, superconducting magnetic suspension system and unilateral high-intensity magnetic field generation device

Similar Documents

Publication Publication Date Title
Sotelo et al. Magnetic bearing sets for a flywheel system
US8471660B2 (en) Assembly for magnetization of rare-earth permanent magnets
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
JP2547287B2 (en) Superconducting bearing device
JPH05180225A (en) Superconductive bearing device
US5763971A (en) Superconducting bearing device
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JPH0549191A (en) Power storage system
JPH11315836A (en) High-temperature superconductive bearing with high floating force and flywheel energy storage device of horizontal axis using it
JP5335260B2 (en) Cylindrical power generator having a two-pole shaft rotating body levitated by a high-temperature superconductor
JPH08288125A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JPH08203727A (en) Magnetizing method of superconductor in superconducting magnetic levitation device
JPH09501761A (en) Thin film superconductor magnetic bearing
JP2799802B2 (en) Superconducting levitation type rotating device
Fukuyama et al. An Improvement of the Static and Dynamic Characteristics of Superconducting Magnetic Bearings Using MPMG-YBaCuO
JPH08250323A (en) Method of magnetizing superconductor in superconducting magnetic levitation device
JP3271330B2 (en) Magnet magnetizing device
JPH0681845A (en) Supercondctive bearing device
JP4264940B2 (en) Superconducting magnetic bearing device
Kim et al. Development of the noncontact rotating system using combined ring-shaped HTS bulks and permanent magnets
JP3192207B2 (en) Magnetic bearing
JPH07327338A (en) Superconducting levitation rotary system
JP3616856B2 (en) Bearing device
JP2605200B2 (en) Superconducting bearing device
JP5326357B2 (en) Magnetization method of permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301