JP3051922B1 - Oxide members for thermoelectric conversion elements - Google Patents

Oxide members for thermoelectric conversion elements

Info

Publication number
JP3051922B1
JP3051922B1 JP11025566A JP2556699A JP3051922B1 JP 3051922 B1 JP3051922 B1 JP 3051922B1 JP 11025566 A JP11025566 A JP 11025566A JP 2556699 A JP2556699 A JP 2556699A JP 3051922 B1 JP3051922 B1 JP 3051922B1
Authority
JP
Japan
Prior art keywords
oxide
thermoelectric
thermoelectric conversion
conversion element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11025566A
Other languages
Japanese (ja)
Other versions
JP2000226215A (en
Inventor
申  ウソク
村山  宣光
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP11025566A priority Critical patent/JP3051922B1/en
Application granted granted Critical
Publication of JP3051922B1 publication Critical patent/JP3051922B1/en
Publication of JP2000226215A publication Critical patent/JP2000226215A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 酸化物の長所である高温大気中での安定性を
もち、かつ、室温付近でも高い熱電性能を示す酸化物
で、実用的な観点から見ても製造プロセスが簡便な熱電
変換素子用酸化物部材を提供する。 【解決手段】 酸化物Ax Ni1-x O(但し、0≦x≦
0.4、AはLi、Na及びそれらの組合せ)からな
る、熱電変換素子用酸化物部材からなる200℃付近で
熱電性能指数が0.2×10-4-1以上で、800〜1
000℃で熱電性能指数が0.7×10-4-1以上の熱
電変換素子用酸化物部材。
An oxide having stability in a high-temperature atmosphere, which is an advantage of an oxide, and exhibiting high thermoelectric performance even at around room temperature, and having a simple manufacturing process from a practical viewpoint. An oxide member for a conversion element is provided. SOLUTION: An oxide A x Ni 1-x O (where 0 ≦ x ≦
0.4, A is Li, Na, and a combination thereof), and a thermoelectric performance index of about 0.2 × 10 −4 K −1 at about 200 ° C. and 800 to 1
An oxide member for a thermoelectric conversion element having a thermoelectric performance index of 0.7 × 10 −4 K −1 or more at 000 ° C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換素子用酸
化物部材等に関するものであり、さらに詳しくはAx
1-xO(但し、0.01<x≦0.4、AはLi、N
a又はそれらの組合せ)系の熱電変換素子用酸化物部材
等であって、室温から1000℃付近の温度域で熱電性
能指数約1×10-4-1を有し、高温大気中で安定であ
り、既存の非酸化物熱電変換材料に比べ、製造プロセス
が簡便な新規熱電変換素子用酸化物部材等に関するもの
である。
The present invention relates to relates to a thermoelectric conversion element for oxides member or the like, more particularly A x N
i 1-x O (where 0.01 < x ≦ 0.4, A is Li, N
a or a combination thereof) based oxide member for a thermoelectric conversion element, which has a thermoelectric performance index of about 1 × 10 −4 K −1 in a temperature range from room temperature to about 1000 ° C. and is stable in a high-temperature atmosphere. The present invention relates to a novel oxide member for a thermoelectric conversion element whose manufacturing process is simpler than existing non-oxide thermoelectric conversion materials.

【0002】[0002]

【従来の技術】現在、全供給エネルギーの約2/3は排
熱として捨てられているといわれ、これらの一部でも回
収できればエネルギー利用効率は向上するはずである。
熱電変換材料は熱エネルギーを電気エネルギーに直接変
換する材料であり、同材料を利用した熱電発電は、廃熱
の有効利用に適した分散型エネルギー変換システムとし
て期待されている。これらの要求に応えるためには、特
性の優れた熱電変換材料が必要である。熱電変換材料の
性能指数(Z)は次式で与えられる。 Z=σα2 /λ ここで、αは熱起電力(ゼーベック係数)、σは電気伝
導率、λは熱伝導率である。変換効率の高い材料として
は、|α|とσがともに大きく(半導体的)、λが小さ
いことが必要とされる。また、σα2 は出力因子とも定
義される。
2. Description of the Related Art At present, it is said that about 2/3 of the total supplied energy is discarded as waste heat, and if a part of these can be recovered, the energy use efficiency should be improved.
Thermoelectric conversion materials are materials that directly convert heat energy into electric energy, and thermoelectric power generation using this material is expected as a distributed energy conversion system suitable for effective use of waste heat. In order to meet these requirements, a thermoelectric conversion material having excellent characteristics is required. The figure of merit (Z) of the thermoelectric conversion material is given by the following equation. Z = σα 2 / λ where α is the thermoelectromotive force (Seebeck coefficient), σ is the electrical conductivity, and λ is the thermal conductivity. As a material having high conversion efficiency, it is necessary that | α | and σ are both large (semiconductor-like) and λ is small. Σα 2 is also defined as an output factor.

【0003】種々の排熱のうち、ゴミ焼却炉、民生用ガ
ス機器等からの排熱を利用する場合は、大気中400℃
以上の環境で熱電発電素子が使用されるため、熱電変換
素子には耐酸化性が要求される。このため、既存の合金
系熱電変換材料を使用する場合は、熱電変換材料に酸化
防止被膜を施す必要がある。このような理由により、耐
酸化性の要求に応える新たな開発として、高温大気中で
安定な酸化物系の中で、既存の高温用熱電変換材料と同
等以上の性能を有する新規材料を見出し、素子化する研
究が最近注目を集めている。
[0003] Of the various types of waste heat, when waste heat from a garbage incinerator, a household gas appliance, or the like is used, the temperature is 400 ° C in the atmosphere.
Since the thermoelectric generator is used in the above environment, the thermoelectric converter is required to have oxidation resistance. For this reason, when using an existing alloy-based thermoelectric conversion material, it is necessary to apply an antioxidant coating to the thermoelectric conversion material. For this reason, as a new development that meets the demand for oxidation resistance, we have discovered a new material that has performance equal to or better than existing high-temperature thermoelectric conversion materials in oxide systems that are stable in high-temperature air. Recently, attention has been paid to research into devices.

【0004】現在、特に国内における多彩な研究開発に
より、酸化物材料でも、既存の非酸化物系である二ケイ
化鉄(FeSi2 )系熱電変換材料と同レベルの性能指
数が得られた(村山宣光、河本邦仁、セラミックス 3
3(1998)161)。特にその中で注目される酸化
物系は(BaSr)PbO系とNaCo24 系であ
る。両方とも酸化物の中では最高の性能を示し、各々n
型、p型の熱電材料候補として有力である。しかし、7
00℃以上の高温での安定性が問題である。1000℃
付近での安定な材料としてはZnO系があるが、過去の
研究報告から判断して、その物質系の今までの最高性能
以上を開発出来る見込みが無いことと、低温側で性能が
低下する問題がある。
At present, through various research and development in Japan, the performance index of the same level as that of the existing non-oxide-based iron disilicide (FeSi 2 ) -based thermoelectric conversion material has been obtained even with various oxide materials ( Norimitsu Murayama, Kunihito Kawamoto, Ceramics 3
3 (1998) 161). The oxides of particular interest among them are (BaSr) PbO and NaCo 2 O 4 . Both perform the best among the oxides, each with n
It is a promising thermoelectric material candidate for p-type and p-type. But 7
Stability at a high temperature of 00 ° C. or more is a problem. 1000 ° C
As a stable material in the vicinity, there is a ZnO-based material, but judging from past research reports, there is no possibility that the material system can be developed beyond the highest performance so far, and the problem that the performance decreases at low temperatures There is.

【0005】[0005]

【発明が解決しようとする課題】このような状況下にあ
って、本発明者らは、上記従来技術に鑑みて、電気伝導
性酸化物について熱電材料としての可能性を検討する中
で、遷移金属酸化物を調べたところ、酸化ニッケルは、
アルカリ元素を添加することによってその導電性が上昇
することに着目し、熱電変換素子用酸化物部材として有
用であることを見出し、本発明を完成するに至った。本
発明の目的は、既存の代表的な熱電酸化物であるFeS
2 と同じレベルの熱電性能指数を有し、酸化物の長所
である高温大気中での安定性をもち、かつ、室温付近で
も高い熱電性能を示す酸化物で、実用的な観点から見て
も製造プロセスが簡便な熱電変換素子用酸化物部材を提
供することである。
Under these circumstances, the present inventors have studied the possibility of using an electrically conductive oxide as a thermoelectric material in view of the above prior art, Examination of metal oxides revealed that nickel oxide
Focusing on the fact that the conductivity is increased by adding an alkali element, the inventors have found that they are useful as oxide members for thermoelectric conversion elements, and have completed the present invention. An object of the present invention is to provide an existing typical thermoelectric oxide, FeS
It has the same level of thermoelectric figure of merit as i 2 , has stability in high-temperature atmosphere, which is an advantage of oxides, and shows high thermoelectric performance near room temperature. From a practical viewpoint, Another object of the present invention is to provide an oxide member for a thermoelectric conversion element whose manufacturing process is simple.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明は、下記の構造を有する化合物、Ax Ni1-x
O(但し、0.01<x≦0.4、AはLi又はNa、
或いはLiとNaの混合)、からなる、室温から100
0℃付近で熱電性能指数約1×10-4-1を有する、酸
化物部材を構成要素とする熱電変換素子。また、本発明
は、前記の化合物からなる酸化物部材であって、200
℃付近で熱電性能指数が0.2×10-4-1以上で、8
00〜1000℃で熱電性能指数が0.7×10-4-1
以上の酸化物部材を構成要素とする熱電変換素子、前記
の化合物からなる酸化物部材であって、出力因子が20
0℃付近で0.54×10-4Wm-1-2、1000℃付
近で2.5×10-4Wm-1-2以上の部材を構成要素と
する熱電変換素子、酸化物部材は岩塩構造の結晶構造の
化合物であることを特徴とする前記の熱電変換素子、
望ましい態様とするものである。さらに、本発明は、上
記の構造を有する化合物を構成要素とすることを特徴と
する熱電発電用又は熱電冷却用熱電変換素子である。
According to the present invention, there is provided a compound having the following structure: A x Ni 1-x
O (however, 0.01 <x ≦ 0.4, A is Li or Na,
Or a mixture of Li and Na), from room temperature to 100
An acid having a thermoelectric performance index of about 1 × 10 −4 K −1 at around 0 ° C.
Thermoelectric conversion element comprising a nitride member. The present invention also provides an oxide member comprising the above compound,
When the thermoelectric figure of merit is 0.2 × 10 -4 K -1 or more around ℃, 8
The thermoelectric figure of merit is 0.7 × 10 −4 K −1 at 00 to 1000 ° C.
Thermoelectric conversion elements and components of the above oxides member, an oxide member made of the compound, the output factor 20
0 ℃ near at 0.54 × 10 -4 Wm -1 K -2 , the components of 2.5 × 10 -4 Wm -1 K -2 or more members in the vicinity of 1000 ° C.
Thermoelectric conversion elements, oxides member is to desirable embodiments the thermoelectric conversion element, of the which is a compound of the crystal structure of the rock salt structure. Furthermore, the present invention is a thermoelectric conversion element for thermoelectric generation or thermoelectric cooling, characterized by comprising a compound having the above structure as a constituent element.

【0007】[0007]

【発明の実施の形態】次に、本発明についてさらに詳述
する。本発明で好適に用いられる化合物の例としてはL
x Ni1-x O又はNay Liz Ni1-y-z O(但し、
x:約0.024、y:約0.1、z:約0.01)が
例示される。
Next, the present invention will be described in more detail. Examples of compounds suitably used in the present invention include L
i x Ni 1-x O or Na y Li z Ni 1-yz O (however,
x: about 0.024, y: about 0.1, z: about 0.01).

【0008】Ax Ni1-x O系の熱電特性は1950年
ころから酸化物NiOの伝導機構を理解するため、高温
での導伝特性などが活発に研究されたが、現在ではLi
置換型酸化ニッケルはバンド伝導であるとの考えが有力
である。バンド伝導の理論に基づくと、電気伝導率が高
くなるほどその熱起電力は対数的に減少するが、この系
の場合、高温での熱起電力は電気伝導率の上昇と共に下
がることなく比較的大きい出力因子を示した。しかし、
この系が熱電変換素子用酸化物部材として考えられたこ
とはなかった。
The thermoelectric properties of the A x Ni 1-x O system have been actively studied since 1950 in order to understand the conduction mechanism of the oxide NiO.
The idea that substitutional nickel oxide is band conductive is likely. Based on the theory of band conduction, the higher the electrical conductivity, the logarithmically decreases its thermoelectromotive force, but in this system, the thermoelectromotive force at high temperatures is relatively large without decreasing with the increase in electrical conductivity. The output factors are shown. But,
This system has never been considered as an oxide member for a thermoelectric conversion element.

【0009】本発明の熱電変換素子用酸化物部材はアル
カリ元素のA(Li及び/又はNa)の量を多くするこ
とによって、電気伝導率を高くし、大きい出力因子が得
られることを見出し完成されたものである。Liの量を
徐々に増やすことによってLiNiO系の熱電特性は向
上でき、さらに、低温側の熱電特性も良くなる。しか
し、Liの量がある以上過ぎると、導電性は良くなる
が、熱起電力が小さくなり、結果的には出力因子の低下
が起こる。熱伝導性は低いほど良いが、このLi量以上
多くなっても熱導電率の低下も見られず、最終的なZの
値は小さくなってしまう。アルカリ元素のAのxの範囲
は以上によりその好適な範囲を特定した。単純に酸化ニ
ッケルに少量のLiを置換することによって、熱電性能
指数約1×10-4-1が達成できたのは大きい意味があ
る。本発明の熱電変換素子用酸化物部材は、室温から1
000℃付近で熱電性能指数約1×10-4-1を有する
こと、高温大気中で安定であること、既存の非酸化物熱
電変換材料に比べ、製造プロセスが簡単であり、量産が
可能であること、等の格別の長所を有する。さらに、上
記性能指数は、既存の代表的な熱電変換材料である非酸
化物系のFeSi2 とほぼ同レベルである。本発明の熱
電変換素子用酸化物部材は、上記特性により、例えば、
次のような排熱源を利用した熱電発電用の熱電変換素子
として用いられる。 排熱源の例;自動車の排ガス=300〜900℃、ごみ
焼却施設の排ガス150〜900℃、燃料電池蒸気15
0〜900℃。
The oxide member for a thermoelectric conversion element of the present invention has been found to be able to increase the electric conductivity by increasing the amount of A (Li and / or Na) as an alkali element and to obtain a large output factor. It was done. By gradually increasing the amount of Li, the thermoelectric characteristics of the LiNiO-based material can be improved, and the thermoelectric characteristics on the low temperature side can be improved. However, if the amount of Li exceeds a certain amount, the conductivity is improved, but the thermoelectromotive force is reduced, and as a result, the output factor is reduced. The lower the thermal conductivity is, the better. However, even if the amount of Li exceeds this amount, the thermal conductivity does not decrease and the final value of Z becomes small. The range of x of the alkali element A specified its preferable range as described above. It is significant that a thermoelectric figure of merit of about 1 × 10 −4 K −1 can be achieved by simply substituting a small amount of Li for nickel oxide. The oxide member for a thermoelectric conversion element of the present invention has a temperature of 1 to room temperature.
It has a thermoelectric figure of merit of about 1 × 10 -4 K -1 at around 000 ° C, is stable in a high temperature atmosphere, has a simpler manufacturing process than existing non-oxide thermoelectric materials, and can be mass-produced It has special advantages such as Further, the above-mentioned figure of merit is almost the same level as that of non-oxide type FeSi 2 which is an existing typical thermoelectric conversion material. The oxide member for a thermoelectric conversion element of the present invention, due to the above characteristics, for example,
It is used as a thermoelectric conversion element for thermoelectric generation using the following waste heat source. Example of exhaust heat source: exhaust gas from automobiles = 300 to 900 ° C., exhaust gas from refuse incineration facility 150 to 900 ° C., fuel cell steam 15
0-900 ° C.

【0010】本発明の熱電変換素子用酸化物部材は、既
存の非酸化物系の作製法と比べてプロセスが簡単である
というメリットがあるが、このことは、非酸化物系の作
製の場合、真空が必要とされたり、微細構造の制御をし
たりする必要があるからである。さらに、高温で使用す
る場合、大気中の酸素との反応による劣化を防ぐための
処理も入る。これらはLiNiOが酸化物であることの
メリットであり、その他、他酸化物系の熱電部材と比較
すると、1200K以上でも使用できること(1000
K以下の仕様もある)と、NiOという自然系に多く、
毒性が無く、安全性が高く、安価であるために工業的に
有用な材料であること等のメリットが挙げられる。
[0010] The oxide member for a thermoelectric conversion element of the present invention has an advantage that the process is simpler than the existing non-oxide-based manufacturing method. This is because a vacuum is required or a fine structure needs to be controlled. Further, when used at a high temperature, a treatment for preventing deterioration due to reaction with oxygen in the atmosphere is included. These are the advantages of LiNiO being an oxide, and that it can be used even at 1200K or more compared to other oxide-based thermoelectric members (1000
K or less), which are often found in natural systems called NiO,
There are merits such as being non-toxic, highly safe, and inexpensive, and thus being an industrially useful material.

【0011】[0011]

【実施例】次に、実施例により本発明をさらに具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1 (試料制作)酸化ニッケルに酸化リチウムを混合し、8
50℃で6時間仮焼し、1250℃で4時間焼結した。
試料の相対密度は70%程度であった。Li元素がNi
OのNiサイトに置換することによって試料の結晶格子
定数が小さくなり、単相であることをX線回折パターン
で確認した。Liの置換量は、試料焼結中にLiが蒸発
して、出発組成との違いが大きいため、焼結後のLi置
換量はICP−AES法で定量した(試料0.2gをH
Cl水溶液10mlに加熱溶解)。熱起電力及び電気導
電性を、大気中、200から1000℃の範囲で測定
し、さらに同じバッチの試料を0.1Pa程度の真空中
で室温から1000℃付近まで熱伝導率を測定し、熱電
変換性能指数を求めた。Na置換の場合も同じ方法で作
製、測定を行った。即ち、Na置換の場合は、酸化ニッ
ケルと炭酸ナトリウムを混合し、770℃で10時間仮
焼して、混合した出発原料がすべて固溶するようにし
た。その後の焼結はLiの場合と同じ、1250℃で4
時間焼結した。NaとLiを同時に固溶させる場合は、
まず、酸化ニッケルと炭酸ナトリウムを混合し、770
℃で10時間仮焼してから、酸化リチウムを混合し、8
50℃で6時間仮焼し、1250℃で4時間焼結した。
このような作製法はLiの固溶量はプロセスに大きく依
存するが、Naの場合は低温仮焼で固溶することによっ
て、最終的な固溶量を決めることができるためである。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Example 1 (Production of sample) Mixing nickel oxide and lithium oxide
It was calcined at 50 ° C. for 6 hours and sintered at 1250 ° C. for 4 hours.
The relative density of the sample was around 70%. Li element is Ni
By substituting O for Ni sites, the crystal lattice constant of the sample was reduced, and it was confirmed by an X-ray diffraction pattern that the sample was a single phase. Since the amount of Li substitution is greatly different from the starting composition due to evaporation of Li during sintering of the sample, the amount of Li substitution after sintering was determined by ICP-AES method (0.2 g of H
Dissolved in 10 ml of an aqueous Cl solution). The thermoelectromotive force and the electrical conductivity were measured in the air at a temperature in the range of 200 to 1000 ° C., and the samples of the same batch were measured for the thermal conductivity from room temperature to about 1000 ° C. in a vacuum of about 0.1 Pa. The conversion figure of merit was determined. Preparation and measurement were performed in the same manner in the case of Na substitution. That is, in the case of Na substitution, nickel oxide and sodium carbonate were mixed and calcined at 770 ° C. for 10 hours so that all of the mixed starting materials were dissolved. Subsequent sintering is the same as for Li at 1250 ° C for 4 hours.
Sintered for hours. When Na and Li are dissolved simultaneously,
First, nickel oxide and sodium carbonate are mixed, and 770
After calcining at 10 ° C for 10 hours,
It was calcined at 50 ° C. for 6 hours and sintered at 1250 ° C. for 4 hours.
In such a production method, the amount of solid solution of Li greatly depends on the process, but in the case of Na, the final amount of solid solution can be determined by solid solution at low temperature calcination.

【0012】実施例2 (結果)図1に焼結体の電気伝導率と熱起電力の温度依
存性を示す。純粋なNiOは本来絶縁体であるが、Li
等をNiに置換して導電性を上げられる。しかし、従来
の半導体理論であれば、電気伝導率が高くなるほど熱起
電力は対数的に減少するが、この試料では、温度の上昇
とともに電気伝導率は高くなるにもかかわらず、熱起電
力はほぼ一定といった結果であり、そのため、高い出力
因子が得られた。熱伝導率及び性能指数の温度依存性を
図2に示す。熱伝導率の値はNiOの値に比べ2〜3倍
低い値が得られ、温度上昇とともに減少した。性能指数
は800℃以上の温度で0.7×10-4-1を超えた。
Naを置換した試料の場合も同様の効果が得られた。N
a置換と同時にLiを加えた焼結体試料の電気伝導率と
熱起電力の温度依存性を図3に示す。Liのみ置換した
場合よりも大きい、1000℃付近で0.25×10-4
Wm-1-2の出力因子が得られた。Aのアルカリ元素を
制御することだけでも熱電変換性能を大幅に上げられる
ことが確認できた。
Example 2 (Results) FIG. 1 shows the temperature dependence of the electric conductivity and the thermoelectromotive force of the sintered body. Pure NiO is an insulator by nature, but Li
And the like can be replaced with Ni to increase conductivity. However, according to the conventional semiconductor theory, the higher the electric conductivity, the logarithmically decreases the thermoelectromotive force.In this sample, the thermoelectromotive force increases with the temperature, despite the higher electric conductivity. The result was almost constant, so that a high output factor was obtained. FIG. 2 shows the temperature dependence of the thermal conductivity and the figure of merit. The value of thermal conductivity was 2-3 times lower than the value of NiO, and decreased with increasing temperature. The figure of merit exceeded 0.7 × 10 −4 K −1 at temperatures above 800 ° C.
The same effect was obtained in the case of the sample in which Na was replaced. N
FIG. 3 shows the temperature dependence of the electric conductivity and the thermoelectromotive force of the sintered body sample to which Li was added simultaneously with the substitution of a. 0.25 × 10 −4 near 1000 ° C., which is larger than the case where only Li is substituted.
An output factor of Wm -1 K -2 was obtained. It was confirmed that the thermoelectric conversion performance can be significantly improved only by controlling the alkali element of A.

【0013】A置換の効果を三つにまとめると、1)電
気伝導率を大きく上げながらも熱起電力が低下しなかっ
たため、大きい出力因子が得られた、2)Aの量が増え
ることによって広い温度範囲で安定な出力可能になっ
た、3)置換により熱伝導率が低下し、性能指数を上げ
られる、ことが挙げられる。
The effects of the A substitution can be summarized into three parts: 1) a large output factor was obtained because the thermal electromotive force did not decrease while the electric conductivity was greatly increased. 2) The amount of A increased. Stable output is possible in a wide temperature range. 3) The thermal conductivity is reduced by substitution and the figure of merit can be increased.

【0014】[0014]

【発明の効果】以上詳述したように、本発明は酸化物A
x Ni1-x O(但し、0.01<x≦0.4、AはLi
及び/又はNa)からなる熱電変換素子用酸化物部材で
あり、本発明によれば、室温から1000℃付近で熱電
性能指数約1×10-4-1を有し、高温大気中で安定で
あり、既存の酸化物熱電変換材料に比べ、製造プロセス
が簡単であり、量産ができる熱電変換素子用酸化物部材
を提供することができる。上記熱電変換素子用酸化物部
材は、性能指数が、既存の体表的な熱電変換材料である
FeSi2 と同じレベルであり、熱電発電用の熱電変換
素子、熱電冷却用の熱電変換素子として有用である。
As described in detail above, the present invention relates to oxide A
x Ni1-x O (where 0.01 <x ≦ 0.4, A is Li
And / or Na) for a thermoelectric conversion element, which according to the present invention has a thermoelectric performance index of about 1 × 10 −4 K −1 from room temperature to around 1000 ° C. and is stable in a high-temperature atmosphere. Therefore, an oxide member for a thermoelectric conversion element can be provided which has a simpler manufacturing process than existing oxide thermoelectric conversion materials and can be mass-produced. The above-mentioned oxide member for a thermoelectric conversion element has a figure of merit at the same level as FeSi 2 which is an existing surface thermoelectric conversion material, and is useful as a thermoelectric conversion element for thermoelectric generation and a thermoelectric conversion element for thermoelectric cooling. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Lix Ni1-x O(x=0.024)焼結体の
電気伝導率と熱起電力の温度依存性を示す。
FIG. 1 shows the temperature dependence of the electric conductivity and the thermoelectromotive force of a Li x Ni 1-x O (x = 0.024) sintered body.

【図2】Lix Ni1-x O(x=0.024)焼結体の
熱伝導率及び性能指数の温度依存性を示す。
FIG. 2 shows the temperature dependence of the thermal conductivity and the figure of merit of a Li x Ni 1-x O (x = 0.024) sintered body.

【図3】Nax Liy Ni1-x-y O(x:約0.1、
y:約0.01)焼結体の電気伝導率と熱起電力の温度
依存性を示す。
FIG. 3 shows Na x Li y Ni 1-xy O (x: about 0.1,
y: about 0.01) Indicates the temperature dependence of the electric conductivity and the thermoelectromotive force of the sintered body.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−170856(JP,A) 特開 平7−272729(JP,A) 特開 平6−333772(JP,A) 特開 平2−260581(JP,A) 特開 平4−285052(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 53/00 H01L 35/22 CA(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-170856 (JP, A) JP-A-7-272729 (JP, A) JP-A-6-333772 (JP, A) JP-A-2- 260581 (JP, A) JP-A-4-285052 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 53/00 H01L 35/22 CA (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物Ax Ni1-x O(但し、0.01
<x≦0.4、AはLi、Na又はそれらの組合せ)か
らなる、酸化物部材を構成要素とする熱電変換素子。
An oxide A x Ni 1-x O (0.01 to 0.01)
<X ≦ 0.4, A is Li, Na or a combination thereof) , and a thermoelectric conversion element having an oxide member as a constituent element.
【請求項2】 請求項1記載の化合物からなる酸化物部
材であって、200℃付近で熱電性能指数が0.2×1
-4-1以上で、800〜1000℃で熱電性能指数が
0.7×10-4-1以上の酸化物部材を構成要素とする
熱電変換素子。
2. An oxide member comprising the compound according to claim 1, wherein the thermoelectric figure of merit at about 200 ° C. is 0.2 × 1.
An oxide member having a thermoelectric performance index of 0.7 × 10 −4 K −1 or more at 800 to 1000 ° C. which is 0 -4 K −1 or more is a constituent element.
Thermoelectric conversion element.
【請求項3】 請求項1記載の化合物からなる酸化物部
材であって、出力因子が200℃付近で0.54×10
-4Wm-1-2、1000℃付近で2.5×10-4Wm-1
-2以上の部材を構成要素とする熱電変換素子。
3. An oxide member comprising the compound according to claim 1, wherein the power factor is 0.54 × 10 4 at around 200 ° C.
-4 Wm -1 K -2 , 2.5 × 10 -4 Wm -1 around 1000 ° C
A thermoelectric conversion element comprising K- 2 or more members .
【請求項4】 酸化物部材は岩塩構造の結晶構造の化合
物であることを特徴とする請求項1〜3のいずれか1項
に記載の熱電変換素子。
4. oxide member thermoelectric conversion device according to any one <br/> of claims 1 to 3, characterized in that a compound of the crystal structure of rock salt structure.
【請求項5】 請求項1〜4のいずれか1項に記載の部
材を構成要素とすることを特徴とする熱電発電用又は熱
電冷却用熱電変換素子。
5. A thermoelectric conversion element for thermoelectric generation or thermoelectric cooling, comprising the member according to claim 1 as a constituent element.
JP11025566A 1999-02-02 1999-02-02 Oxide members for thermoelectric conversion elements Expired - Lifetime JP3051922B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025566A JP3051922B1 (en) 1999-02-02 1999-02-02 Oxide members for thermoelectric conversion elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025566A JP3051922B1 (en) 1999-02-02 1999-02-02 Oxide members for thermoelectric conversion elements

Publications (2)

Publication Number Publication Date
JP3051922B1 true JP3051922B1 (en) 2000-06-12
JP2000226215A JP2000226215A (en) 2000-08-15

Family

ID=12169490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025566A Expired - Lifetime JP3051922B1 (en) 1999-02-02 1999-02-02 Oxide members for thermoelectric conversion elements

Country Status (1)

Country Link
JP (1) JP3051922B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462462B2 (en) * 2000-10-11 2003-11-05 独立行政法人産業技術総合研究所 Oxide thermoelectric element manufactured by spark plasma sintering
JP4221496B2 (en) * 2003-03-26 2009-02-12 独立行政法人産業技術総合研究所 Composite oxide having n-type thermoelectric properties
JP2006232608A (en) * 2005-02-24 2006-09-07 Mitsubishi Chemicals Corp Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170856A (en) * 1987-01-08 1988-07-14 Kobe Steel Ltd Manufacture of lithium nickel oxide sintered body
JPH02260581A (en) * 1989-03-31 1990-10-23 Murata Mfg Co Ltd Thick film thermoelectric device
JPH04285052A (en) * 1991-03-15 1992-10-09 Murata Mfg Co Ltd Semiconductor porcelain composition
JP3209633B2 (en) * 1993-03-25 2001-09-17 松下電器産業株式会社 Thin film capacitor and method of manufacturing the same
JPH07272729A (en) * 1993-10-18 1995-10-20 Matsushita Electric Ind Co Ltd Fused carbonate fuel cell and its manufacture

Also Published As

Publication number Publication date
JP2000226215A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JPWO2004105144A1 (en) Thermoelectric conversion material and production method thereof
Xu et al. High-temperature thermoelectric properties of the Ca1-xBixMnO3 system
JP3051922B1 (en) Oxide members for thermoelectric conversion elements
JP4002964B2 (en) Layered alkali titanate thermoelectric oxide material
JP3565503B2 (en) Oxide thermoelectric conversion material
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP6426824B2 (en) Material for thermoelectric device and method of manufacturing material for thermoelectric device
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP2002274943A (en) Oxide thermoelectric material
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP2008091429A (en) COMPOSITION FOR n-TYPE THERMOELECTRIC ELEMENT
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
JP2002368292A (en) Thermoelectric conversion module for high temperature
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP4449966B2 (en) Composition for n-type thermoelectric device
JPH0617225B2 (en) Thermoelectric conversion material
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
CN105693214A (en) Double-doped Ca3Co4O9 thermoelectric material and microwave synthesis method thereof
JP2000012914A (en) Thermoelectric conversion material and thermoelectric conversion element
JPH06252451A (en) Thermoelectric material of doped semiconductor base and thermoelectric device or thermoelectric element couple
JP2002280623A (en) Method for manufacturing oxide thermoelectric material
JPH04275923A (en) Multicomponent oxide powder and high-temperature electrode material, and production of the same
JP2020057727A (en) Thermoelectric material and manufacturing method therefor, and thermoelectric generation element
JP2008021667A (en) Material and module for thermoelectric conversion

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term