JP5500053B2 - In-furnace atmosphere adjustment method for continuous annealing furnace - Google Patents

In-furnace atmosphere adjustment method for continuous annealing furnace Download PDF

Info

Publication number
JP5500053B2
JP5500053B2 JP2010261918A JP2010261918A JP5500053B2 JP 5500053 B2 JP5500053 B2 JP 5500053B2 JP 2010261918 A JP2010261918 A JP 2010261918A JP 2010261918 A JP2010261918 A JP 2010261918A JP 5500053 B2 JP5500053 B2 JP 5500053B2
Authority
JP
Japan
Prior art keywords
furnace
gas
atmosphere
continuous annealing
annealing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010261918A
Other languages
Japanese (ja)
Other versions
JP2012111995A (en
Inventor
基樹 高田
秀行 高橋
貴将 藤井
伸行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010261918A priority Critical patent/JP5500053B2/en
Publication of JP2012111995A publication Critical patent/JP2012111995A/en
Application granted granted Critical
Publication of JP5500053B2 publication Critical patent/JP5500053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続焼鈍炉の炉内雰囲気調整方法に関し、詳しくは、鋼板及び溶融亜鉛めっき鋼板の製造に用いる連続焼鈍炉の炉内を容易に低露点雰囲気とならしめる、連続焼鈍炉の炉内雰囲気改善方法に関する。   TECHNICAL FIELD The present invention relates to a method for adjusting the in-furnace atmosphere of a continuous annealing furnace, and more specifically, the inside of a continuous annealing furnace in which the inside of a continuous annealing furnace used for the production of steel sheets and hot-dip galvanized steel sheets is easily made into a low dew point atmosphere. It relates to an atmosphere improvement method.

鋼板に連続的に熱処理を施す連続焼鈍炉において、熱処理後の鋼板の化成処理性向上および高張力鋼板のめっき性を向上させるために炉内雰囲気ガスの露点−45℃以下が目標とされることが知られている。
連続焼鈍炉において、炉立上げ時の炉内は大気雰囲気で充満されており、炉内および炉壁耐火物内部には、大気中の水分が浸透している。かかる水分は炉を運転することによって徐々に除去されていくが、炉内が鋼板製造可能な露点範囲になるには十数時間から数日の運転が必要で非効率的である。この理由としては、炉立上げ後、耐火物内部に浸透していた水分が徐々に炉内へ供給されることによって炉内の露点が下がるまでに時間を要するということが挙げられる。従来の炉内雰囲気調整方法の一つとして特許文献1のように炉内空間に直接雰囲気ガスを供給するとともに、炉壁耐火物の最外面側から炉内空間に向けて50℃〜120℃の低温の雰囲気ガスを送供給する方法が知られている。
In a continuous annealing furnace that continuously heat-treats steel sheets, the dew point of the atmosphere gas in the furnace must be -45 ° C or lower in order to improve the chemical conversion treatment performance of the steel sheets after heat treatment and the plating properties of high-tensile steel sheets. It has been known.
In the continuous annealing furnace, the interior of the furnace when the furnace is started up is filled with an atmospheric atmosphere, and moisture in the atmosphere permeates into the furnace and the inside of the furnace wall refractory. Such moisture is gradually removed by operating the furnace, but it is inefficient because it requires an operation of several tens of hours to several days to reach the dew point range in which the steel sheet can be produced. The reason for this is that it takes time until the dew point in the furnace is lowered by gradually supplying moisture that has penetrated into the refractory after the furnace is started up. As one of the conventional furnace atmosphere adjustment methods, atmospheric gas is directly supplied to the furnace space as in Patent Document 1, and 50 ° C. to 120 ° C. from the outermost surface side of the furnace wall refractory toward the furnace space. A method of supplying and supplying a low-temperature atmosphere gas is known.

特開平07−173526号公報Japanese Patent Application Laid-Open No. 07-173526

しかしながら、炉内は還元雰囲気となっているため鋼板の還元による炉内での水分発生や、焼鈍炉入口から鋼板に随伴して多少の外気が侵入するなどの外的要因により、常に水分が取り込まれているため、目標の露点−45℃以下を常時保持するためには従来の方法では水分除去が不十分であるという問題があった。したがって、除湿器であるリファイナー(被除湿ガスの温度は120℃以下とされる)は必須であるとともに、その機能を最大限に活用する技術もまた必要不可欠となる。特に、発明者らの検討では、特許文献1に記載の50℃〜120℃の低温のガスを炉内に供給すると、耐火物が冷やされて、その内部の水分が蒸発しにくくなり、炉内の低露点化にとって効率が悪く、さらに、低温にさらされた部分に炉内の水蒸気が集まり易く、その周辺の露点が炉全体に比べて上昇し、局部的に−45℃より高くなって、その部分にさらされた鋼板の局部的なめっき性を阻害する場合があることを把握した。   However, since the inside of the furnace is a reducing atmosphere, moisture is always taken in due to external factors such as moisture generation in the furnace due to reduction of the steel sheet and some outside air entering the steel sheet from the annealing furnace inlet. Therefore, in order to keep the target dew point of −45 ° C. or lower at all times, the conventional method has a problem that moisture removal is insufficient. Therefore, a refiner that is a dehumidifier (the temperature of the dehumidified gas is set to 120 ° C. or lower) is essential, and a technology that makes the most of its functions is also essential. In particular, in the study by the inventors, when a low-temperature gas of 50 ° C. to 120 ° C. described in Patent Document 1 is supplied into the furnace, the refractory is cooled and the moisture inside the furnace becomes difficult to evaporate. It is inefficient for lowering the dew point, and further, water vapor in the furnace tends to gather in the part exposed to low temperature, the dew point in the vicinity rises compared to the whole furnace, and locally becomes higher than -45 ° C, It was grasped that the local plating property of the steel sheet exposed to the part may be hindered.

発明者らは前記課題を解決するために鋭意検討し、その結果、炉内雰囲気ガスから一部取り出したガスを一旦リファイナーに通して除湿し、さらに該リファイナーを通過して120℃以下となったガスは、これを炉内へ吹き込む前に、前記取り出したガスとの熱交換により400〜600℃に昇温させて炉内に戻すのがよいとの知見を得た。また、焼鈍炉内の任意の場所を低露点化したい場合に当該箇所の焼鈍炉壁に前記戻すガスの供給配管を複数分散させて配設すると良いことも分かった。   The inventors diligently studied to solve the above-mentioned problems, and as a result, the gas partially taken out from the atmosphere gas in the furnace was once dehumidified through a refiner, and further passed through the refiner to 120 ° C. or lower. It was found that the gas should be heated to 400 to 600 ° C. and returned to the furnace by heat exchange with the extracted gas before blowing it into the furnace. Further, it has also been found that when it is desired to lower the dew point in an arbitrary place in the annealing furnace, it is preferable to disperse and arrange a plurality of the return gas supply pipes on the annealing furnace wall at the place.

本発明は、上記知見に基づいてなされたものであり、すなわち、
(1) 連続焼鈍炉の炉内雰囲気ガスの低露点化のために前記炉内雰囲気ガスから一部取り出したガスをリファイナーで脱湿した後、再び炉内へ供給する、連続焼鈍炉の雰囲気調整方法において、前記取り出したガスを前記リファイナーに通した後、ガス温度を400〜600℃にする昇温を行った上で、焼鈍炉壁から炉壁耐火物内部を経由させて炉内へ供給することを特徴とする連続焼鈍炉の炉内雰囲気調整方法であり、又、
(2) 前記ガス温度の昇温は、前記取り出したガスを高温側、前記リファイナーを通過後のガスを低温側とした熱交換により行うことを特徴とする(1)に記載の連続焼鈍炉の炉内雰囲気調整方法であり、又、
(3) (1)又は(2)において、前記昇温後のガスを炉内へ供給する供給配管は、炉内への供給口を複数とし、隣り合う供給口同士の間隔を0.1〜1.5mとし、炉壁1m当たりの供給口個数を1個以上として、設置することを特徴とする連続焼鈍炉の炉内雰囲気調整方法である。
The present invention has been made based on the above findings, that is,
(1) Adjusting the atmosphere of a continuous annealing furnace, which is dehumidified with a refiner after a part of the gas extracted from the furnace atmosphere gas is dehumidified to reduce the dew point in the furnace atmosphere gas of the continuous annealing furnace and then supplied to the furnace again In the method, after passing the extracted gas through the refiner, the temperature is raised to 400 to 600 ° C., and then supplied from the annealing furnace wall into the furnace through the furnace wall refractory. A method of adjusting the atmosphere in a continuous annealing furnace,
(2) The temperature increase of the gas temperature is performed by heat exchange with the extracted gas at a high temperature side and the gas after passing through the refiner at a low temperature side. The continuous annealing furnace according to (1), Furnace atmosphere adjustment method,
(3) In (1) or (2), the supply pipe for supplying the temperature-increased gas into the furnace has a plurality of supply ports to the furnace, and the interval between adjacent supply ports is 0.1 to A method for adjusting the in-furnace atmosphere of a continuous annealing furnace, characterized in that it is set to 1.5 m and the number of supply ports per 1 m 2 of the furnace wall is one or more.

本発明によれば、雰囲気ガスを一部炉外に取り出してリファイナー利用により脱湿して炉内に戻すため、炉内に戻すガスの露点が従来よりも低くなる。また、炉外に取り出されたガスは、前記熱交換によって、400〜600℃の高温とされてから炉内に戻されるため、定常運転時の炉内の温度低下を抑える効果に加え、前記高温のガスを耐火物内部に通流させることによって耐火物内部の水分の蒸発を促進させ、効率的に耐火物内部の水分を除去でき、更なる炉内の低露点化ができるようにもなる。さらに、ガスを炉内に戻すためのガス戻し配管を炉壁に複数分散させて設置することによってより効率的に耐火物内部の水分を除去できるようになるという効果もある。これらにより、焼鈍炉内の露点を均一に−45℃以下に保持することが可能となり、鋼板の局部的なめっき性阻害もなくなり、均一で良好なめっき鋼板の製造に結びついた。   According to the present invention, a part of the atmospheric gas is taken out of the furnace, dehumidified by use of a refiner, and returned to the furnace, so that the dew point of the gas returned to the furnace becomes lower than before. In addition, since the gas taken out of the furnace is returned to the furnace after being heated to 400 to 600 ° C. by the heat exchange, in addition to the effect of suppressing the temperature drop in the furnace during steady operation, the high temperature By allowing this gas to flow through the inside of the refractory, the evaporation of moisture inside the refractory is promoted, the moisture inside the refractory can be efficiently removed, and the dew point in the furnace can be further reduced. Furthermore, there is an effect that moisture inside the refractory can be more efficiently removed by installing a plurality of gas return pipes for returning the gas to the furnace in the furnace wall. As a result, the dew point in the annealing furnace can be kept uniformly at −45 ° C. or less, and local plating properties of the steel sheet are not hindered, leading to the production of a uniform and good plated steel sheet.

よって、本発明によれば、焼鈍炉を点検・修理するために炉を開放し立ち上げる時のみならず、定常運転時に気候などにより耐火物内部の露点が高目となったときであっても、品質安定性に優れる連続焼鈍鋼板が得られる。   Therefore, according to the present invention, not only when the furnace is opened and started to inspect and repair the annealing furnace, but also when the dew point inside the refractory becomes high due to the climate during steady operation. Thus, a continuously annealed steel sheet having excellent quality stability can be obtained.

本発明の実施例を示す概略図Schematic showing an embodiment of the present invention

本発明において、雰囲気ガスを一部炉外に取り出して、リファイナーにて除湿する点までは従来と同様であるが、従来とは違って、リファイナーから出たガスの温度(リファイナーから出た直後は120℃以下である)を、400〜600℃に昇温させた上で炉内に戻すことが肝要である。炉内に戻す時のガス温度が400℃に満たないと、炉内の温度低下を招く原因となり、耐火物が冷やされて、その内部の水分が蒸発しにくくなり、炉内の低露点化にとって効率が悪く、さらに低温に曝された部分には炉内の水蒸気が集まり易く、その周辺の露点が炉全体に比べて上昇し、局部的に−45℃より高くなって、その部分に曝された鋼板の局部的なめっき性を阻害する場合がある。一方、炉内に戻す時のガス温度が600℃を上回ると、周辺の炉壁が赤熱するため、炉壁の寿命を短くしてしまう惧れがある。   In the present invention, a part of the atmospheric gas is taken out of the furnace and dehumidified by the refiner, which is the same as the conventional one, but unlike the conventional one, the temperature of the gas emitted from the refiner (immediately after the refiner is taken out) It is important that the temperature is raised to 400 to 600 ° C. and then returned to the furnace. If the gas temperature when returning to the furnace is less than 400 ° C., the temperature inside the furnace will be lowered, the refractory will be cooled, and the moisture inside will be difficult to evaporate. Water vapor in the furnace is likely to collect in parts that are inefficient and exposed to low temperatures, and the dew point in the vicinity rises compared to the whole furnace, and locally rises above -45 ° C and is exposed to that part. In some cases, the local plating property of the steel plate is hindered. On the other hand, if the gas temperature when returning to the furnace exceeds 600 ° C., the surrounding furnace wall becomes red-hot, so there is a concern that the life of the furnace wall may be shortened.

リファイナーから出たガスの温度を400〜600℃とするための昇温方法は、リファイナーに入る前のガス(700〜800℃程度の炉内雰囲気温度よりも高々100℃低い程度の高温である)を高温側の熱媒とし、リファイナーから出たガスを低温側の熱媒とした熱交換による方法が、省エネルギーの観点から好ましい。
さらに、前記昇温後のガスを炉内に戻すための戻し配管は、炉内への出口を複数とし、隣り合う出口同士の間隔を0.1〜1.5mとし、炉壁1m当たりの出口個数を1個以上として、設置することが好ましい。この好ましい条件が満足されないと、耐火物内にガスが行き渡らない部分が増え、低露点化の効果が低くなる。
The temperature raising method for setting the temperature of the gas coming out of the refiner to 400 to 600 ° C. is the gas before entering the refiner (high temperature about 100 ° C. lower than the atmospheric temperature in the furnace of about 700 to 800 ° C.) From the viewpoint of energy saving, a method using heat exchange in which the heat medium on the high temperature side is used and the gas discharged from the refiner is the heat medium on the low temperature side is preferable.
Further, the return pipe for returning the temperature-increased gas into the furnace has a plurality of outlets into the furnace, the interval between adjacent outlets is set to 0.1 to 1.5 m, and per 1 m 2 of the furnace wall. It is preferable to install with one or more outlets. If this preferable condition is not satisfied, the portion where gas does not spread in the refractory increases, and the effect of lowering the dew point is reduced.

また、炉内からガスを取り出すための取り出し口と、前記供給口とは、互いに離して設置することが好ましい。前記取り出し口と前記供給口の位置同士が互いに近いと、その近い両位置間だけをガスが循環するため、焼鈍炉内の一部分だけが低露点化され、炉内全体の低露点化が望めないためである。したがって、前記取り出し口と前記供給口の位置同士は互いになるべく離すことによって、炉内の広い範囲でガスを循環させることができ、炉内広範囲での低露点化が達成できる。   Moreover, it is preferable that the take-out port for taking out the gas from the furnace and the supply port are installed apart from each other. If the positions of the take-out port and the supply port are close to each other, the gas circulates only between the two close positions, so that only a part of the annealing furnace has a low dew point, and a low dew point in the entire furnace cannot be expected Because. Accordingly, by separating the take-out port and the supply port from each other as much as possible, gas can be circulated in a wide range in the furnace, and a low dew point can be achieved in a wide range in the furnace.

なお、前記取り出し口は、焼鈍炉内の露点が他の箇所と比べて高い箇所に設置することが好ましい。露点が他の箇所と比べて高い箇所に前記取り出し口を設置することによって露点の高いガスを積極的に取り込み、脱湿された低露点ガスを供給するため、効率的に炉内の露点を下げることができる。   In addition, it is preferable to install the said extraction port in the location where the dew point in an annealing furnace is high compared with another location. By installing the take-out port at a location where the dew point is higher than other locations, the high dew point gas is actively taken in and dehumidified low dew point gas is supplied, so the dew point in the furnace is efficiently lowered. be able to.

図1は典型的な縦型連続焼鈍炉に対して本発明を実施した一例を示す概略図である。図1において、1は鋼板、2は焼鈍炉内のロール、3は焼鈍炉(連続焼鈍炉)、4は雰囲気ガスの取り出し配管、5は送風機、6は熱交換器、7はリファイナー、8は昇温したガスの供給配管、9は昇温したガス、10は炉壁、11は炉壁耐火物、12は炉内である。取り出し配管4の炉壁10への接続端が前記取り出し口であり、供給配管8の炉壁10への接続端が前記供給口である。   FIG. 1 is a schematic view showing an example in which the present invention is implemented for a typical vertical continuous annealing furnace. In FIG. 1, 1 is a steel plate, 2 is a roll in an annealing furnace, 3 is an annealing furnace (continuous annealing furnace), 4 is an atmospheric gas extraction pipe, 5 is a blower, 6 is a heat exchanger, 7 is a refiner, and 8 is a refiner. A heated gas supply pipe, 9 is a heated gas, 10 is a furnace wall, 11 is a furnace wall refractory, and 12 is in the furnace. The connection end of the extraction pipe 4 to the furnace wall 10 is the extraction port, and the connection end of the supply pipe 8 to the furnace wall 10 is the supply port.

連続焼鈍炉3において、炉立上げ時もしくは定常運転時に炉内12の雰囲気ガスの露点が他の箇所に比べてΔ30℃程度高い、湿度の高い箇所に設置された取り出し配管4から、炉内雰囲気ガスの一部を送風機5によって取り出した。該取り出したガスは熱交換器6に通した。この時、定常運転時であれば取り出したガスは温度が高い(本例では約800℃)ため高温側熱媒であり、リファイナー7を通って低温(120℃以下)となったガスは低温側熱媒であり、これら両熱媒間で熱交換が行われる。高温側熱媒のガスは熱交換器6を通過した後、リファイナーを通過することによってガス内部の水分を除去され、低温側熱媒となった後、再び熱交換器6を通過させることで、約400℃に昇温させた。該昇温したガス9は、取り出し配管4の取り出し口から鋼板1の進行方向下流側に約20m隔てて供給口が位置するように設置した供給配管8に通し、炉壁10から炉壁耐火物11内部を経由させて炉内12に供給した。   In the continuous annealing furnace 3, the atmosphere in the furnace is removed from the extraction pipe 4 installed at a high humidity place where the dew point of the atmosphere gas in the furnace 12 is about Δ30 ° C. higher than other places at the time of startup or steady operation. A part of the gas was taken out by the blower 5. The extracted gas was passed through the heat exchanger 6. At this time, if the gas is in steady operation, the extracted gas has a high temperature (about 800 ° C. in this example) and is therefore a high-temperature side heat medium, and the gas that has become low temperature (below 120 ° C.) through the refiner 7 It is a heat medium, and heat exchange is performed between these heat mediums. After the gas of the high temperature side heat medium passes through the heat exchanger 6, the moisture inside the gas is removed by passing through the refiner, and after passing through the heat exchanger 6, after passing through the heat exchanger 6, The temperature was raised to about 400 ° C. The temperature-increased gas 9 is passed through the supply pipe 8 installed so that the supply port is located at a distance of about 20 m from the take-out port of the take-out pipe 4 to the downstream side in the traveling direction of the steel plate 1, and from the furnace wall 10 to the furnace wall refractory 11 was supplied to the furnace 12 via the inside.

該供給したガスは炉壁耐火物11内部を通過する間、そこに浸透していた水分の蒸発を促進させ強制的に炉内12へと排出させた。この繰り返しにより1時間を経ずに炉壁耐火物11内の水分を除去し、焼鈍炉内の雰囲気ガスを露点−50℃に保持できて、めっき性の良好な鋼板の高効率製造が可能になった。
尚、本例における供給配管8の供給口は、炉壁の縦方向と横方向にそれぞれ、1mの間隔で5個ずつ配列したが、図1では1個のみ示し、他は省略した。
While the supplied gas passed through the inside of the furnace wall refractory 11, evaporation of moisture that had permeated there was promoted and forcedly discharged into the furnace 12. By repeating this process, moisture in the furnace wall refractory 11 can be removed in less than one hour, and the atmospheric gas in the annealing furnace can be maintained at a dew point of −50 ° C., enabling high-efficiency production of steel plates with good plating properties. became.
In this example, five supply ports of the supply pipe 8 are arranged at intervals of 1 m in the vertical direction and the horizontal direction of the furnace wall, respectively, but only one is shown in FIG. 1 and the others are omitted.

これに対し従来の連続焼鈍炉では、炉内の露点が下がらず、−30℃程度であり、1昼夜を経てようやく−45℃に到達し、低露点化には著しく効率が悪く、この間に不めっきの鋼板を大量に製造してしまい、大きな問題であった。   On the other hand, in the conventional continuous annealing furnace, the dew point in the furnace does not decrease, it is about -30 ° C, and finally reaches -45 ° C after one day and night. A large amount of plated steel was produced, which was a big problem.

1 鋼板
2 ロール
3 焼鈍炉
4 取り出し配管
5 送風機
6 熱交換器
7 リファイナー
8 供給配管
9 昇温したガス
10 炉壁
11 炉壁耐火物
12 炉内
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Roll 3 Annealing furnace 4 Extraction piping 5 Blower 6 Heat exchanger 7 Refiner 8 Supply piping 9 Gas which heated up
10 Furnace wall
11 Furnace wall refractories
12 Furnace

Claims (3)

連続焼鈍炉の炉内雰囲気ガスの低露点化のために前記炉内雰囲気ガスから一部取り出したガスをリファイナーで脱湿した後、再び炉内へ供給する、連続焼鈍炉の雰囲気調整方法において、前記取り出したガスを前記リファイナーに通した後、ガス温度を400〜600℃にする昇温を行った上で、焼鈍炉壁から炉壁耐火物内部を経由させて炉内へ供給することを特徴とする連続焼鈍炉の炉内雰囲気調整方法。   In the method of adjusting the atmosphere of a continuous annealing furnace, after dehumidifying a part of the gas extracted from the furnace atmosphere gas with a refiner in order to lower the dew point of the furnace atmosphere gas of the continuous annealing furnace, it is supplied again into the furnace. After passing the extracted gas through the refiner, the temperature is raised to 400 to 600 ° C. and then supplied from the annealing furnace wall into the furnace through the furnace wall refractory. A method for adjusting the atmosphere in a continuous annealing furnace. 前記ガス温度の昇温は、前記取り出したガスを高温側、前記リファイナーを通過後のガスを低温側とした熱交換により行うことを特徴とする請求項1に記載の連続焼鈍炉の炉内雰囲気調整方法。   The in-furnace atmosphere of the continuous annealing furnace according to claim 1, wherein the temperature of the gas is increased by heat exchange with the extracted gas at a high temperature side and the gas after passing through the refiner at a low temperature side. Adjustment method. 請求項1又は2において、前記昇温後のガスを炉内へ供給する供給配管は、炉内への供給口を複数とし、隣り合う供給口同士の間隔を0.1〜1.5mとし、炉壁1m当たりの供給口個数を1個以上として、設置することを特徴とする連続焼鈍炉の炉内雰囲気調整方法。 In claim 1 or 2, the supply pipe for supplying the gas after the temperature rise into the furnace has a plurality of supply ports into the furnace, the interval between the adjacent supply ports is 0.1 to 1.5m, A method for adjusting the atmosphere in a furnace of a continuous annealing furnace, wherein the number of supply ports per 1 m 2 of furnace wall is set to one or more.
JP2010261918A 2010-11-25 2010-11-25 In-furnace atmosphere adjustment method for continuous annealing furnace Active JP5500053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261918A JP5500053B2 (en) 2010-11-25 2010-11-25 In-furnace atmosphere adjustment method for continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261918A JP5500053B2 (en) 2010-11-25 2010-11-25 In-furnace atmosphere adjustment method for continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2012111995A JP2012111995A (en) 2012-06-14
JP5500053B2 true JP5500053B2 (en) 2014-05-21

Family

ID=46496531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261918A Active JP5500053B2 (en) 2010-11-25 2010-11-25 In-furnace atmosphere adjustment method for continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP5500053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015009510A (en) * 2013-01-28 2015-11-16 Jfe Steel Corp Method for adjusting in-furnace atmosphere of continuous heat-treating furnace.
TWI470085B (en) * 2013-02-01 2015-01-21 Jfe Steel Corp Method of controlling atmosphere in a continuous annealing furnace
JP6131880B2 (en) * 2014-02-26 2017-05-24 Jfeスチール株式会社 Continuous annealing furnace and startup method of continuous annealing furnace
CN117255866A (en) 2021-05-06 2023-12-19 杰富意钢铁株式会社 Method for controlling dew point of continuous annealing furnace, method for continuously annealing steel sheet, method for producing steel sheet, continuous annealing furnace, continuous hot-dip galvanization apparatus, and alloyed hot-dip galvanization apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294869A (en) * 1976-02-04 1977-08-09 Rozai Kogyo Kk Method of regenerating and recycling inert gas in heating furnace
JPS61253327A (en) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd Method for decreasing dew point of heating furnace
JPS62290830A (en) * 1986-06-11 1987-12-17 Nisshin Steel Co Ltd Continuous annealing method for steel strip and annealing furnace therefor
JPH01193588A (en) * 1988-01-26 1989-08-03 Daido Steel Co Ltd Atmosphere gas furnace equipped with exhaust combustion gas refining device
JP2567113B2 (en) * 1989-04-05 1996-12-25 日本冶金工業株式会社 Bright annealing furnace
JP2982598B2 (en) * 1993-12-17 1999-11-22 日本鋼管株式会社 Operating method of atmosphere heat treatment furnace

Also Published As

Publication number Publication date
JP2012111995A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5500053B2 (en) In-furnace atmosphere adjustment method for continuous annealing furnace
WO2013175757A1 (en) Steel strip continuous annealing furnace, steel strip continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip
JP5742950B2 (en) Method for reducing dew point of atmospheric gas in annealing furnace, apparatus therefor, and method for producing cold-rolled annealed steel sheet
CN102686965A (en) Equipment and method for preheating a continuously moving steel strip
CN107881303A (en) Steel annealing process
CN103031688A (en) Ultra-high-temperature carbonization device
CN103555924B (en) Atmosphere replacement system of continuous annealing furnace
JP5874818B2 (en) Method for reducing dew point of atmospheric gas in annealing furnace, apparatus therefor, and method for producing cold-rolled annealed steel sheet
WO2014087452A1 (en) Facility and method for manufacturing continuous hot-dip zinc-coated steel sheet
WO2014115190A1 (en) Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
CN1884593A (en) Sheet annealing furnace
JP5733121B2 (en) In-furnace atmosphere adjustment method for continuous heat treatment furnace
CN102676788B (en) Energy-saving type roller hearth continuous bright normalizing annealing furnace
CN201463608U (en) High-temperature material gas rapid injection cooing unit
CN203569153U (en) Vertical continuous annealing furnace for annealing titanium plates and steel strips
CN201669280U (en) Cooling blowing device for cold rolled strips
CN202254892U (en) Waste gas afterheat utilization device
CN201540034U (en) High-temperature material gas ultra-fast injection cooling unit
CN103589853A (en) Horizontal continuous annealing furnace for annealing titanium belt and steel belt
CN105202910A (en) Roller furnace with high power and low energy consumption
CN103572039B (en) Improve the chamber structure improved method of heating furnace burner hearth heat transfer efficiency
CN103667625A (en) Closed annealing furnace for aluminum wafer
CN204795658U (en) Hot plate of vapourizing furnace
CN102401559B (en) Automatic box-type heat treatment equipment
CN103555926A (en) Atmosphere replacement method for continuous annealing furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5500053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250