JPH06251915A - Manufacture of rare earth element magnet - Google Patents

Manufacture of rare earth element magnet

Info

Publication number
JPH06251915A
JPH06251915A JP3208659A JP20865991A JPH06251915A JP H06251915 A JPH06251915 A JP H06251915A JP 3208659 A JP3208659 A JP 3208659A JP 20865991 A JP20865991 A JP 20865991A JP H06251915 A JPH06251915 A JP H06251915A
Authority
JP
Japan
Prior art keywords
water
magnet
solvent
rare earth
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3208659A
Other languages
Japanese (ja)
Other versions
JP3029711B2 (en
Inventor
Fumiaki Kikui
文秋 菊井
Minoru Uehara
稔 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3208659A priority Critical patent/JP3029711B2/en
Publication of JPH06251915A publication Critical patent/JPH06251915A/en
Application granted granted Critical
Publication of JP3029711B2 publication Critical patent/JP3029711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Disintegrating Or Milling (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To avoid the deterioration in the characteristics of a permanent magnet and the corrosive impurity content by a method wherein the permanent magnet is wet-crushed using the water whereto a specific amount of a complex forming agent and a reducing agent are added or an inert gas is bubbled as a solvent. CONSTITUTION:Within the manufacturing method of rare earth element to obtain the rare earth element particles such as an R-Co based magnet or R-Fe-B based magnet, etc., the water whereto a complex forming agent of 0.001-1mol/l and a reducing agent of Na2SO3 not exceeding 10g/l are added or an inert gas is jetted to reduce the O2 content in the water to the level not exceeding 1ppm are used as a solvent so as to wet fine crush said particles and then inert impurity content in the particles filter-separated after fine crushing step is reduced not to exceed 0.1ppm. Through these procedures, the title rare earth element magnet can be manufactured by the wet fine crushing step using no noxious organic solvent at all so that the deterioration in the characteristics of the permanent magnet may be avoided and the corrosive impurity content when the particles are wet fine crushed using said water as a solvent may be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R−Co系磁石ある
いはR−Fe−B系磁石等の希土類磁石粉末を、有毒の
有機溶媒を使用しない湿式微粉砕にて製造する希土類磁
石の製造方法に係り、水を溶媒として用いて湿式微粉砕
するに際して、水に特定量の錯形成剤と還元剤を添加し
て微粉砕後の粉末中の不溶性不純物量を0.1ppm以
下にし、永久磁石の磁石特性の劣化及び腐食を防止した
希土類磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rare earth magnets, such as R-Co magnets or R-Fe-B magnets, by wet pulverization without using a toxic organic solvent. Therefore, when wet pulverizing using water as a solvent, a specific amount of a complexing agent and a reducing agent are added to water to reduce the amount of insoluble impurities in the finely pulverized powder to 0.1 ppm or less. The present invention relates to a method for manufacturing a rare earth magnet that prevents deterioration and corrosion of magnet characteristics.

【0002】[0002]

【従来の技術】従来、R−Co系磁石の製造に用いる磁
石粉末は、Ca還元法あるいは粉砕法にて原料粉末を得
ていた。また、R−Fe−B系磁石等の希土類磁石の製
造に用いる磁石粉末は、電解により還元された希土類原
料を用いて、溶解して鋳型に鋳造し所要磁石組成の合金
塊を作成し、これを粉砕して所要粒度の合金粉末とする
溶解・粉砕法(特開昭60−63304号公報、特開昭
60−1190701号公報)がある。この溶解・粉砕
法は、鋳塊の粗粉砕工程で容易に酸化防止が可能な粉砕
ができるため、比較的低含有酸素量の合金粉末が得られ
る。
2. Description of the Related Art Conventionally, as a magnet powder used for producing an R--Co magnet, a raw material powder has been obtained by a Ca reduction method or a pulverization method. Further, the magnet powder used for the production of rare earth magnets such as R-Fe-B magnets is prepared by melting and casting a rare earth raw material reduced by electrolysis into a mold to prepare an alloy lump of a required magnet composition. There is a melting and pulverizing method (JP-A-60-63304 and JP-A-60-1190701) for pulverizing the powder into alloy powder having a required particle size. In this melting and pulverizing method, crushing capable of easily preventing oxidation can be carried out in the coarse crushing step of the ingot, so that an alloy powder having a relatively low oxygen content can be obtained.

【0003】かかる希土類磁石用磁石粉末は、所要粒度
にするためいずれも機械粉砕により粗粉砕後、さらにト
ルエン、メタノール、ヘキサン等の有機溶媒を用いて、
アトライター等内にて湿式微粉砕することが一般的であ
る。
In order to obtain the required particle size, all the magnet powders for rare earth magnets are roughly pulverized by mechanical pulverization, and then an organic solvent such as toluene, methanol or hexane is used,
Wet pulverization is generally performed in an attritor or the like.

【0004】[0004]

【発明が解決しようとする課題】この湿式微粉砕に用い
る前記有機溶媒は有毒で危険性が高く、また公害上の問
題があるため、最近、水を溶媒とした湿式微粉砕法が提
案されており、水を溶媒として用いることは安全性及び
コストの点で有機溶媒に対してすぐれている
Since the organic solvent used for the wet pulverization is toxic and highly dangerous and has a problem of pollution, a wet pulverization method using water as a solvent has recently been proposed. However, using water as a solvent is superior to organic solvents in terms of safety and cost.

【0005】しかし、水には一般にO2量10ppm〜
20ppmを含有するため、微粉砕時に溶媒に水を用い
て、希土類磁石、特にNd−Fe−B系磁石の製造に適
用する場合、溶媒の水中のO2により、生成された微粉
砕粉が腐食され、また、溶媒の水中にNd(OH)3
FeOOH等の不溶性不純物が生成し、この微粉砕粉か
ら得られる永久磁石の磁石特性の劣化及び腐食を招来す
る問題があり、実用化が困難であった。
However, the amount of O 2 contained in water is generally 10 ppm to
Since it contains 20 ppm, when water is used as a solvent at the time of fine pulverization to apply to the production of rare earth magnets, particularly Nd-Fe-B magnets, the finely pulverized powder produced is corroded by O 2 in the solvent water. And Nd (OH) 3 , in the solvent water,
There is a problem that insoluble impurities such as FeOOH are generated, which causes deterioration and corrosion of the magnetic properties of the permanent magnet obtained from this finely pulverized powder, making it difficult to put into practical use.

【0006】この発明は、R−Co系磁石あるいはR−
Fe−B系磁石等の希土類磁石粉末を、有毒の有機溶媒
を使用しない湿式微粉砕にて製造する希土類磁石の製造
方法の提供を目的とし、水を溶媒に用いて湿式微粉砕し
た際に永久磁石の磁石特性の劣化及び腐食させる不純物
量を低減できる希土類磁石の製造方法の提供を目的とし
ている。
The present invention is an R-Co type magnet or an R-Co type magnet.
For the purpose of providing a method for producing a rare earth magnet in which a rare earth magnet powder such as an Fe-B magnet is produced by wet fine pulverization without using a toxic organic solvent, it is permanent when wet finely pulverized using water as a solvent. It is an object of the present invention to provide a method for manufacturing a rare earth magnet that can reduce the deterioration of the magnet characteristics of the magnet and the amount of impurities that cause corrosion.

【0007】[0007]

【課題を解決するための手段】この発明は、希土類磁石
の製造時、微粉砕工程において、溶媒として水を用いた
場合、水中に含まれるO2量の低減と共に溶液中の不溶
性不純物の生成沈殿を防止するため、種々検討した結
果、水中に含まれるO2量の低減と共に溶液中に溶出す
るFe、R(特にNd)の不溶性沈殿物の生成を防止す
る方法として、溶媒としての水に特定量の錯形成剤と還
元剤を添加し、あるいはさらに前記水中に不活性ガスを
吹き込みバブリングすることにより、溶媒中の水に含ま
れるO2量の低減と共に、前記不溶性沈殿物を溶液中に
溶存させ、微粉砕後の濾過により微粉砕粉回収の際に、
不純物を濾過液として系外に除去できることを知見し完
成したものである。
According to the present invention, when water is used as a solvent in the fine pulverization step during the production of a rare earth magnet, the amount of O 2 contained in the water is reduced and the precipitation of insoluble impurities in the solution is generated. As a result of various investigations to prevent the formation of insoluble precipitates of Fe and R (especially Nd), which are eluted in the solution as a result of the reduction of the O 2 content in water, water was used as a solvent. By adding an amount of a complexing agent and a reducing agent, or by bubbling by blowing an inert gas into the water, the amount of O 2 contained in water in the solvent is reduced and the insoluble precipitate is dissolved in the solution. When collecting finely pulverized powder by filtration after fine pulverization,
It has been completed by discovering that impurities can be removed outside the system as a filtrate.

【0008】すなわち、この発明は、湿式微粉砕にてR
−Co系磁石あるいはR−Fe−B系磁石等の希土類磁
石粉末を得る希土類磁石の製造方法において、錯形成剤
を0.001〜1mol/l及び還元剤として10g/
l以下のNa2SO3を添加した水、あるいはさらに前記
水中に不活性ガスを噴射して水中のO2量を1ppm以
下に低減した水を溶媒に用いて湿式微粉砕し、微粉砕後
の濾過分離した粉末中の不溶性不純物量を0.1ppm
以下にすることを特徴とする希土類磁石の製造方法であ
る。
That is, according to the present invention, R
In a method for producing a rare earth magnet, which obtains rare earth magnet powder such as —Co magnet or R—Fe—B magnet, 0.001 to 1 mol / l of a complexing agent and 10 g / l of a reducing agent are used.
1 or less of water to which Na 2 SO 3 was added, or water in which the amount of O 2 in water was reduced to 1 ppm or less by further injecting an inert gas into the water was used as a solvent for wet pulverization, and after pulverization, 0.1 ppm of insoluble impurities in the powder separated by filtration
The method for producing a rare earth magnet is characterized by the following.

【0009】[0009]

【作用】詳述するとこの発明は、希土類磁石の製造時の
湿式微粉砕工程前に、溶媒となる水に錯形成剤を0.0
01〜1mol/l、還元剤として10g/l以下のN
2SO3を添加して、あるいはさらにArガス又はN2
ガス等不活性ガスを吹き込んでバブリングして、溶媒の
水中のO2量を1ppm以下に低減した後、前記処理水
を溶媒として湿式微粉砕した際の溶液中の不溶性不純物
量を0.1ppm以下にすることにより、微粉砕後の濾
過時に不純物を濾過液として系外に除去し、濾過分離し
た粉末中の不溶性不純物量を0.1ppm以下にするこ
とができ、得られる希土類磁石の磁石特性の劣化及び腐
食防止に多大な効果を発揮する。
In detail, according to the present invention, a complexing agent is added to water as a solvent in an amount of 0.0
01 to 1 mol / l, 10 g / l or less N as a reducing agent
a 2 SO 3 is added, or further Ar gas or N 2 is added.
After bubbling by blowing an inert gas such as a gas to reduce the amount of O 2 in the solvent water to 1 ppm or less, the amount of insoluble impurities in the solution when wet-milled with the treated water as a solvent is 0.1 ppm or less By this, impurities can be removed from the system as a filtrate during filtration after fine pulverization, and the amount of insoluble impurities in the powder separated by filtration can be reduced to 0.1 ppm or less. Greatly effective in preventing deterioration and corrosion.

【0010】この発明において、溶媒としての水には、
中性あるいはアルカリ性の水が好ましく、アルカリ性の
水としては、濃アンモニアを300ml/l以下、Na
OH、KOH、Ca(OH)2、KH2PO4、NaHP
4、NaHCO3、NaCH3COO 100ml/l
以下等のうち少なくとも1種を添加して得られる。ま
た、溶媒としてアルカリ性の水を使用することにより、
酸性、中性溶液よりもNd、Fe等の溶出を低減でき、
原料粉末の腐食による磁石特性劣化の防止及び耐食性の
改善向上を図ることができる。
In the present invention, water as a solvent is
Neutral or alkaline water is preferred. As alkaline water, concentrated ammonia is 300 ml / l or less, Na
OH, KOH, Ca (OH) 2 , KH 2 PO 4 , NaHP
O 4 , NaHCO 3 , NaCH 3 COO 100 ml / l
It is obtained by adding at least one of the following and the like. Also, by using alkaline water as a solvent,
Elution of Nd, Fe, etc. can be reduced compared to acidic and neutral solutions,
It is possible to prevent deterioration of magnet characteristics due to corrosion of the raw material powder and to improve and improve corrosion resistance.

【0011】さらに、水道水等の使用が可能であり、水
道水としては電導率200μs/cm・25℃以下、不
純物はCl40ppm以下、Si15ppm以下、Ca
40ppm以下、Mg10ppm以下が好ましく、さら
にイオン交換、蒸留等の処理により電導率を1μs/c
m・25℃以下に低減した方がよい。
Further, tap water or the like can be used. As tap water, the conductivity is 200 μs / cm · 25 ° C. or less, the impurities are 40 ppm or less, Si 15 ppm or less, and Ca.
40 ppm or less and Mg 10 ppm or less are preferable, and the electric conductivity is 1 μs / c by treatment such as ion exchange and distillation.
It is better to lower the temperature to 25 m or less.

【0012】この発明の特徴である水に添加する錯形成
剤としては、原料粉末の構成元素と錯形成するカルボン
酸系配位子又はアミン系配位子何れでもよいが、カルボ
ン酸系配位子としてはコハク酸、マレイン酸等が好まし
く、またアミン系配位子としてはEDTA、DTPA等
が好ましい。錯形成剤の添加量は水1lに対して0.0
01〜1molが好ましく、錯形成剤量が0.001m
ol/l未満では錯形成が十分でなく、1mol/lを
超えると効果上は問題ないが経済上好ましくない。
The complexing agent added to water, which is a feature of the present invention, may be either a carboxylic acid type ligand or an amine type ligand which forms a complex with the constituent elements of the raw material powder, but the carboxylic acid type coordination As the child, succinic acid, maleic acid and the like are preferable, and as the amine-based ligand, EDTA, DTPA and the like are preferable. The amount of complexing agent added is 0.0 with respect to 1 liter of water.
01 to 1 mol is preferable, and the amount of complexing agent is 0.001 m
If it is less than ol / l, complex formation is not sufficient, and if it exceeds 1 mol / l, there is no problem in terms of effect but it is not economically preferable.

【0013】この発明は、錯形成剤の添加と共に還元剤
としてNa2SO3を10g/l以下添加することを特徴
とするが、10g/lを超える添加では効果の向上は認
められず、経済的に好ましくない。
The present invention is characterized in that Na 2 SO 3 is added as a reducing agent in an amount of 10 g / l or less together with the addition of a complexing agent. Unfavorable.

【0014】さらに、この発明において、湿式微粉砕す
る前に錯形成剤と還元剤を含有する溶媒の水中にAr、
2ガス等の不活性ガスを噴射、バブリングすることに
より溶媒の水中に含まれるO2量を低減し、得られる微
粉砕粉の腐食を低減することができる。
Further, in the present invention, Ar in water of a solvent containing a complexing agent and a reducing agent is added before wet pulverization.
By injecting and bubbling an inert gas such as N 2 gas, the amount of O 2 contained in the solvent water can be reduced, and the corrosion of the finely pulverized powder obtained can be reduced.

【0015】この発明において、Arガス、N2ガス等
の不活性ガスによるバブリング条件としてはガス圧力
1.0〜3.0kg/cm2、吹き込み時間10分〜6
0分、ガス流量3〜20l/minが好ましい。ガス圧
力が1.0kg/cm2未満では十分なガス導入ができ
ず、3.0kg/cm2を超えると水の飛散があり好ま
しくない。また、吹き込み時間が10分未満ではO2
去が十分でなく、60分を超えると経済的でない。ま
た、ガス流量として3l/min未満では十分なO2
去ができず、20l/minを超えると経済的に好まし
くない。
In the present invention, as the bubbling conditions using an inert gas such as Ar gas and N 2 gas, gas pressure is 1.0 to 3.0 kg / cm 2 , and blowing time is 10 minutes to 6
A gas flow rate of 3 to 20 l / min for 0 minutes is preferable. If the gas pressure is less than 1.0 kg / cm 2 , sufficient gas cannot be introduced, and if it exceeds 3.0 kg / cm 2 , water is scattered, which is not preferable. Further, if the blowing time is less than 10 minutes, the removal of O 2 is insufficient, and if it exceeds 60 minutes, it is not economical. Further, if the gas flow rate is less than 3 l / min, sufficient O 2 cannot be removed, and if it exceeds 20 l / min, it is economically undesirable.

【0016】[0016]

【実施例】【Example】

実施例1 溶解・粉砕法により得られた35.5at%Nd−6
3.4at%Fe−1.1at%B組成の磁石用原料粉
末を、内容積100lのアトライター内に12mm直径
の鋼製ボールと共に入れ、さらに錯形成剤として酒石酸
0.02ml/l、還元剤のNa2SO3を5g/l含有
し、O2含有量が1.3ppmの水を所要量溶媒として
用い、これを回転数80rpm、3時間回転させる微粉
砕を行い、粉砕完了後に濾過して平均粒径3.4μmの
微粉砕粉末を得た。得られた微粉砕粉末中のR,Fe等
の不溶性不純物量は、ICP測定法により測定したとこ
ろ0.03ppmであった。
Example 1 35.5 at% Nd-6 obtained by the melting and pulverizing method
A raw material powder for magnets having a composition of 3.4 at% Fe-1.1 at% B was put into an attritor having an internal volume of 100 l together with a steel ball having a diameter of 12 mm, and further tartaric acid was 0.02 ml / l as a complexing agent and a reducing agent. Of Na 2 SO 3 of 5 g / l and O 2 content of 1.3 ppm was used as a required amount of solvent, and this was pulverized by rotating at a rotation speed of 80 rpm for 3 hours, and filtered after pulverization was completed. A finely pulverized powder having an average particle size of 3.4 μm was obtained. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder was 0.03 ppm when measured by the ICP measuring method.

【0017】また、この微粉砕粉末を金型に装入し、約
10kOeの磁界中で配向し、磁界に直角方向に約1.
5ton/cm2 の圧力で成型し、15mm×20m
m×8mmの成型体を作成した。この成型体を1100
℃×2時間のAr雰囲気中条件で焼結し、引き続いて6
00℃×2時間の時効処理を行った。得られた試験片磁
石の磁石特性を表1に示す。
Further, this finely pulverized powder was charged into a mold, oriented in a magnetic field of about 10 kOe, and about 1.
Molded at a pressure of 5 ton / cm 2 , 15 mm x 20 m
A m × 8 mm molded body was prepared. This molded body is 1100
Sintering in Ar atmosphere for 2 hours at ℃, followed by 6
Aging treatment was performed at 00 ° C for 2 hours. Table 1 shows the magnetic properties of the obtained test piece magnets.

【0018】実施例2 溶解・粉砕法により得られた35.5at%Nd−6
3.4at%Fe−1.2at%B組成の磁石用原料粉
末を、内容積100lのアトライター内に9.5mm直
径の鋼製ボールと共に入れ、さらに錯形成剤と還元剤を
含有した水を所要量溶媒として用い、これを回転数80
rpm、3時間回転させる微粉砕を行い、粉砕完了後に
濾過して平均粒径3.4μmの微粉砕粉末を得た。な
お、溶媒の水は、事前に酒石酸0.02ml/l、DT
PA0.02ml/l並びにNa2SO32g/lを添加
し、NaOHにてpHを11に調整し、さらに水中にA
rガスをガス圧力2.0kg/cm2、ガス流量5l/
min、吹き込み時間1時間の条件でバブリングして、
2含有量を12ppmから0.5ppmに低減してあ
る。
Example 2 35.5 at% Nd-6 obtained by the melting and pulverizing method
A magnet raw material powder having a composition of 3.4 at% Fe-1.2 at% B was placed in an attritor having an internal volume of 100 l together with a steel ball having a diameter of 9.5 mm, and water containing a complexing agent and a reducing agent was further added. Used as a required amount of solvent
Fine pulverization was carried out by rotating at 3 rpm for 3 hours, and after pulverization was completed, filtration was performed to obtain fine pulverized powder having an average particle size of 3.4 μm. The solvent water is tartaric acid 0.02 ml / l, DT in advance.
PA 0.02 ml / l and Na 2 SO 3 2 g / l were added, and the pH was adjusted to 11 with NaOH.
r gas at a gas pressure of 2.0 kg / cm 2 and a gas flow rate of 5 l /
Bubbling under the condition of min and blowing time of 1 hour,
The O 2 content is reduced from 12 ppm to 0.5 ppm.

【0019】得られた微粉砕粉末中のR,Fe等の不溶
性不純物量は、ICP測定法により測定したところ0.
02ppmであった。さらに実施例1と同様方法で、成
形、焼結、磁石化して得た磁石の磁石特性を表1に示
す。
The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder was 0.
It was 02 ppm. Further, in the same manner as in Example 1, the magnet characteristics of the magnet obtained by molding, sintering and magnetizing are shown in Table 1.

【0020】実施例3 微粉砕工程で溶媒の錯形成剤及び還元剤を添加した水に
バブリングを施さない以外は、実施例2と同一の原料粉
末を同一の製造工程で微粉砕粉末化したところ、得られ
た微粉砕粉末中のR,Fe等の不溶性不純物量は、IC
P測定法により測定したところ0.07ppmであっ
た。さらに実施例1と同様方法で、成形、焼結、磁石化
して得た磁石の磁石特性を表1に示す。
Example 3 The same raw material powder as in Example 2 was finely pulverized into powder in the same production process except that water containing a solvent complexing agent and a reducing agent was not bubbled in the fine pulverization process. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder is
It was 0.07 ppm when measured by the P measuring method. Further, in the same manner as in Example 1, the magnet characteristics of the magnet obtained by molding, sintering and magnetizing are shown in Table 1.

【0021】比較例1 微粉砕工程で溶媒の水に還元剤を添加しない以外は、実
施例1と同一の原料粉末を同一の製造工程で微粉砕粉末
化したところ、得られた微粉砕粉末中のR,Fe等の不
溶性不純物量は、ICP測定法により測定したところ
0.08ppmであった。さらに実施例1と同様方法
で、成形、焼結、磁石化して得た磁石の磁石特性を表1
に示す。
Comparative Example 1 The same raw material powder as in Example 1 was pulverized into powder in the same production process except that the reducing agent was not added to the solvent water in the fine pulverization step. The amount of insoluble impurities such as R and Fe was 0.08 ppm when measured by the ICP measuring method. Further, in the same manner as in Example 1, the magnet characteristics of the magnet obtained by molding, sintering and magnetizing are shown in Table 1.
Shown in.

【0022】比較例2 微粉砕工程で溶媒の水に錯形成剤及び還元剤を添加しな
い以外は、実施例1と同一の原料粉末を同一の製造工程
で微粉砕粉末化したところ、得られた微粉砕粉末中の
R,Fe等の不溶性不純物量は、ICP測定法により測
定したところ5000ppmであった。さらに実施例1
と同様方法で、成形、焼結、磁石化して得た磁石の磁石
特性を表1に示す。
Comparative Example 2 The same raw material powder as in Example 1 was pulverized and powdered in the same manufacturing process except that the complexing agent and the reducing agent were not added to the solvent water in the pulverizing process. The amount of insoluble impurities such as R and Fe in the finely pulverized powder was 5000 ppm as measured by the ICP measuring method. Further Example 1
Table 1 shows the magnetic properties of the magnets obtained by molding, sintering, and magnetizing in the same manner as in.

【0023】比較例3 微粉砕工程で溶媒の水に代えて有機溶媒としてシクロヘ
キサンを用いる以外は、実施例1と同一の原料粉末を同
一の製造工程で微粉砕粉末化したところ、得られた微粉
砕粉末中のR,Fe等の不溶性不純物量は、ICP測定
法により測定したところ3.0ppmであった。さらに
実施例1と同様方法で、成形、焼結、磁石化して得た磁
石の磁石特性を表1に示す。
Comparative Example 3 The same raw material powder as in Example 1 was finely pulverized and powdered in the same manufacturing process except that cyclohexane was used as the organic solvent in place of water as the solvent in the finely pulverizing step. The amount of insoluble impurities such as R and Fe in the ground powder was 3.0 ppm as measured by the ICP measuring method. Further, in the same manner as in Example 1, the magnet characteristics of the magnet obtained by molding, sintering and magnetizing are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】この発明は、特定量の錯形成剤と還元剤
を添加した水、あるいはさらに不活性ガスをバブリング
した水を溶媒にして湿式微粉砕するため、従来の有機溶
媒を用いた微粉砕法に対し、安全性が高く、且つ低コス
トで磁石特性も従来の有機溶媒を用いた場合の磁石と同
等以上の磁石特性の希土類磁石が得られた。
INDUSTRIAL APPLICABILITY According to the present invention, water containing a specific amount of a complex-forming agent and a reducing agent added thereto, or water bubbling with an inert gas is used as a solvent for wet pulverization. As compared with the pulverization method, it was possible to obtain a rare earth magnet having high safety, low cost, and magnet characteristics equal to or higher than those of magnets using a conventional organic solvent.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年7月31日[Submission date] July 31, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【実施例】 実施例1 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.1t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に12mm直径
の鋼製ボールと共に入れ、さらに錯形成剤として酒石酸
0.02ml/l、還元剤のNa2SO3を5g/l含有
し、O2含有量が1.3ppmの水を所要量溶媒として
用い、これを回転数80rpm、3時間回転させる微粉
砕を行い、粉砕完了後に濾過して平均粒径3.4μmの
微粉砕粉末を得た。得られた微粉砕粉末中のR,Fe等
の不溶性不純物量は、ICP測定法により測定したとこ
ろ0.03ppmであった。
EXAMPLES obtained in Example 1 dissolved and pulverizing method 35.5 w t% Nd-6
3.4 w t% Fe-1.1 w t% a raw material powder for a magnet B composition, put together steel ball 12mm diameter in attritor having an inner volume of 100l, further tartrate as complexing agent 0.02 ml / 1, containing 5 g / l of reducing agent Na 2 SO 3 and using O 2 content of 1.3 ppm as a required amount of water as a solvent, and rotating this at a rotation speed of 80 rpm for 3 hours to carry out fine pulverization to complete pulverization. After that, it was filtered to obtain a finely pulverized powder having an average particle size of 3.4 μm. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder was 0.03 ppm when measured by the ICP measuring method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】実施例2 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.2t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に9.5mm直
径の鋼製ボールと共に入れ、さらに錯形成剤と還元剤を
含有した水を所要量溶媒として用い、これを回転数80
rpm、3時間回転させる微粉砕を行い、粉砕完了後に
濾過して平均粒径3.4μmの微粉砕粉末を得た。な
お、溶媒の水は、事前に酒石酸0.02ml/l、DT
PA0.02ml/l並びにNa2SO32g/lを添加
し、NaOHにてpHを11に調整し、さらに水中にA
rガスをガス圧力2.0kg/cm2、ガス流量5l/
min、吹き込み時間1時間の条件でバブリングして、
2含有量を0.5ppmに低減した。溶媒の水のO2
有量は未添加時に12ppmであった
[0018] obtained in Example 2 dissolved and pulverizing method 35.5 w t% Nd-6
The 3.4 w t% Fe-1.2 w t% B raw material powder for a magnet composition, put together steel balls 9.5mm diameter in the attritor having an inner volume of 100l, a further complexing agent and reducing agent Use the contained water as a required amount of solvent,
Fine pulverization was carried out by rotating at 3 rpm for 3 hours, and after pulverization was completed, filtration was performed to obtain fine pulverized powder having an average particle size of 3.4 μm. The solvent water is tartaric acid 0.02 ml / l, DT in advance.
PA 0.02 ml / l and Na 2 SO 3 2 g / l were added, and the pH was adjusted to 11 with NaOH.
r gas at a gas pressure of 2.0 kg / cm 2 and a gas flow rate of 5 l /
Bubbling under the condition of min and blowing time of 1 hour,
The O 2 content was reduced to 0.5 ppm. Solvent water containing O 2
The content was 12 ppm when not added .

【手続補正書】[Procedure amendment]

【提出日】平成6年5月17日[Submission date] May 17, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【実施例】 実施例1 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.1t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に12mm直径
の鋼製ボールと共に入れ、さらに錯形成剤として酒石酸
0.02ml/l、還元剤のNa2SO3を5g/l含有
し、O2含有量が1.3ppmの水を所要量溶媒として
用い、これを回転数80rpm、3時間回転させる微粉
砕を行い、粉砕完了後に濾過して平均粒径3.4μmの
微粉砕粉末を得た。得られた微粉砕粉末中のR,Fe等
の不溶性不純物量は、ICP測定法により測定したとこ
ろ0.03ppmであった。
EXAMPLES obtained in Example 1 dissolved and pulverizing method 35.5 w t% Nd-6
3.4 w t% Fe-1.1 w t% a raw material powder for a magnet B composition, put together steel ball 12mm diameter in attritor having an inner volume of 100l, further tartrate as complexing agent 0.02 ml / 1, containing 5 g / l of reducing agent Na 2 SO 3 and using O 2 content of 1.3 ppm as a required amount of water as a solvent, and rotating this at a rotation speed of 80 rpm for 3 hours to carry out fine pulverization to complete pulverization. After that, it was filtered to obtain a finely pulverized powder having an average particle size of 3.4 μm. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder was 0.03 ppm when measured by the ICP measuring method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】実施例2 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.2t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に9.5mm直
径の鋼製ボールと共に入れ、さらに錯形成剤と還元剤を
含有した水を所要量溶媒として用い、これを回転数80
rpm、3時間回転させる微粉砕を行い、粉砕完了後に
濾過して平均粒径3.4μmの微粉砕粉末を得た。な
お、溶媒の水は、事前に酒石酸0.02ml/l、DT
PA0.02ml/l並びにNa2SO32g/lを添加
し、NaOHにてpHを11に調整し、さらに水中にA
rガスをガス圧力2.0kg/cm2、ガス流量5l/
min、吹き込み時間1時間の条件でバブリングして、
2含有量を0.5ppmに低減した。溶媒の水のO2
有量は未添加時に12ppmであった
[0018] obtained in Example 2 dissolved and pulverizing method 35.5 w t% Nd-6
The 3.4 w t% Fe-1.2 w t% B raw material powder for a magnet composition, put together steel balls 9.5mm diameter in the attritor having an inner volume of 100l, a further complexing agent and reducing agent Use the contained water as a required amount of solvent,
Fine pulverization was carried out by rotating at 3 rpm for 3 hours, and after pulverization was completed, filtration was performed to obtain fine pulverized powder having an average particle size of 3.4 μm. The solvent water is tartaric acid 0.02 ml / l, DT in advance.
PA 0.02 ml / l and Na 2 SO 3 2 g / l were added, and the pH was adjusted to 11 with NaOH.
r gas at a gas pressure of 2.0 kg / cm 2 and a gas flow rate of 5 l /
Bubbling under the condition of min and blowing time of 1 hour,
The O 2 content was reduced to 0.5 ppm. Solvent water containing O 2
The content was 12 ppm when not added .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加した水を溶媒に用いて湿式微粉砕し、微粉砕後の濾
過分離した粉末中の不溶性不純物量を0.1ppm以下
にすることを特徴とする希土類磁石の製造方法。
1. A method for producing a rare earth magnet, which comprises obtaining a rare earth magnet powder such as an R—Co based magnet or an R—Fe—B based magnet by wet pulverization, wherein 0.001 to 1 mo of a complexing agent is used.
1 / l and water containing 10 g / l or less of Na 2 SO 3 as a reducing agent are used as a solvent for wet pulverization, and the amount of insoluble impurities in the powder separated by filtration after pulverization is adjusted to 0.1 ppm or less. A method for manufacturing a rare earth magnet, which is characterized by the above.
【請求項2】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加し、かつ前記水中に不活性ガスを噴射して水中のO
2量を1ppm以下に低減した水を溶媒に用いて湿式微
粉砕し、微粉砕後の濾過分離した粉末中の不溶性不純物
量を0.1ppm以下にすることを特徴とする希土類磁
石の製造方法。
2. A method for producing a rare earth magnet such as an R—Co based magnet or an R—Fe—B based magnet, which is obtained by wet pulverization, in a method for producing a rare earth magnet, wherein a complexing agent is added in an amount of 0.001 to 1 mo.
1 / l and 10 g / l or less of Na 2 SO 3 as a reducing agent were added, and an inert gas was injected into the water to produce O in water.
2. A method for producing a rare earth magnet, characterized in that the amount of insoluble impurities in the powder separated by filtration after wet pulverization is adjusted to 0.1 ppm or less by wet pulverization using water whose amount is reduced to 1 ppm or less.
JP3208659A 1991-07-24 1991-07-24 Rare earth magnet manufacturing method Expired - Lifetime JP3029711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208659A JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208659A JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH06251915A true JPH06251915A (en) 1994-09-09
JP3029711B2 JP3029711B2 (en) 2000-04-04

Family

ID=16559921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208659A Expired - Lifetime JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP3029711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820263A1 (en) * 1987-07-02 1989-01-12 Yazaki Corp LEAD PROTECTOR AND LOCKING DEVICE THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820263A1 (en) * 1987-07-02 1989-01-12 Yazaki Corp LEAD PROTECTOR AND LOCKING DEVICE THEREFOR

Also Published As

Publication number Publication date
JP3029711B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US7344605B2 (en) Exchange spring magnet powder and a method of producing the same
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JPH05205925A (en) Material powder for r-fe-b base permanent magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
CN111902898B (en) Method for producing sintered magnet and sintered magnet
JPH06251915A (en) Manufacture of rare earth element magnet
JP3096105B2 (en) Rare earth magnet manufacturing method
JPH0536511A (en) Manufacture of rare earth magnet
JPH0559165B2 (en)
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JPH0547530A (en) Manufacturing method of rare earth magnet
JP2766681B2 (en) Production method of rare earth-iron-boron alloy powder for sintered magnet
JPH11323508A (en) Rare earth metal-iron-nitrogen magnetic material and its production
JP3863643B2 (en) Method for producing alloy powder for rare earth magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPS6320411A (en) Production of material for permanent magnet
JPS6160809A (en) Production of rare earth alloy powder
JPH11307330A (en) Manufacture of r-fe-b system magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JPS6333506A (en) Production of raw material powder for permanent magnet material
JPS6398107A (en) Manufacture of rare earth permanent magnet
JP2002180111A (en) Method for manufacturing rare earth-transition metal alloy powder, and resultant product
JPH04221005A (en) Production of rare-earth metal-containing alloy powder by reductive diffusion
JP2020164925A (en) Alloy for r-t-b-based permanent magnet and manufacturing method of r-t-b-based permanent magnet
JPH07130517A (en) Raw material powder for anisotropic bonded magnet and its manufacture

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12