JP2988011B2 - Positive resistance temperature coefficient heating element and method of manufacturing the same - Google Patents

Positive resistance temperature coefficient heating element and method of manufacturing the same

Info

Publication number
JP2988011B2
JP2988011B2 JP3147409A JP14740991A JP2988011B2 JP 2988011 B2 JP2988011 B2 JP 2988011B2 JP 3147409 A JP3147409 A JP 3147409A JP 14740991 A JP14740991 A JP 14740991A JP 2988011 B2 JP2988011 B2 JP 2988011B2
Authority
JP
Japan
Prior art keywords
resistor
temperature coefficient
heating element
resistance
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3147409A
Other languages
Japanese (ja)
Other versions
JPH04370903A (en
Inventor
和典 石井
誠之 寺門
武史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3147409A priority Critical patent/JP2988011B2/en
Publication of JPH04370903A publication Critical patent/JPH04370903A/en
Application granted granted Critical
Publication of JP2988011B2 publication Critical patent/JP2988011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、採暖器具および、一般
の加熱装置として有用な正抵抗温度係数発熱体およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element, a heating element having a positive temperature coefficient of resistance useful as a general heating apparatus, and a method for producing the same.

【0002】[0002]

【従来の技術】従来の正抵抗温度係数発熱体は、例えば
特公昭57−43995号公報や特公昭55−4016
1号公報に示されているような構成であり、一対の電極
間の抵抗体の正抵抗温度特性により一定温度に自己制御
されているものであった。しかし、特に大きな電力密度
や高温度が要求される場合においては、発熱体自体の温
度分布を一様にするために一対の電極間方向の温度分布
を常に良好にすることが不可欠であり、その解決策とし
て特公昭62−59515号公報や図6に示すように一
対の電極間距離を互いに接近させて構成する方法が講じ
られた。図6において、1,2は互いに接近して設けら
れた一対の平行平板電極であり、この間に結晶性重合体
に導電性微粉末を混合分散して形成した抵抗体3を配す
ることにより高出力の正抵抗温度係数発熱体を現出する
可能性が見出された。
2. Description of the Related Art Conventional heating elements having a temperature coefficient of positive resistance are disclosed, for example, in Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-4016.
The configuration is as shown in Japanese Patent Application Laid-Open No. 1 (1999) -1995, and is self-controlled to a constant temperature by a positive resistance temperature characteristic of a resistor between a pair of electrodes. However, especially when a large power density or high temperature is required, it is essential to always make the temperature distribution between the pair of electrodes good in order to make the temperature distribution of the heating element itself uniform. As a solution, as shown in Japanese Patent Publication No. 62-59515 and FIG. 6, a method has been adopted in which the distance between a pair of electrodes is made closer to each other. In FIG. 6, reference numerals 1 and 2 denote a pair of parallel plate electrodes provided close to each other, and a high resistance is provided by disposing a resistor 3 formed by mixing and dispersing conductive fine powder in a crystalline polymer. It has been found that a positive resistance temperature coefficient heating element can be produced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の正抵抗温度係数発熱体は、高出力を現出する
ための構造としては非常に優れていたが、抵抗発熱する
部位を両面より電極で覆う構造となるため、電極と抵抗
体との接触面積も大きく、電極と抵抗体との界面部や電
極端部に熱応力が集中し、電圧集中によるホットゾーン
が発生することにより抵抗体の損傷等が進み、寿命が低
下することがあった。また、電極間隔が非常に接近して
いることにより、特に電極端部において、結晶性重合体
の劣化、さらには重合体の劣化に伴うマイクロクラック
等が生じ、湿気、気圧、さらには電極端面のばり等によ
っては空中放電、耐電圧破壊し、発煙、発火に至る危険
性も有していた。発熱体としては、ライフエンド時まで
の安全性を図っていくことが最優先となるが、こうした
安全性のメカニズムに関して、全く明確になっておら
ず、異常過熱、発煙、発火等の危険性のない、安全でし
かも長寿命な高出力の正抵抗温度係数発熱体を作り出す
ことができなかった。
However, the conventional positive resistance temperature coefficient heating element as described above is very excellent as a structure for producing high output, but the resistance heating part is provided with electrodes from both sides. In this structure, the contact area between the electrode and the resistor is large, and thermal stress is concentrated on the interface between the electrode and the resistor and on the edge of the electrode. Damage and the like progressed, and the service life was sometimes shortened. In addition, since the electrode spacing is very close, especially at the electrode end, deterioration of the crystalline polymer, and further, microcracks and the like accompanying the deterioration of the polymer occur, and moisture, air pressure, and even the electrode end face Depending on the burrs and the like, there is also a risk that air discharge, withstand voltage breakdown, smoke and ignition may occur. As a heating element, the highest priority is to ensure safety until the end of life.However, such a safety mechanism has not been clarified at all, and there is a danger of abnormal overheating, smoking, and ignition. No safe, long-life, high-output positive temperature coefficient of resistance heating element could be produced.

【0004】本発明はこのような従来の問題点を解消
し、長寿命で安全性の高い正抵抗温度係数発熱体とその
製造方法の提供を目的とする。
An object of the present invention is to solve such a conventional problem and to provide a long-life, high-safety element with a positive temperature coefficient of resistance and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の正抵抗温度係数発熱体は、導電性微粉末と
結晶性重合体よりなるシート状の正抵抗温度係数の抵抗
体と、その抵抗体の厚さ方向に電圧を印加するために設
けられた一対の金属電極体とからなり、上記抵抗体全体
または周方向端面近傍にN,N’−ビスヒドラジン[3
−(3,5−ジ−t−ブチル−4−ヒドロキシフェニ
ル)プロピオニル]の金属不活性剤を含有させたもので
ある。
Means for Solving the Problems In order to achieve the above object, a positive resistance temperature coefficient heating element of the present invention comprises a sheet-shaped positive resistance temperature coefficient resistance element made of a conductive fine powder and a crystalline polymer. And a pair of metal electrodes provided for applying a voltage in the thickness direction of the resistor, and N, N'-bishydrazine [3]
-(3,5-di-t-butyl-4-hydroxyphenyl) propionyl].

【0006】[0006]

【作用】この技術的手段による作用は次のようになる。
すなわち、正抵抗温度係数発熱体は結晶性重合体の結晶
成長、発熱体各部の熱応力、あるいは導電性微粉末の凝
集等の経時的な変化、さらには重合体の劣化に伴うマイ
クロクラック等によって、抵抗値や抵抗温度係数、さら
には耐電圧性能に大幅な変化が生じるようになり、非常
に短かい発熱寿命であったり、異常過熱、発煙、発火等
の危険性を有したりしていたが、本発明では、結晶性重
合体に分散されたN,N’−ビス[3−(3,5−ジ−
t−ブチル−4−ヒドロキシフェニル)プロピオニル]
ヒドラジンからなる金属不活性剤が金属電極に用いられ
る銅、鉄、クロム等の金属イオンに作用して経時的に不
活性な金属錯化合物を形成していくことにより、結晶性
重合体等の劣化を防止し、本発熱体構成の場合、発熱面
積に匹敵する金属電極と抵抗体との界面に形成されてい
くこの金属錯化合物により電気抵抗が高抵抗化すること
になる。
The operation of this technical means is as follows.
That is, the positive resistance temperature coefficient heating element changes over time such as crystal growth of the crystalline polymer, thermal stress of each part of the heating element, or aggregation of the conductive fine powder, and furthermore, micro cracks accompanying the deterioration of the polymer and the like. , The resistance value, the temperature coefficient of resistance, and the withstand voltage performance have changed drastically, resulting in a very short heat-generating life and the danger of abnormal overheating, smoke, and ignition. However, in the present invention, N, N'-bis [3- (3,5-di-
t-butyl-4-hydroxyphenyl) propionyl]
Deterioration of crystalline polymers, etc. by the metal deactivator consisting of hydrazine acting on metal ions such as copper, iron and chromium used for metal electrodes to form inactive metal complex compounds over time In the case of the present heating element configuration, the electrical resistance is increased by the metal complex compound formed at the interface between the metal electrode and the resistor which is equivalent to the heating area.

【0007】[0007]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。第1の実施例の正抵抗温度係数発熱体は、図
1に示すように、厚さ0.5mmの正抵抗温度係数の抵抗
体4の上下面に金属電極体5,6が接着されている。抵
抗体4は以下のように形成されている。すなわち導電性
微粉末として、ファーネスブラック60wt%と高密度
ポリエチレン40wt%とを混練しつつ、有機過酸化物
であるジクミールパーオキサイドを高密度ポリエチレン
に対して3wt%添加し、熱処理を施すことによって架
橋反応を完了させた後に、冷凍粉砕によって平均粒径5
0μmの粉砕物、すなわち導電性フィラーを得た。次
に、その導電性フィラーと金属不活性剤のN,N’−ビ
ス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフ
ェニル)プロピオニル]ヒドラジン(チバガイギー:I
RGANOX MD1024)とを、カーボンブラック
組成比が全量の45.5wt%になるように、マレイン
酸変性高密度ポリエチレン中に均一分散されるように混
練し、抵抗体4を得た。さらに、その抵抗体4の厚さ方
向に金属電極体5,6を接着して正抵抗温度係数発熱体
に加工の後、アニールして所定の抵抗特性を得た。本発
明の効果を調べるために、金属不活性剤の添加量が高密
度ポリエチレンに対して2,1,0部の3種類のサンプ
ルを作成した。
Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the positive resistance temperature coefficient heating element of the first embodiment has metal electrodes 5, 6 bonded to the upper and lower surfaces of a 0.5 mm thick positive resistance temperature coefficient resistor 4. . The resistor 4 is formed as follows. That is, while mixing 60 wt% of furnace black and 40 wt% of high-density polyethylene as conductive fine powder, 3 wt% of dicumyl peroxide, which is an organic peroxide, is added to the high-density polyethylene and heat-treated. After completion of the cross-linking reaction, an average particle size of 5
A 0 μm pulverized product, that is, a conductive filler was obtained. Next, the conductive filler and the metal deactivator N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine (Ciba Geigy: I
RGANOX MD1024) was kneaded so as to be uniformly dispersed in maleic acid-modified high-density polyethylene so that the composition ratio of carbon black was 45.5 wt% of the total amount, and a resistor 4 was obtained. Further, the metal electrodes 5 and 6 were adhered in the thickness direction of the resistor 4 and processed into a positive resistance temperature coefficient heating element, and then annealed to obtain a predetermined resistance characteristic. In order to examine the effects of the present invention, three types of samples were prepared in which the amount of the metal deactivator added was 2,1,0 parts with respect to high-density polyethylene.

【0008】実際に、上記3種類のサンプルの150℃
耐熱促進試験による比較実験を行なった。通電測定前に
は通電エージングにより抵抗安定化処理を行った。その
結果を図2に示している。図2から明らかなように、金
属不活性剤が添加されているサンプルでは、150℃耐
熱処理が2000hレベルまで発熱温度はほとんど変化
なく、それ以降徐々に温度が低下していっており、この
添加量1,2phr両者の比較では、ほとんど有意差は
なく、試験サンプル各n=10のばらつきも極めて小さ
いものであった。これに対して、金属不活性剤の無添加
のサンプルでは、n=10の試験サンプルのうちn=2
のサンプルは300,500hから発熱温度が低下して
いっており、その他のサンプルは4000hレベルまで
発熱異常はなかったが、約4000hでn=1が、約5
500hでn=2がスパーク発生した。実際の発熱体の
寿命は熱、通電、湿度等により決まってくるが、シミュ
レーション等よりこの通電寿命を推定すると、上記金属
不活性剤が添加されているサンプルでは、10000〜
20000hで、それ以降は徐々に温度降下し、安全に
ライフエンドとなる。また、金属不活性化剤の無添加の
サンプルでは、3000〜5000h程度の短い発熱寿
命であったり、20000hレベル以上発熱するが、ラ
イフエンド時にスパーク、さらには発煙・発火に至ると
いう極めて高い危険性を有したりするものもあり、ばら
つきも大きく寿命も定まらないと想定される。実際使用
されるモードにより寿命は変化するものの、金属不活性
剤を添加することによりライフエンド時までの高い安全
性を有するという優れた性能に寄与するものである。ま
た、長期にわたる安全性が図れるだけでなく、各種用途
における実用期間や構成材料の耐熱特性等に適合した発
熱寿命になるように、金属不活性剤を適宜添加すること
ができる。
Actually, 150 ° C. of the above three types of samples
A comparative experiment by a heat resistance acceleration test was performed. Before the current measurement, the resistance stabilization process was performed by current aging. The result is shown in FIG. As is clear from FIG. 2, in the sample to which the metal deactivator was added, the heat generation temperature at 150 ° C. heat treatment hardly changed up to the level of 2000 h, and the temperature gradually decreased thereafter. When comparing the amounts of 1 and 2 phr, there was almost no significant difference, and the variation of each test sample n = 10 was extremely small. On the other hand, in the sample without addition of the metal deactivator, n = 2 out of n = 10 test samples
In the sample No., the exothermic temperature decreased from 300,500 h, and in the other samples, there was no abnormal exotherm up to the level of 4000 h.
At 500 hours, n = 2 sparks occurred. The actual life of the heating element is determined by heat, energization, humidity, and the like. However, when this energization life is estimated from simulations and the like, in the sample to which the metal deactivator is added, 10,000 to
At 20,000 h, the temperature gradually drops thereafter, and the life end is safely reached. In addition, the sample without the addition of the metal deactivator has a short exothermic life of about 3000 to 5000 h or generates heat of 20000 h or more. However, there is an extremely high risk of sparking at the end of life, and further leading to smoke and ignition. Some of them have large variations and their life is not determined. Although the life varies depending on the mode actually used, the addition of a metal deactivator contributes to the excellent performance of having high safety until the end of life. In addition, a metal deactivator can be appropriately added so that not only long-term safety can be achieved but also a heat generation life suitable for a practical period in various applications and heat resistance characteristics of constituent materials.

【0009】このようにして、N,N’−ビス[3−
(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)
プロピオニル]ヒドラジンからなる金属不活性剤を含有
させることにより、ライフエンド時までの安全性のメカ
ニズムを明確にし、異常過熱、発煙、発火等の危険性の
ない、安全でしかも長寿命な高出力の正抵抗温度係数発
熱体を供することができ、実用上極めて有益なものであ
る。
Thus, N, N'-bis [3-
(3,5-di-t-butyl-4-hydroxyphenyl)
Inclusion of a metal deactivator consisting of [propionyl] hydrazine to clarify the safety mechanism up to the end of life and to provide a safe and long-lasting high-output with no danger of abnormal overheating, smoke or ignition A positive temperature coefficient heating element can be provided, which is extremely useful in practice.

【0010】次に図3は本発明の第2の実施例の斜視図
であり、抵抗体7の周方向端面近傍にN,N’−ビス
[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェ
ニル)プロピオニル]ヒドラジンの金属不活性剤を1p
hr含有する抵抗体8が形成されたものであり、その1
50℃耐熱促進試験による結果は図2の金属不活性剤添
加品と同じであった。
FIG. 3 is a perspective view of a second embodiment of the present invention, in which N, N'-bis [3- (3,5-di-t-butyl) is provided near the circumferential end face of the resistor 7. -4-Hydroxyphenyl) propionyl] hydrazine metal deactivator
hr-containing resistor 8 is formed.
The result of the 50 ° C. heat acceleration test was the same as that of the product with the metal deactivator shown in FIG.

【0011】次に、図4は本発明の第3の実施例の斜視
図、図5は同実施例の断面図であり、厚さ0.4mmの抵
抗体9の上下面に金属電極体10,11が接着され、さ
らに両者の上にホットメルト層12,13,その上に電
気絶縁層14,15が順次構成されている。抵抗体9は
以下のように形成されている。すなわち導電性微粉末と
して、ファーネスブラック60wt%と高密度ポリエチ
レン40wt%とを混練しつつ、有機過酸化物であるジ
クミールパーオキサイドを高密度ポリエチレンに対して
3wt%添加し、熱処理を施すことによって架橋反応を
完了させた後に、冷凍粉砕によって平均粒径50μmの
粉砕物、すなわち導電性フィラーを得た。次に、この導
電性フィラーを、カーボンブラック組成比が全量の4
4.5wt%になるように、マレイン酸変性高密度ポリ
エチレン中に均一分散されるように混練し、抵抗体9を
得た。さらに、その抵抗体9の厚さ方向に図4のように
金属電極体10,11を接着後、抵抗体9と相溶性のあ
るポリエチレンにN,N’−ビス[3−(3,5−ジ−
t−ブチル−4−ヒドロキシフェニル)プロピオニル]
ヒドラジン(チバガイギー:IRGANOX MD10
24)を添加したホットメルト層12,13で被覆し、
さらに電気絶縁層14,15で順次被覆した後、アニー
ルして所定の抵抗特性を得るとともに、ホットメルト層
中の金属不活性剤を図4および図5に示すように抵抗体
の厚さ方向の投影面で金属電極体が重合しない部位Aに
拡散させた。本実施例の場合、ホットメルト層の材料を
抵抗体9と相溶性をもつ材料であるポリエチレンとする
ことにより効果的に金属不活性剤を拡散させることがで
きた。この拡散により、抵抗体のA部が高抵抗化されて
いくため、この部位に発生しやすいホットゾーンを抑制
し長寿命化を図るともに、金属電極体の端部等からの金
属イオンによる劣化を抑え耐電圧性能も向上させるもの
である。
FIG. 4 is a perspective view of a third embodiment of the present invention, and FIG. 5 is a cross-sectional view of the third embodiment. , 11 are adhered, and hot melt layers 12, 13 are formed on both of them, and electric insulating layers 14, 15 are further formed thereon. The resistor 9 is formed as follows. That is, while mixing 60 wt% of furnace black and 40 wt% of high-density polyethylene as conductive fine powder, 3 wt% of dicumyl peroxide, which is an organic peroxide, is added to the high-density polyethylene and heat-treated. After completion of the crosslinking reaction, a pulverized product having an average particle size of 50 μm, that is, a conductive filler was obtained by freeze pulverization. Next, this conductive filler was mixed with carbon black in a total composition of 4%.
The mixture was kneaded so as to be 4.5 wt% so as to be uniformly dispersed in the maleic acid-modified high-density polyethylene to obtain a resistor 9. Further, as shown in FIG. 4, metal electrode bodies 10 and 11 are adhered in the thickness direction of the resistor 9 and then N, N′-bis [3- (3,5- Jee
t-butyl-4-hydroxyphenyl) propionyl]
Hydrazine (Ciba Geigy: IRGANOX MD10
Covered with hot melt layers 12, 13 to which 24) has been added,
Further, after sequentially covering with the electric insulating layers 14 and 15, annealing is performed to obtain a predetermined resistance characteristic, and the metal deactivator in the hot melt layer is removed in the thickness direction of the resistor as shown in FIGS. The metal electrode was diffused to a portion A where the metal electrode did not polymerize on the projection surface. In the case of the present example, the metal deactivator could be effectively diffused by using polyethylene as a material compatible with the resistor 9 as the material of the hot melt layer. Due to this diffusion, the resistance of the portion A of the resistor is increased, so that the hot zone, which is likely to be generated in this portion, is suppressed and the life is extended, and the deterioration due to metal ions from the end of the metal electrode body is prevented. This also improves the withstand voltage performance.

【0012】この第3の実施例についても150℃耐熱
促進試験による比較実験を行なった結果、第1の実施例
と同様に、金属不活性剤の顕著な効果が見いだされた。
すなわち、ホットメルト層12,13に対する金属不活
性剤の添加の有無による比較評価で、添加されているサ
ンプルでは、20000〜40000h以降は徐々に温
度降下し、安全にライフエンドとなる。また、無添加の
サンプルでは、6000〜9000h程度の発熱寿命で
温度低下するものもあったが、20000hレベル以上
発熱するが、ライフエンド時にスパーク、さらには発煙
・発火に至るという極めて高い危険性を有したりするも
のもあり、ばらつきも大きく寿命も定まらないと想定さ
れる。この第2の実施例の場合、実際に発熱する部位に
はこの金属不活性剤はほとんど作用せず、抵抗体の劣化
やホットゾーンの発生し易い部位に効果的に作用する構
成であり、実用上極めて有益である。
As a result of a comparative experiment conducted on the third embodiment by a 150 ° C. heat resistance acceleration test, as in the first embodiment, a remarkable effect of the metal deactivator was found.
That is, in the comparative evaluation based on the presence or absence of the addition of the metal deactivator to the hot melt layers 12 and 13, in the added sample, the temperature gradually decreases after 20000 to 40000 h, and the life end is safely reached. In addition, in the case of the non-added sample, there was a case where the temperature decreased with a heat generation life of about 6000 to 9000 h, but the heat was generated at a level of 20,000 h or more. It is assumed that there are some of them, and that the variation is large and the life is not determined. In the case of the second embodiment, the metal deactivator hardly acts on a part where heat is actually generated, but effectively acts on a part where deterioration of a resistor or a hot zone is likely to occur. It is extremely useful.

【0013】一般に金属不活性剤は有機系の正抵抗温度
係数の抵抗体に添加すると樹脂劣化に対しては向上する
が、抵抗値等の電気的物性に影響が大きく、安定して使
いこなすことが困難であったが、ヒドラジン化合物の構
造中にヒンダードフェノール構造を併用したN,N’−
ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシ
フェニル)プロピオニル]ヒドラジンは、化学物性、電
気物性ともに特異的に良好に作用するものであり、抵抗
体に均一分散させてもよいが、好ましくは、抵抗体劣
化、ホットゾーン等の発生し易い抵抗体の周方向端面近
傍に相対的に多く作用させるとよい。また第1の実施例
に示したように抵抗体全体に分散して含有されていて
も、抵抗体と一対の金属電極体とを被覆するホットメル
ト層に添加してもよく、抵抗体にN,N’−ビスヒドラ
ジンが拡散できる構成であればよい。さらには、導電性
微粉末を結晶性重合体中に分散させ、その後架橋し細分
化してなる粒子状正抵抗温度係数抵抗組成物を結晶性重
合体等のバインダー中に分散させ抵抗安定性を高めた組
成では、安定した明確な導通経路が確立されているだけ
に、この金属不活性化剤の上記のような作用も顕著とな
り、その信頼性はさらに確実なものとなる。また、上記
のように高出力化には、好ましくは、抵抗体の厚さが1
mm以下であるとよいが、このように電極間隔が接近する
ほど上記効果も顕著となるものである。
In general, when a metal deactivator is added to a resistor having an organic positive temperature coefficient of resistance, it improves resin degradation, but it has a large effect on electrical properties such as a resistance value, so that it can be used stably. Although it was difficult, N, N'- using a hindered phenol structure in the structure of the hydrazine compound was used.
Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine is a substance which acts specifically and well in both chemical and electrical properties, and even when uniformly dispersed in a resistor. It is preferable, but it is preferable to relatively act on the vicinity of the circumferential end face of the resistor, which is liable to cause deterioration of the resistor, hot zones, and the like. Also, as shown in the first embodiment, the resistor may be dispersed and contained in the entire resistor, or may be added to a hot melt layer covering the resistor and the pair of metal electrode bodies. , N'-bishydrazine can be diffused. Furthermore, the conductive fine powder is dispersed in a crystalline polymer, and then the crosslinked and finely divided particulate positive temperature coefficient resistance composition is dispersed in a binder such as a crystalline polymer to enhance the resistance stability. In such a composition, since a stable and clear conduction path is established, the above-described action of the metal deactivator becomes remarkable, and the reliability is further ensured. In order to increase the output as described above, it is preferable that the thickness of the resistor is one.
mm or less, but the above-mentioned effect becomes more remarkable as the electrode spacing approaches.

【0014】[0014]

【発明の効果】以上のように本発明によれば、次に効果
が得られる。
According to the present invention as described above, the following effects can be obtained.

【0015】(1)金属電極体による抵抗体の劣化を防
止できるので、異常過熱、発煙、発火等の危険性のな
い、ライフエンド時までの長期にわたる高い安全性を確
保できる。
(1) Since the deterioration of the resistor due to the metal electrode body can be prevented, there is no danger of abnormal overheating, smoking, ignition, etc., and high safety for a long time until the end of life can be secured.

【0016】(2)一対の電極が重合しない部位の抵抗
体の体積固有抵抗を増大させ、この部位で発生し易い電
圧集中によるホットゾーンを防止し、長寿命化を実現で
きる。
(2) It is possible to increase the volume specific resistance of the resistor at a portion where the pair of electrodes does not overlap, prevent a hot zone due to voltage concentration that easily occurs at this portion, and achieve a longer life.

【0017】(3)金属不活性剤の添加量により種々の
用途に適合した発熱寿命の正抵抗温度係数発熱体が得ら
れる。
(3) A positive resistance temperature coefficient heating element having a heating life suitable for various uses can be obtained by adding the metal deactivator.

【0018】(4)金属不活性剤をホットメルト層に添
加することにより、容易に本発明の構成の正抵抗温度係
数発熱体が製造できる。
(4) By adding a metal deactivator to the hot melt layer, a positive resistance temperature coefficient heating element of the present invention can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における正抵抗温度係数発熱
体の斜視図
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention.

【図2】150℃熱処理時間と発熱体表面温度の関係図FIG. 2 is a diagram showing the relationship between the heat treatment time at 150 ° C. and the surface temperature of the heating element.

【図3】本発明の他の実施例の斜視図FIG. 3 is a perspective view of another embodiment of the present invention.

【図4】さらに他の実施例の斜視図FIG. 4 is a perspective view of still another embodiment.

【図5】同他の実施例の断面図FIG. 5 is a sectional view of another embodiment.

【図6】従来の正抵抗温度係数発熱体の斜視図FIG. 6 is a perspective view of a conventional positive resistance temperature coefficient heating element.

【符号の説明】[Explanation of symbols]

4、7、8、9 抵抗体 5、6、10、11 金属電極体 12、13 ホットメルト層 14、15 電気絶縁層 4, 7, 8, 9 Resistor 5, 6, 10, 11 Metal electrode body 12, 13 Hot melt layer 14, 15 Electrical insulating layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−30203(JP,A) 特開 昭63−102193(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01C 7/02 - 7/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-64-30203 (JP, A) JP-A-63-102193 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01C 7/02-7/22

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性微粉末と結晶性重合体よりなるシー
ト状の正抵抗温度係数の抵抗体と、その抵抗体の厚さ方
向に電圧を印加するために設けられた一対の金属電極体
とからなる正抵抗温度係数発熱体において、上記抵抗体
全体または周方向端面近傍にN,N’−ビスヒドラジン
[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェ
ニル)プロピオニル]の金属不活性剤を含有させたこと
を特徴とする正抵抗温度係数発熱体。
1. A sheet-shaped resistor having a positive temperature coefficient of resistance made of a conductive fine powder and a crystalline polymer, and a pair of metal electrode members provided for applying a voltage in the thickness direction of the resistor. Wherein the N, N'-bishydrazine [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] is located on the entire resistor or in the vicinity of the circumferential end face thereof. A positive resistance temperature coefficient heating element characterized by containing a metal deactivator.
【請求項2】導電性微粉末と結晶性重合体よりなるシー
ト状の正抵抗温度係数の抵抗体と、その抵抗体の厚さ方
向に電圧を印加するために設けられた一対の金属電極体
と、上記抵抗体および上記金属電極体を被覆したホット
メルト層と、そのホットメルト層の表面を被覆した電気
絶縁層とからなる正抵抗温度係数発熱体において、上記
抵抗体の厚さ方向の投影面で上記一対の金属電極体が重
合しない部位にN,N’−ビスヒドラジン[3−(3,
5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピ
オニル]の金属不活性剤を含有させたことを特徴とする
正抵抗温度係数発熱体。
2. A sheet-like resistor having a positive temperature coefficient of resistance, comprising a conductive fine powder and a crystalline polymer, and a pair of metal electrode members provided for applying a voltage in the thickness direction of the resistor. And a hot-melt layer covering the resistor and the metal electrode body, and an electrical insulation layer covering the surface of the hot-melt layer. N, N'-bishydrazine [3- (3,3)
5-di-t-butyl-4-hydroxyphenyl) propionyl].
【請求項3】抵抗体が導電性微粉末を結晶性重合体中に
分散させた後架橋されたものであることを特徴とする請
求項1または2記載の正抵抗温度係数発熱体。
3. The heating element according to claim 1, wherein the resistor is formed by dispersing a conductive fine powder in a crystalline polymer and then crosslinking.
【請求項4】抵抗体の厚さが1mm以下である請求項1、
2または3記載の正抵抗温度係数発熱体。
4. The resistor according to claim 1, wherein the thickness of the resistor is 1 mm or less.
4. The positive resistance temperature coefficient heating element according to 2 or 3.
【請求項5】導電性微粉末と結晶性重合体よりなるシー
ト状の正抵抗温度係数の抵抗体の厚さ方向に電圧を印加
する一対の金属電極体を接着し、その金属電極体の表面
を上記抵抗体と相溶性を有し、N,N’−ビスヒドラジ
ン[3−(3,5−ジ−t−ブチル−4−ヒドロキシフ
ェニル)プロピオニル]の金属不活性剤を含有するホッ
トメルト層で被覆し、そのホットメルト層の表面を電気
絶縁層で被覆し、その後アニールすることを特徴とする
正抵抗温度係数発熱体の製造方法。
5. A pair of metal electrodes for applying a voltage in the thickness direction of a sheet-shaped resistor having a positive resistance temperature coefficient made of a conductive fine powder and a crystalline polymer, the surfaces of the metal electrodes being bonded. Is a hot melt layer which is compatible with the resistor and contains a metal deactivator of N, N'-bishydrazine [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl]. And heating the hot melt layer with an electrical insulating layer, followed by annealing.
【請求項6】抵抗体が導電性微粉末を結晶性重合体中に
分散させた後架橋されたものであることを特徴とする請
求項5記載の正抵抗温度係数発熱体の製造方法。
6. The method for producing a heating element having a positive temperature coefficient of resistance according to claim 5, wherein the resistor is formed by dispersing a conductive fine powder in a crystalline polymer and then crosslinking the resistor.
【請求項7】抵抗体の厚さが1mm以下である請求項5記
載の正抵抗温度係数発熱体の製造方法。
7. The method according to claim 5, wherein the thickness of the resistor is 1 mm or less.
JP3147409A 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same Expired - Fee Related JP2988011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147409A JP2988011B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147409A JP2988011B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04370903A JPH04370903A (en) 1992-12-24
JP2988011B2 true JP2988011B2 (en) 1999-12-06

Family

ID=15429649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147409A Expired - Fee Related JP2988011B2 (en) 1991-06-19 1991-06-19 Positive resistance temperature coefficient heating element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2988011B2 (en)

Also Published As

Publication number Publication date
JPH04370903A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0038716B1 (en) A ptc circuit protection device
JP2788968B2 (en) Circuit protection device
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
JPS61218117A (en) Electric device containing conductive crosslined polymer
JPH0428743B2 (en)
JPH10116703A (en) Conductive polymer composition material and ptc device
JP2000188206A (en) Polymer ptc composition and ptc device
Das et al. Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black‐filled ethylene–vinyl acetate copolymer composites
KR100454732B1 (en) Conductive polymers having a positive temperature coefficient, method for controlling the positive temperature coefficient property of this polymers and electrical devices containing this polymers
JP2988011B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP3092210B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
JP3125330B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JP2743388B2 (en) Positive resistance temperature coefficient heating element
JP2688061B2 (en) Positive resistance temperature coefficient heating element
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JPS63244702A (en) Ptc device and manufacture of the same
JPH10223406A (en) Ptc composition and ptc element employing it
JPH07235370A (en) Heater
JPH05343164A (en) Positive resistance temperature coefficient heating element and its manufacture
JP2643398B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPH03176980A (en) Heating element with positive resistance temperature coefficient
JPH0737679A (en) Heater element with positive temperature coefficient of resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees