JPH08250323A - Method of magnetizing superconductor in superconducting magnetic levitation device - Google Patents

Method of magnetizing superconductor in superconducting magnetic levitation device

Info

Publication number
JPH08250323A
JPH08250323A JP7723995A JP7723995A JPH08250323A JP H08250323 A JPH08250323 A JP H08250323A JP 7723995 A JP7723995 A JP 7723995A JP 7723995 A JP7723995 A JP 7723995A JP H08250323 A JPH08250323 A JP H08250323A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic
permanent magnet
magnetizing
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7723995A
Other languages
Japanese (ja)
Inventor
Masao Nakajima
正男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7723995A priority Critical patent/JPH08250323A/en
Publication of JPH08250323A publication Critical patent/JPH08250323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE: To provide a method of magnetizing a superconductor, with which any magnetic pole patterns can be magnetized easily and a strong superconducting magnet is obtained in a superconducting magnetic levitation device. CONSTITUTION: By interposing a ring shaped auxiliary magnetic board 20 in contact with all the surface of a permanent magnet ring 1 and a auxiliary magnetic unit 21 in contact with a necessary surface part of a fixed board 10 between the fixed board 10 and the permanent magnet ring 1 of a superconductor and by repeating divided magnetizing with concentrated flux, the magnetization is equivalent to the magnetization by a larger magnet or stronger magnet with better magnetic characteristics of such as Br, the stronger superconducting magnet is obtained and stronger magnetic levitating force is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気軸受や電力貯蔵
装置などに広く利用できる超電導方式の磁気装置におけ
る超電導体の磁化方法の改良に係り、永久磁石体を当接
させて超電導体を磁化する際に、磁石との接触面の面積
が超電導体との接触面面積より十分に大きな補助磁性体
を介在させ、磁束を集中させて磁化することにより、強
力な超電導磁石を得ることが可能な超電導式磁気浮上装
置における超電導体の磁化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of magnetizing a superconductor in a magnetic device of a superconducting system which can be widely used in magnetic bearings, power storage devices, etc., and magnetizes the superconductor by abutting a permanent magnet body thereon. In this case, a strong superconducting magnet can be obtained by interposing an auxiliary magnetic body whose contact surface area with the magnet is sufficiently larger than the contact surface area with the superconductor and concentrating the magnetic flux to magnetize it. A method of magnetizing a superconductor in a superconducting magnetic levitation device.

【0002】[0002]

【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、磁気浮上効果及びピン止め効果による超電導浮上力
を利用した非接触の超電導浮上型回転装置は、原理的に
それがエネルギー不要、低摩擦、高速回転等を可能とす
るため、磁気軸受装置や、電力貯蔵装置用大型フライホ
イール等への利用が研究されている。
2. Description of the Related Art Conventionally, a lot of research has been conducted on techniques utilizing the physical characteristics of superconductors. In particular, recently, a non-contact type utilizing the superconducting levitation force by the magnetic levitation effect and the pinning effect has been developed. The superconducting levitation type rotating device has been studied for use in magnetic bearing devices, large flywheels for electric power storage devices, etc., because it enables energy-free, low friction, and high-speed rotation in principle.

【0003】特に、液体窒素温度領域で超電導現象が得
られる酸化物超電導体の発見によって、冷却体として安
価で取扱いの容易な液体窒素が使用できるようになった
こと、及び強い超電導浮上力を持つ高温超電導バルク材
料が開発されたことが超電導体に対する浮上力を利用し
た研究の大きな契機となった。
In particular, the discovery of an oxide superconductor capable of obtaining a superconducting phenomenon in the liquid nitrogen temperature region has made it possible to use liquid nitrogen, which is inexpensive and easy to handle, as a cooling body, and has a strong superconducting levitation force. The development of high-temperature superconducting bulk material has been a major impetus for research utilizing the levitation force for superconductors.

【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。さらに、大きな磁気浮上(または
吸引)力を得るためには臨界電流密度Jc以内であれ
ば、大きな磁界で超電導体を磁化し、大きな磁力を保有
する超電導磁石とする必要があり、強力な磁場でもって
超電導体を磁化することによっても達成できる。
The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors. Further, in order to obtain a large magnetic levitation (or attraction) force, it is necessary to magnetize the superconductor with a large magnetic field so that the superconducting magnet has a large magnetic force as long as it is within the critical current density Jc. It can also be achieved by magnetizing the superconductor.

【0005】[0005]

【発明が解決しようとする課題】超電導方式磁気浮上装
置において、超電導体はその周囲温度が臨界温度以下に
なると、超電導現象を起こし、永久磁石による磁場によ
って磁化されて超電導磁石となり、永久磁石との間に反
発または吸引作用が働き、磁気浮上が起こる。従って、
回転側の永久磁石体と固定側の超電導体を対向させた該
装置では、超電導体は予め永久磁石体の磁極配置に合わ
せて磁化しておく必要がある。
In the superconducting type magnetic levitation device, when the ambient temperature of the superconductor falls below the critical temperature, the superconducting phenomenon occurs and the superconductor is magnetized by the magnetic field of the permanent magnet to become the superconducting magnet. Repulsion or suction works between them, causing magnetic levitation. Therefore,
In the device in which the permanent magnet body on the rotating side and the superconductor on the stationary side are opposed to each other, the superconductor must be magnetized in advance in accordance with the magnetic pole arrangement of the permanent magnet body.

【0006】例えば、円板形イットリウム系超電導体を
環状に複数環配置した固定盤と、リング状永久磁石を複
数リング埋め込んだ回転盤とからなる磁気浮上装置にお
いて、超電導体を所要の磁極パターンで磁化する方法を
考慮するに、超電導体の着磁で一般的なコイル着磁方式
では、環状に配置された超電導体に種々の磁極を形成す
るのに複雑な巻線を行う必要があり、実用化するには極
めて困難であるため、永久磁石を用いて着磁されてい
た。しかも、永久磁石を用いた着磁では、コイルのよう
に強力な磁場にて着磁できないため、当該磁気浮上装置
において強力な磁気浮上力と駆動エネルギーが得られな
い問題があった。
[0006] For example, in a magnetic levitation device comprising a fixed plate in which a plurality of disc-shaped yttrium-based superconductors are annularly arranged and a rotary plate in which a plurality of ring-shaped permanent magnets are embedded, a superconductor is formed in a required magnetic pole pattern. In consideration of the magnetizing method, in the general coil magnetizing method for magnetizing a superconductor, complicated winding must be performed to form various magnetic poles in the superconductor arranged in an annular shape. Since it is extremely difficult to realize, it was magnetized using a permanent magnet. Moreover, the magnetization using a permanent magnet cannot be magnetized with a strong magnetic field like a coil, and thus there is a problem that a strong magnetic levitation force and driving energy cannot be obtained in the magnetic levitation device.

【0007】この発明は、超電導方式磁気浮上装置にお
ける超電導体の着磁の問題点に鑑み、任意の磁極パター
ンであっても着磁が容易に実施できかつ強力な超電導磁
石を得ることが可能な超電導式磁気浮上装置における超
電導体の磁化方法の提供を目的としている。
In view of the problem of magnetizing the superconductor in the superconducting type magnetic levitation device, the present invention makes it possible to easily magnetize even with an arbitrary magnetic pole pattern and to obtain a strong superconducting magnet. An object of the present invention is to provide a method for magnetizing a superconductor in a superconducting magnetic levitation device.

【0008】[0008]

【課題を解決するための手段】発明者は、容易に着磁で
きかつ強力な超電導磁石を得ることが可能な着磁方法を
目的に種々検討した結果、永久磁石によって直接超電導
体を磁化する場合、磁化力は磁石の寸法や材質、つまり
残留磁束密度Brなどの磁気特性によって一義的に決定
されることに着目し、別途ヨークや永久磁石などの補助
磁性体を永久磁石の超電導体対向面に全面または部分的
に配置し、同磁性体の超電導体側は部分的に超電導体に
接触させるようにすると、主永久磁石体の磁界が局部的
に超電導体を磁化するために磁束が集中し、大きな磁化
力が得られることを知見し、この発明を完成した。
As a result of various studies aimed at a magnetizing method capable of easily magnetizing and obtaining a strong superconducting magnet, the inventor has found that when a permanent magnet is used to directly magnetize a superconductor. Note that the magnetizing force is uniquely determined by the size and material of the magnet, that is, the magnetic characteristics such as the residual magnetic flux density Br, and an auxiliary magnetic body such as a yoke or a permanent magnet is separately attached to the surface of the permanent magnet facing the superconductor. If the magnetic field of the main permanent magnet body locally magnetizes the superconductor, the magnetic flux concentrates because the magnetic field of the main permanent magnet body is locally concentrated. The present invention has been completed by finding that a magnetizing force can be obtained.

【0009】この発明は、装置において回転体となる円
形または環状永久磁石にて、超電導体を着磁するに際
し、永久磁石体側接触面積を広く、超電導体側接触面積
を狭くした補助磁性材料を介在させて分割磁化し、超電
導体の未磁化面に順次移動して次々にそれらの面を部分
磁化することにより、大幅に超電導磁石の磁力を向上さ
せ、総体的に超電導体の発生磁界を増やし、強大な浮上
力または吸引力を得るようにしたものである。
According to the present invention, an auxiliary magnetic material having a wide contact area on the permanent magnet side and a narrow contact area on the superconductor side is interposed when a superconductor is magnetized by a circular or annular permanent magnet which is a rotating body in the apparatus. By splitting and magnetizing, moving sequentially to the non-magnetized surface of the superconductor and partially magnetizing those surfaces one after another, the magnetic force of the superconducting magnet is greatly improved, and the magnetic field generated by the superconductor is increased as a whole. It is designed to obtain a high levitation force or suction force.

【0010】すなわち、この発明は、超電導体と永久磁
石を対向させて磁気浮上または磁気吸引する超電導式磁
気浮上装置において、永久磁石体を当接させて超電導体
を磁化する際に、両者の間に永久磁石体側接触面を超電
導体側接触面より広い面積とした補助磁性体を接触介在
させて超電導体の部分的な磁化を行い、これを繰り返す
ことにより超電導体の所要面を磁化することを特徴とす
る超電導式磁気浮上装置における超電導体の磁化方法で
ある。
That is, according to the present invention, in a superconducting magnetic levitation device in which a superconductor and a permanent magnet are opposed to each other to magnetically levitate or attract, a permanent magnet is brought into contact with the superconductor to magnetize the superconductor. In addition, the auxiliary magnetic body whose contact surface on the permanent magnet side is wider than that on the superconductor side is contacted to partially magnetize the superconductor, and by repeating this, the required surface of the superconductor is magnetized. Is a method of magnetizing a superconductor in a superconducting magnetic levitation device.

【0011】[0011]

【作用】一般に磁気浮上装置には、イットリウム系のよ
うに臨界温度が比較的高い、いわゆる高温超電導体が用
いられ、例えば、YBaCuO系の超電導体では、臨界
温度が絶対温度90度のため、超電導状態を保つために
液体窒素(絶対温度77度)を用いて冷却されるが、大
がかりな冷却装置が必要となるために、超電導体側を固
定体として、また、永久磁石体側を可動体、回転運動す
る場合は、回転体として使用される。
Generally, a magnetic levitation device uses a so-called high-temperature superconductor having a relatively high critical temperature such as yttrium system. For example, in a YBaCuO system superconductor, the critical temperature is 90 ° C. It is cooled using liquid nitrogen (absolute temperature 77 degrees) to maintain the state, but since a large-scale cooling device is required, the superconductor side is used as a fixed body, the permanent magnet side is a movable body, and rotary motion is performed. When used, it is used as a rotating body.

【0012】かかる磁気浮上装置において、対向する永
久磁石体と超電導体との間に永久磁石またはヨークなど
の補助磁性体、すなわち、永久磁石側の接触面積を多く
して、磁束を増大させ、被磁化体の超電導体側は面積が
小さくなるような形状ならびに寸法の補助磁性体を、直
接または間接接触配置する。例えば、図3に示すごと
く、超電導体の固定盤10と回転盤間に、永久磁石体リ
ング1の全面に接触するリング状補助磁性体20と固定
盤10の所要面部分に接触する補助磁性体21とを介在
させ、これらを当接させることにより、永久磁石体リン
グ1による磁化磁界をリング状補助磁性体20と補助磁
性体21とで集中させ、固定盤10の超電導体の所要部
分表面にこの集中磁化磁界を印加させ当該接触面部のみ
を分割磁化し、順次このようにして超電導体の未磁化表
面を磁化し、その全面を磁化し、超電導体の磁化後は、
当該補助磁性体を除去することにより、超電導体に流れ
る臨界電流密度Jc以内である限り、集中磁束で磁化さ
れることにより、以下の作用効果を得る。
In such a magnetic levitation device, an auxiliary magnetic body such as a permanent magnet or a yoke, that is, a contact area on the permanent magnet side is increased between the facing permanent magnet body and the superconductor to increase the magnetic flux, On the superconductor side of the magnetized body, an auxiliary magnetic body having a shape and dimensions such that the area becomes small is arranged in direct or indirect contact. For example, as shown in FIG. 3, a ring-shaped auxiliary magnetic body 20 contacting the entire surface of the permanent magnet ring 1 and an auxiliary magnetic body contacting a required surface portion of the fixed board 10 between the fixed board 10 and the rotating board of the superconductor. 21 and by abutting them, the magnetizing magnetic field by the permanent magnet ring 1 is concentrated between the ring-shaped auxiliary magnetic body 20 and the auxiliary magnetic body 21, and the surface of the fixed board 10 on the required portion of the superconductor. This concentrated magnetizing magnetic field is applied to divide and magnetize only the contact surface portion, sequentially magnetize the unmagnetized surface of the superconductor in this manner, magnetize the entire surface, and after magnetizing the superconductor,
By removing the auxiliary magnetic body, as long as it is within the critical current density Jc flowing in the superconductor, it is magnetized by the concentrated magnetic flux to obtain the following effects.

【0013】まず、永久磁石体をそのまま超電導体に直
接接触させて磁化した場合に比して、大幅に強力な超電
導磁石を得ることが可能で、特に超電導体の磁化表面の
分割を多くした場合その効果は大きい。装置の構成とし
て、永久磁石体を超電導体に対して平行配置することも
容易であり、例えば、磁気浮上ギャップ厚みの補助磁性
体を使用すれば、当該補助磁性体を取り去った時も浮上
ギャップは同一となり、可動体を上下移動させることも
ほとんどなく、安定浮上させることが可能である。
First, it is possible to obtain a significantly stronger superconducting magnet as compared with the case where the permanent magnet body is directly brought into direct contact with the superconductor and magnetized, and particularly when the magnetized surface of the superconductor is divided many times. The effect is great. As a configuration of the device, it is easy to dispose the permanent magnet body in parallel with the superconductor.For example, if an auxiliary magnetic body with a magnetic levitation gap thickness is used, the levitation gap will be reduced even when the auxiliary magnetic body is removed. As a result, the movable body can be stably levitated with almost no vertical movement.

【0014】この発明において、着磁及び可動体に用い
る永久磁石体としては、従来の鋳造磁石やフェライト磁
石等が用いられるが、特に超電導体への対向面に強力な
磁束を発生させ、装置の小型化を可能にする最大エネル
ギー積の高いNd−Fe−B系やPr−Fe−B系等の
希土類永久磁石が好ましく、特に、−100℃以下での
低温磁気特性にすぐれたPr−Fe−B系磁石が最適で
ある。永久磁石体を支持する回転盤は、1つのリング状
磁石あるいは複数のリング状磁石を同心状に支持でき、
超電導体との相対的な回転を阻害しない構成であればい
ずれの形態でも良く、材質には主としてAl、Cu、ス
テンレス等の非磁性材が用いられる。
In the present invention, a conventional cast magnet, ferrite magnet, or the like is used as the permanent magnet body used for the magnetization and the movable body. Particularly, a strong magnetic flux is generated on the surface facing the superconductor, and the permanent magnet body is used for the apparatus. Rare earth permanent magnets such as Nd-Fe-B series and Pr-Fe-B series having a high maximum energy product that enable downsizing are preferable, and in particular, Pr-Fe- which has excellent low temperature magnetic characteristics at -100 ° C or lower. B magnets are the best. The turntable supporting the permanent magnet body can support one ring magnet or a plurality of ring magnets concentrically,
Any form may be used as long as it does not hinder the relative rotation with the superconductor, and the material is mainly a non-magnetic material such as Al, Cu or stainless steel.

【0015】この発明において、補助磁性体としては、
永久磁石や純鉄、炭素成分の少ない磁気特性に優れた鉄
材など種々材料の適用が考えられ、形状としては、例え
ば、図3のリング状板とブロックの組合せたもの、断面
L字型のリング状のもの、図4Aに示す断面L字型の弓
形の補助磁性体22、図4Bに示す弓形の板とブロック
を組合せた補助磁性体23などの一体構成でも組立体で
もよく、また、単一材質でも複合材質でもよい。また、
図4Cに示すごとく、補助磁性体23による超電導体の
部分磁化の後に補助磁性体23を移動させやすくするた
め、これに非磁性の把っ手24を設けることもできる。
In the present invention, as the auxiliary magnetic material,
Various materials such as permanent magnets, pure iron, iron materials with a small carbon content and excellent magnetic properties can be applied, and examples of the shape include a combination of the ring-shaped plate and the block in FIG. 3 and a ring with an L-shaped cross section. 4A, an auxiliary magnetic body 22 having an L-shaped cross section shown in FIG. 4A, and an auxiliary magnetic body 23 having a combination of an arcuate plate and a block shown in FIG. 4B may be integrated or assembled. It may be a material or a composite material. Also,
As shown in FIG. 4C, a non-magnetic grip 24 may be provided on the auxiliary magnetic body 23 to facilitate movement of the auxiliary magnetic body 23 after partial magnetization of the superconductor by the auxiliary magnetic body 23.

【0016】この発明において、可動体を長時間液体窒
素など冷却媒体に直接浸積することがないために、可動
体の外装部に過度な材質制限も必要としないが、さら
に、永久磁石体として希土類磁石を用いる場合、永久磁
石も同時に冷却すれば、磁石の固有温度特性により最大
エネルギー積が増大することから、超電導体と永久磁石
体の双方を冷却して得た強力な磁場で超電導体を磁化し
て、磁気的により一層強力な超電導磁石とすることがで
き、装置全体としての磁気浮上力が大幅に向上する。例
えば、永久磁石体7をドライアイスで冷却する等の冷却
温度が近似した雰囲気とする他、Pr−Fe−B系永久
磁石を可動体の永久磁石体として用いる場合、使用する
液体冷媒と同一の雰囲気下におくことも可能である。
In the present invention, since the movable body is not directly immersed in the cooling medium such as liquid nitrogen for a long time, the outer portion of the movable body does not need to be excessively restricted in material. When a rare earth magnet is used, if the permanent magnet is also cooled at the same time, the maximum energy product increases due to the intrinsic temperature characteristics of the magnet.Therefore, the superconductor is cooled by a strong magnetic field obtained by cooling both the superconductor and the permanent magnet body. It can be magnetized to become a magnetically stronger superconducting magnet, and the magnetic levitation force of the entire apparatus is significantly improved. For example, when the permanent magnet body 7 is cooled with dry ice or the like to provide an atmosphere having a similar cooling temperature, and when a Pr—Fe—B system permanent magnet is used as a permanent magnet body of a movable body, it is the same as the liquid refrigerant used. It is also possible to leave it in the atmosphere.

【0017】[0017]

【実施例】【Example】

実施例1 図1に示す例は、回転側の永久磁石体リング1により、
超電導体リング2をその径方向に内外に分割して着磁す
る方法であり、まず図1Aに示すように、断面がL字型
のリング状の鉄からなる補助磁性体3をその断面が逆L
字型となるように用い、円周端面の面積が広い側を永久
磁石体リング1の全面に、面積の狭い円周端面側を超電
導体リング2の上面の円周端面の径方向内側半分にそれ
ぞれ当接させて、当該円周端面の径方向内側半分を分割
磁化する。次に、図1Bは先の補助磁性体3に代えて、
円周端面の面積が広い側を永久磁石体リング1の全面に
当接させる断面が逆L字型の補助磁性体4を用いるが、
超電導体リング2の上面に接触する側が、超電導体リン
グ2の上面の円周端面の径方向外側半分に当接する構成
の補助磁性体4にて、当該円周端面の径方向外側半分を
分割磁化することにより、超電導体リング2の上面の磁
化を完了する。
Example 1 In the example shown in FIG. 1, the rotating permanent magnet ring 1
This is a method of magnetizing the superconducting ring 2 by dividing it inward and outward in the radial direction, and first, as shown in FIG. L
It is used in the shape of a letter, and the side with a large circumferential end face is the entire surface of the permanent magnet ring 1, and the side with a narrow circumferential end face is the inner half in the radial direction of the circumferential end face of the upper surface of the superconductor ring 2. They are brought into contact with each other, and the radially inner half of the circumferential end face is divided and magnetized. Next, in FIG. 1B, instead of the auxiliary magnetic body 3 described above,
An auxiliary magnetic body 4 having an inverted L-shaped cross section is used to bring the side having a large circumferential end surface into contact with the entire surface of the permanent magnet ring 1.
With the auxiliary magnetic body 4 configured such that the side contacting the upper surface of the superconductor ring 2 abuts on the radially outer half of the circumferential end surface of the upper surface of the superconductor ring 2, the radially outer half of the circumferential end surface is divided and magnetized. By doing so, the magnetization of the upper surface of the superconductor ring 2 is completed.

【0018】ここでは、補助磁性体3,4に鉄からなる
リング状のものを使用したが、周方向にも分割された弓
形補助磁性体を用いることにより、超電導体リング2の
円周上端面の径方向に内外に分割して着磁するほか、周
方向にも分割した部分着磁が可能で、さらに補助磁性体
材料にもNd−Fe−B系永久磁石を使用し、径方向お
よび周方向に分割磁化を繰り返して超電導体リング2の
上面の磁化を完了したところ、さらに磁気的により一層
強力な超電導磁石を得ることができた。なお、鉄製の補
助磁性体3,4は一体成形品であったが、Nd−Fe−
B系永久磁石製の補助磁性体は板状の弓形材と断面矩形
の弓形材からなる磁石を組み合せて弓形補助磁性体に組
み立てたものを使用した。
Although the ring-shaped auxiliary magnetic members 3 and 4 made of iron are used here, the circumferential upper end surface of the superconductor ring 2 is formed by using the arc-shaped auxiliary magnetic members divided in the circumferential direction. In addition to being magnetized by dividing the inside and outside in the radial direction, it is also possible to partially magnetize in the circumferential direction. Furthermore, by using Nd-Fe-B system permanent magnets as auxiliary magnetic material, When the magnetization of the upper surface of the superconducting ring 2 was completed by repeating the divided magnetization in the direction, it was possible to obtain a magnetically stronger superconducting magnet. Although the iron-made auxiliary magnetic bodies 3 and 4 were integrally molded products, Nd-Fe-
As the auxiliary magnetic body made of B-type permanent magnet, a magnet formed of a plate-shaped bow-shaped member and a bow-shaped member having a rectangular cross-section was combined and assembled into an arc-shaped auxiliary magnetic member.

【0019】実施例2 図2に示す例は、下側の固定盤10に超電導体としてY
BaCu3x系を用いた円板形超電導体を環状に埋め込
んだ構成のものを使用し、また、上側の回転盤11には
径の異なる複数のリング状Pr−Fe−B系永久磁石体
を着設配置した構成を用い、固定盤10と回転盤11と
の間に、板状の弓形材と断面矩形の弓形材を組み合せた
鉄製の補助磁性体12を介在させ、大径円盤側を回転盤
11の永久磁石体に、小径円盤を固定盤10の円板形超
電導体に当接させるに際し、固定盤10をクライオタン
ク内に配置して、タンク内に液体窒素を入れて磁場冷却
しながら磁化させた。
Example 2 In the example shown in FIG. 2, Y is used as a superconductor on the lower fixed platen 10.
A disk-shaped superconductor using a BaCu 3 O x system is embedded in a ring shape, and a plurality of ring-shaped Pr-Fe-B system permanent magnet bodies having different diameters are used for the upper rotating disk 11. By using a configuration in which a fixed plate 10 and a rotary plate 11 are installed, an auxiliary magnetic body 12 made of iron, which is a combination of a plate-shaped material and a rectangular-shaped material having a rectangular cross section, is interposed, and a large-diameter disk side is provided. When the small-diameter disk is brought into contact with the disk-shaped superconductor of the fixed disk 10 on the permanent magnet body of the rotary disk 11, the fixed disk 10 is placed in the cryotank, and liquid nitrogen is put in the tank to cool the magnetic field. While magnetized.

【0020】補助磁性体12を回転盤11の回転方向に
順次ずらせて、環状に埋め込んだ各円板形超電導体を磁
化して固定盤10の磁化を完了した。その結果、補助磁
性体12により磁石の磁束を集中させたことと、液体窒
素の極低温に近接する雰囲気でも安定してより一層優れ
た磁石特性を発揮するPr−Fe−B系磁石を用いたこ
とにより、同磁石による直接かつ常温又はその近傍温度
における磁化に比して、磁化力にて15%以上、磁気反
発力で15%〜25%増大する効果を確認した。
The auxiliary magnetic body 12 was sequentially displaced in the rotation direction of the rotating disk 11 to magnetize the disk-shaped superconductors embedded in the annular shape to complete the magnetization of the stationary disk 10. As a result, the magnetic flux of the magnet was concentrated by the auxiliary magnetic body 12, and a Pr-Fe-B magnet was used which stably exhibits even more excellent magnet characteristics even in an atmosphere close to the cryogenic temperature of liquid nitrogen. As a result, the effect of increasing the magnetizing force by 15% or more and the magnetic repulsion force by 15% to 25% as compared with the magnetization directly by the magnet at room temperature or in the vicinity thereof was confirmed.

【0021】[0021]

【発明の効果】この発明は、磁気軸受や電力貯蔵装置な
どに広く利用できる超電導方式の磁気浮上装置における
超電導体に永久磁石体を当接させてこれを磁化する際
に、通常は、磁石の発生する磁化磁界は磁石の寸法や材
質、形状が一定であれば磁石の表面磁束密度によってほ
ぼ決まるが、磁石との接触面の面積が超電導体との接触
面面積より十分に大きな補助磁性体を介在させ、磁束を
集中させて磁化する分割磁化を繰り返して、超電導体の
全面を磁化することにより、全体的にはより大きな磁石
あるいはBrなど磁気特性のより優れた強力な磁石で磁
化したことと等価となり、強大な超電導磁石を可能と
し、より強力な磁気浮上力が得られる。
INDUSTRIAL APPLICABILITY The present invention is normally used when a permanent magnet body is brought into contact with a superconductor in a magnetic levitation device of a superconducting system which can be widely used in magnetic bearings, power storage devices, etc. and magnetizes the superconductor. The magnetizing magnetic field generated is almost determined by the surface magnetic flux density of the magnet if the size, material and shape of the magnet are constant, but the area of the contact surface with the magnet is much larger than the contact surface area with the superconductor. By interposing and repeatedly dividing magnetized by concentrating the magnetic flux to magnetize the entire surface of the superconductor, it is possible to magnetize with a larger magnet or a powerful magnet with better magnetic characteristics such as Br as a whole. It becomes equivalent and enables a powerful superconducting magnet, and a stronger magnetic levitation force is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による着磁方法を実施するための補助
磁性体の一構成例を示す超電導式磁気浮上装置の縦断面
説明図である。
FIG. 1 is a vertical cross-sectional explanatory view of a superconducting magnetic levitation device showing a configuration example of an auxiliary magnetic body for carrying out a magnetizing method according to the present invention.

【図2】この発明による着磁方法を実施するための他の
補助磁性体の一構成例を示す超電導式磁気浮上装置の縦
断面説明図である。
FIG. 2 is a vertical cross-sectional explanatory view of a superconducting magnetic levitation device showing a configuration example of another auxiliary magnetic body for carrying out the magnetizing method according to the present invention.

【図3】この発明による着磁方法を実施するための他の
補助磁性体の一構成例を示す超電導式磁気浮上装置の分
解斜視図である。
FIG. 3 is an exploded perspective view of a superconducting magnetic levitation device showing another configuration example of an auxiliary magnetic body for carrying out the magnetizing method according to the present invention.

【図4】A,B,Cはこの発明による着磁方法を実施す
るための他の補助磁性体の一構成例を示す斜視説明図で
ある。
4A, 4B, and 4C are perspective explanatory views showing a configuration example of another auxiliary magnetic body for carrying out the magnetizing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 永久磁石体リング 2 超電導体リング 3,4,12 補助磁性体 10 固定盤 11 回転盤 20 リング状補助磁性体 21,22,23 補助磁性体 24 把っ手 1 Permanent magnet ring 2 Superconductor ring 3, 4, 12 Auxiliary magnetic material 10 Fixed plate 11 Rotating disk 20 Ring-shaped auxiliary magnetic material 21, 22, 23 Auxiliary magnetic material 24 Handle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超電導体と永久磁石を対向させて磁気浮
上または磁気吸引する超電導式磁気浮上装置において、
永久磁石体を当接させて超電導体を磁化する際に、両者
の間に永久磁石体側接触面を超電導体側接触面より広い
面積とした補助磁性体を接触介在させて超電導体の部分
的な磁化を行い、これを繰り返すことにより超電導体の
所要面を磁化することを特徴とする超電導式磁気浮上装
置における超電導体の磁化方法。
1. A superconducting magnetic levitation apparatus for magnetically levitating or magnetically attracting a superconductor and a permanent magnet facing each other,
When magnetizing the superconductor by contacting the permanent magnet body, an auxiliary magnetic body whose contact surface on the permanent magnet side is wider than that on the superconductor side is contacted between them to partially magnetize the superconductor. The method for magnetizing a superconductor in a superconducting magnetic levitation apparatus is characterized in that a desired surface of the superconductor is magnetized by repeating the above.
JP7723995A 1995-03-07 1995-03-07 Method of magnetizing superconductor in superconducting magnetic levitation device Pending JPH08250323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7723995A JPH08250323A (en) 1995-03-07 1995-03-07 Method of magnetizing superconductor in superconducting magnetic levitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7723995A JPH08250323A (en) 1995-03-07 1995-03-07 Method of magnetizing superconductor in superconducting magnetic levitation device

Publications (1)

Publication Number Publication Date
JPH08250323A true JPH08250323A (en) 1996-09-27

Family

ID=13628321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7723995A Pending JPH08250323A (en) 1995-03-07 1995-03-07 Method of magnetizing superconductor in superconducting magnetic levitation device

Country Status (1)

Country Link
JP (1) JPH08250323A (en)

Similar Documents

Publication Publication Date Title
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
JPH07229517A (en) Magnetic bearing device of rotor shaft
Murakami Progress in applications of bulk high temperature superconductors
JPH05180225A (en) Superconductive bearing device
JPH0549191A (en) Power storage system
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JPH08250323A (en) Method of magnetizing superconductor in superconducting magnetic levitation device
JPH08296648A (en) Bearing device and its starting method
JP2004511997A (en) Apparatus with ferromagnetic structural components mechanically loaded in the low temperature range
JPH09501761A (en) Thin film superconductor magnetic bearing
JPH08203727A (en) Magnetizing method of superconductor in superconducting magnetic levitation device
JP3271330B2 (en) Magnet magnetizing device
JPH08288125A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
Kim et al. Development of the noncontact rotating system using combined ring-shaped HTS bulks and permanent magnets
JP2799802B2 (en) Superconducting levitation type rotating device
JP5335260B2 (en) Cylindrical power generator having a two-pole shaft rotating body levitated by a high-temperature superconductor
JP3192207B2 (en) Magnetic bearing
RU2761157C1 (en) Superconductor levitation device (options)
Lee et al. Advanced design and experiment of a small-sized flywheel energy storage system using a high-temperature superconductor bearing
JPH07327338A (en) Superconducting levitation rotary system
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material
Murakami Applications of bulk high temperature superconductors
JP3616856B2 (en) Bearing device
Kim et al. Dynamic characteristics of a 3-D superconducting actuator with arranged permanent magnets and electromagnets
JPH1174114A (en) Superconducting magnet device