JP2963898B1 - 非水系電池用電解液およびこの電解液を用いた二次電池 - Google Patents

非水系電池用電解液およびこの電解液を用いた二次電池

Info

Publication number
JP2963898B1
JP2963898B1 JP10217953A JP21795398A JP2963898B1 JP 2963898 B1 JP2963898 B1 JP 2963898B1 JP 10217953 A JP10217953 A JP 10217953A JP 21795398 A JP21795398 A JP 21795398A JP 2963898 B1 JP2963898 B1 JP 2963898B1
Authority
JP
Japan
Prior art keywords
electrolyte
battery
biphenylyl
weight
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10217953A
Other languages
English (en)
Other versions
JP2000058112A (ja
Inventor
昌利 高橋
尚範 山口
浩司 安部
明 植木
勉 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Ube Corp
Original Assignee
Ube Industries Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Sanyo Denki Co Ltd filed Critical Ube Industries Ltd
Priority to JP10217953A priority Critical patent/JP2963898B1/ja
Application granted granted Critical
Publication of JP2963898B1 publication Critical patent/JP2963898B1/ja
Publication of JP2000058112A publication Critical patent/JP2000058112A/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【要約】 【課題】 電解液に添加しても低温特性や保存特性など
の電池特性に悪影響を及ぼさなく、かつ過充電に対して
は有効に作用する添加剤を用いて電池の安全性を確保で
きるようにする。 【解決手段】 有機溶媒に溶質としてリチウム塩を溶解
した電解液に下記の化10の一般式で表されるエステル
誘導体が含有されている。ただし、化10に示したR1
はフェニル基、ビフェニリル基を示し、R2は炭素数1
〜6のアルキル基、フェニル基を示す。 【化10】

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は有機溶媒に溶質とし
てリチウム塩を溶解した非水系電池用電解液およびこの
電解液を用いた非水系二次電池に係り、特に、過充電し
ても安全性が確保できる電解液およびこの電解液を用い
た非水系二次電池に関する。
【0002】
【従来の技術】近年、電子機器の小型化、軽量化はめざ
ましく、それに伴い、電源となる電池に対しても小型軽
量化の要望が非常に大きい。一次電池の分野では既にリ
チウム電池等の小型軽量電池が実用化されているが、こ
れらは一次電池であるが故に繰り返し使用できず、その
用途は限られたものであった。一方、二次電池の分野で
は従来より鉛蓄電池、ニッケル−カドミウム蓄電池、ニ
ッケル−水素蓄電池等が用いられてきたが、これらは小
型軽量化という点で大きな問題点を有している。
【0003】そこで、小型軽量でかつ高容量で充放電可
能な電池としてリチウムイオン電池が実用化されるよう
になり、小型ビデオカメラ、携帯電話、ノートパソコン
等の携帯用電子・通信機器等に用いられるようになっ
た。この種のリチウムイオン電池は、負極活物質として
リチウムイオンを吸蔵・脱離し得るカーボン系材料を用
い、正極活物質として、LiCoO2,LiNiO2,L
iMn24,LiFeO2等のリチウム含有遷移金属酸
化物を用い、有機溶媒に溶質としてリチウム塩を溶解し
た電解液を用い、電池として組み立てた後、初回の充電
により正極活物質から出たリチウムイオンがカーボン粒
子内に入って充放電可能となる電池である。
【0004】このようなリチウムイオン電池にあって
は、過充電を行うと、過充電状態になるに伴い、正極か
らは過剰なリチウムが抽出され、負極ではリチウムの過
剰な挿入が生じて、正・負極の両極が熱的に不安定化す
る。正・負極の両極が熱的に不安定になると、やがては
電解液の有機溶媒を分解するように作用し、急激な発熱
反応が生じて、電池が異常に発熱するという事態を生
じ、電池の安全性が損なわれるという問題を生じた。こ
のような状況は、リチウムイオン電池のエネルギー密度
が増加するほど重要な問題となる。
【0005】このような問題を解決するため、電解液中
に添加剤として少量の芳香族化合物を添加することによ
って、過充電に対して安全性を確保できるようにしたも
のが、例えば、特開平7−302614号公報、特開平
9−50822号公報において提案された。この特開平
7−302614号公報、特開平9−50822号公報
において提案されたものにあっては、負極に炭素材料を
用い、電解液の添加剤として、分子量500以下で満充
電時の正極電位よりも貴な電位に可逆性酸化還元電位を
有するようなπ電子軌道をもつアニソール誘導体などの
芳香族化合物を使用するようにしている。このような芳
香族化合物は、過充電時に過充電を消費することで電池
が保護される。
【0006】また、電解液中に添加剤を添加することに
よって、過充電に対して安全性を確保できるようにした
ものが、例えば、特開平9−106835号公報におい
て提案された。この特開平9−106835号公報にお
いて提案されたものにあっては、負極に炭素材料を用
い、電解液の添加剤として、電池の最大動作電圧以上の
電池電圧で重合することによって、電池の内部電圧を高
くし、過充電時に電池を保護することができるようにし
ている。
【0007】
【発明が解決しようとする課題】しかしながら、特開平
7−302614号公報、特開平9−50822号公報
において提案されたものにあっては、アニソール誘導体
は過充電に対しては有効に作用するのに対して、サイク
ル特性や保存特性などの電池特性に悪影響を及ぼすとい
う問題を生じた。また、芳香族化合物は4.5V程度の
電位で酸化分解されて、ガスを発生するとともに、重合
物を形成することにより、過充電を消費して電池を保護
する反面、電解液組成によっては、その重合物が溶解し
て過充電を消費できない場合も生じる。結局、π電子軌
道をもつアニソール誘導体などの芳香族化合物は必ずし
も過充電を抑制するとはいえないものである。
【0008】一方、特開平9−106835号公報にお
いて提案されたものにあっては、電解液の添加剤として
使用するビフェニルは、極性が低く、かつ電解液に対す
る溶解性が低いため、低温作動時に添加剤が一部析出し
て電池特性の低下を惹起するという問題を生じた。ま
た、3−クロロ−チオフェンは刺激性があり、しかも悪
臭が強くて取り扱いが難しく、さらに酸化分解されやす
いという問題点があり、フランも酸化分解されやすく、
いずれの化合物も電池特性に悪影響を及ぼすという問題
点がある。
【0009】そこで、本発明は上記問題点に鑑みてなさ
れたものであり、電解液に添加しても低温特性や保存特
性などの電池特性に悪影響を及ぼさなく、かつ過充電に
対しては有効に作用する添加剤を用いて電池の安全性を
確保できるようにすることを目的とするものである。
【0010】
【課題を解決するための手段およびその作用・効果】こ
のため、本発明の非水系電池用電解液においては、有機
溶媒に下記の化3の一般式で表されるエステル誘導体が
含有されていることを特徴とする。ただし、化3に示し
たR1 はビフェニリル基を示し、R2は炭素数1〜6のア
ルキル基、フェニル基、ベンジル基を示す。
【0011】
【化3】
【0012】上記化3の一般式で表されるエステル誘導
体は、電解液中の有機溶媒との親和性が良いため、低温
特性や保存特性などの電池特性に悪影響を及ぼすことは
ない。このため、上記化3の一般式で表されるエステル
誘導体が含有された電解液は電池性能を劣化させること
がない。また、エステル誘導体が重合反応して生成され
た重合物は、電解液中で再溶解が起こりにくい物質であ
るため、過充電に対しても有効に作用する。このため、
上記化3の一般式で表されるエステル誘導体が含有され
た電解液を用いることにより、電池の安全性が確保でき
るようになる。
【0013】そして、上記のエステル誘導体としては、
4−ビフェニリルアセテート、4−ビフェニリルベンゾ
エート、4−ビフェニリルベンジルカルボキシレートあ
るいは2−ビフェニリルプロピオネートから選択した少
なくとも1種を備えるようにすることが好ましい。
【0014】また、本発明は、リチウム含有金属酸化物
を正極活物質とする正極と炭素を負極活物質とする負極
とをセパレータを介して積層して構成した電極体を電池
容器内に備えるとともに、有機溶媒に溶質としてリチウ
ム塩を溶解した電解液を備えた非水系二次電池であっ
て、電解液に下記の化4の一般式で表されるエステル誘
導体が含有されていることを特徴とする。ただし、化4
に示したR1 はビフェニリル基を示し、R2は炭素数1〜
6のアルキル基、フェニル基、ベンジル基を示す。
【0015】
【化4】
【0016】上記化4の一般式で表されるエステル誘導
体は電解液中の有機溶媒との親和性が良いため、このよ
うなエステル誘導体をリチウム塩とともに有機溶媒中に
添加された電解液を用いると、低温特性や保存特性など
の電池特性に悪影響を及ぼすことはない。
【0017】また、これらの添加剤は電池電圧が過充電
状態の電圧に達すると、分解反応を開始してガスを発生
するようになるとともに重合反応を開始して重合物が生
成される。この重合物は抵抗体として作用するととも
に、この重合物は電解液中で再溶解が起こりにくい物質
であるため、過充電に対しては有効に作用する。結局、
このようなエステル誘導体をリチウム塩とともに有機溶
媒中に添加された電解液を用いると、低温特性や保存特
性などの電池特性に悪影響を及ぼすことなく、即ち、電
池性能を劣化させることなく電池の安全性を確保できる
ようになる。
【0018】
【発明の実施の形態】以下に、本発明のリチウムイオン
電池の一実施形態を図1および図2に基づいて説明す
る。なお、図1は本発明の電解液を備えた一実施形態の
リチウムイオン電池のセパレータを介して重ね合わせた
正・負極板を卷回して外装缶内に収納した状態を示す断
面図であり、図2は外装缶の開口部に装着される電流遮
断封口体を示す一部破断図である。
【0019】1.負極板の作製 天然黒鉛(d=3.36 )よりなる負極活物質とポリ
ビニリデンフルオライド(PVDF)よりなる結着剤等
とを、N−メチルピロリドンからなる有機溶剤等に溶解
したものを混合して、スラリーあるいはペーストとす
る。これらのスラリーあるいはペーストを、スラリーの
場合はダイコーター、ドクターブレード等を用いて、ペ
ーストの場合はローラコーティング法等により金属芯体
(例えば、厚みが20μmの銅箔)の両面の全面にわた
って均一に塗布して、活物質層を塗布した負極板を形成
する。
【0020】この後、活物質層を塗布した負極板を乾燥
機中を通過させて、スラリーあるいはペースト作製に必
要であった有機溶剤を除去して乾燥させる。この後、こ
の乾燥負極板をロールプレス機により圧延して、厚みが
0.14mmの負極板10とする。
【0021】2.正極板の作製 一方、LiCoO2からなる正極活物質と、アセチレン
ブラック、グラファイト等の炭素系導電剤と、ポリビニ
リデンフルオライド(PVDF)よりなる結着剤等と
を、N−メチルピロリドンからなる有機溶剤等に溶解し
たものを混合して、スラリーあるいはペーストとする。
【0022】これらのスラリーあるいはペーストを、ス
ラリーの場合はダイコーター、ドクターブレード等を用
いて、ペーストの場合はローラコーティング法等により
金属芯体(例えば、厚みが20μmのアルミニウム箔)
の両面に均一に塗布して、活物質層を塗布した正極板を
形成する。この後、活物質層を塗布した正極板を乾燥機
中を通過させて、スラリーあるいはペースト作製に必要
であった有機溶剤を除去して乾燥させる。乾燥後、この
乾燥正極板をロールプレス機により圧延して、厚みが
0.17mmの正極板20とする。
【0023】3.電極体の作製 上述のようにして作製した負極板10と正極板20と
を、有機溶媒との反応性が低く、かつ安価なポリオレフ
ィン系樹脂からなる微多孔膜、好適にはポリエチレン製
微多孔膜(例えば、厚みが0.025mm)30を間に
し、かつ、各極板10,20の幅方向の中心線を一致さ
せて重ね合わせる。この後、図示しない巻き取り機によ
り卷回する。この後、最外周をテープ止めして渦巻状電
極体とする。角形電池の場合は、プレス機で角形外装缶
に挿入できるような形に成形して電極体とする。
【0024】4.電解液の調整 実施例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化5の構造式で表される4−ビフェニリルアセテー
トを2重量%添加混合して作製した電解液aを実施例1
の電解液とする。
【0025】
【化5】
【0026】参考例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化6の構造式で表されるフェニルプロピオネートを
2重量%添加混合して作製した電解液bを参考例1の電
解液とする。
【0027】
【化6】
【0028】実施例2 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化7の構造式で表される4−ビフェニリルベンゾエ
ートを2重量%添加混合して作製した電解液cを実施例
の電解液とする。
【0029】
【化7】
【0030】実施例3 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化8の構造式で表される4−ビフェニリルベンジル
カルボキシレートを2重量%添加混合して作製した電解
液dを実施例3の電解液とする。
【0031】
【化8】
【0032】実施例4 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化9の構造式で表される2−ビフェニリルプロピオ
ネートを2重量%添加混合して作製した電解液eを実施
例4の電解液とする。
【0033】
【化9】
【0034】実施例5 エチレンカーボネート(EC)40重量部とジメチルカ
ーボネート(DMC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を2重量%添加混合して作製した電解液fを実施例5
電解液とする。
【0035】実施例6 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化5の構造式で表される4−ビフェニリルアセテ
ートを2重量%添加混合して作製した電解液gを実施例
の電解液とする。
【0036】実施例7 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)30重量部とジメチルカーボネー
ト(DMC)30重量部よりなる混合溶媒に、電解質塩
として1MLiPF6を添加混合し、さらに上記化5の
構造式で表される4−ビフェニリルアセテートを2重量
%添加混合して作製した電解液hを実施例7の電解液と
する。
【0037】実施例8 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として0.5MLiPF6と0.5MLiBF4
を添加混合し、さらに上記化5の構造式で表される4−
ビフェニリルアセテートを2重量%添加混合して作製し
た電解液iを実施例8の電解液とする。
【0038】比較例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合して作製した
電解液jを比較例1の電解液とする。
【0039】比較例2 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらにビ
フェニルを2重量%添加混合して作製した電解液kを比
較例2の電解液とする。
【0040】比較例3 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに4
−クロロアニソールを2重量%添加混合して作製した電
解液lを比較例3の電解液とする。
【0041】5.リチウムイオン電池の作製 ついで、図1に示すように、上述のようにして作製した
電極体の上下にそれぞれ絶縁板41を配置した後、1枚
板からプレス加工により円筒状に成形した負極端子を兼
ねるスチール製の外装缶40の開口部より、この電極体
を挿入する。ついで、電極体の負極板10より延出する
負極集電タブ10aを外装缶40の内底部に溶接すると
ともに、電極体の正極板20より延出する正極集電タブ
20aを電流遮断封口体50の底板54の底部に溶接す
る。
【0042】なお、電流遮断封口体50は、図2に示す
ように、逆皿状(キャップ状)に形成されたステンレス
製の正極キャップ51と、皿状に形成されたステンレス
製の底板54とから構成される。正極キャップ51は、
電池外部に向けて膨出する凸部52と、この凸部52の
底辺部を構成する平板状のフランジ部53とからなり、
凸部52の角部には複数のガス抜き孔52aを設けてい
る。一方、底板54は、電池内部に向けて膨出する凹部
55と、この凹部55の底辺部を構成する平板状のフラ
ンジ部56とからなる。凹部55の角部にはガス抜き孔
55aが設けられている。
【0043】これらの正極キャップ51と底板54との
内部には、電池内部のガス圧が上昇して所定の圧力以上
になると変形する電力導出板57が収容されている。こ
の電力導出板57は凹部57aとフランジ部57bとか
らなり、例えば、厚みが0.2mmで表面の凹凸が0.
005mmのアルミニウム箔から構成される。凹部57
aの最低部は底板54の凹部55の上表面に接触して配
設されており、フランジ部57bは正極キャップ51の
フランジ部53と底板54のフランジ部56との間に狭
持される。なお、正極キャップ51と底板54とはポリ
プロピレン(PP)製の封口体用絶縁ガスケット59に
より液密に封口されている。
【0044】フランジ部57bの上部の一部には、PT
C(Positive Temperature Coefficient)サーミスタ素
子58が配設され、電池内に過電流が流れて異常な発熱
現象を生じると、このPTCサーミスタ素子58の抵抗
値が増大して過電流を減少させる。そして、電池内部の
ガス圧が上昇して所定の圧力以上になると電力導出板5
7の凹部57aは変形するため、電力導出板57と底板
54の凹部55との接触が遮断されて過電流あるいは短
絡電流が遮断されるようになる。
【0045】ついで、外装缶40の開口部に上述した電
解液a〜lをそれぞれ注入した後、外装缶40の開口部
にポリプロピレン(PP)製の外装缶用絶縁ガスケット
42を介して電流遮断封口体50を載置し、外装缶40
の開口部の上端部を電流遮断封口体50側にカシメて液
密に封口して、12種類の円筒形のリチウムイオン電池
をそれぞれ作成する。このようにして作製した各リチウ
ムイオン電池A〜Lの公称容量は1350mAhとな
る。
【0046】なお、電池Aは実施例1の電解液aを注入
したものであり、電池Bは実施例2の電解液bを注入し
たものであり、電池Cは実施例3の電解液cを注入した
ものであり、電池Dは実施例4の電解液dを注入したも
のであり、電池Eは実施例5の電解液eを注入したもの
であり、電池Fは実施例6の電解液fを注入したもので
あり、電池Gは実施例7の電解液gを注入したものであ
り、電池Hは実施例8の電解液hを注入したものであ
り、電池Iは実施例9の電解液iを注入したものであ
り、電池Jは比較例1の電解液jを注入したものであ
り、電池Kは比較例2の電解液kを注入したものであ
り、電池Lは比較例3の電解液lを注入したものであ
る。
【0047】6.試験 a.過充電試験 上述のように作製した12種類の各リチウムイオン電池
A〜Lを1350mA(1C)の充電々流で電池電圧が
4.1Vになるまで充電し、その後、4.1Vの定電圧
で3時間充電して満充電状態とする。このように満充電
された12種類の各リチウムイオン電池A〜Lの各正・
負極端子間に2700mA(2C)の充電電流を流して
過充電を行い、過充電開始から電流遮断封口体50が作
動するまでの時間と、そのときの各電池A〜Lの最高温
度を測定すると、下記の表1に示すような結果となっ
た。
【0048】b.低温特性 上述のように作製した12種類の各リチウムイオン電池
A〜Lを、室温(25℃)で1350mA(1C)の充
電々流で電池電圧が4.1Vになるまで充電し、その
後、4.1Vの定電圧で3時間充電して満充電状態とす
る。その後、室温で3時間休止させた後、室温で135
0mA(1C)の放電々流で終止電圧が2.75Vにな
るまで放電させ、放電時間から室温での放電容量(mA
h)を求めた。
【0049】一方、上述のように作製した12種類の各
リチウムイオン電池A〜Lを、室温(25℃)で135
0mA(1C)の充電々流で電池電圧が4.1Vになる
まで充電し、その後、4.1Vの定電圧で3時間充電し
て満充電状態とする。その後、0℃の温度で3時間休止
させた後、0℃の温度で1350mA(1C)の放電々
流で終止電圧が2.75Vになるまで放電させ、放電時
間から低温での放電容量(mAh)を求めた。
【0050】ついで、上述のようにして求めた各容量に
基づいて、室温での放電容量(mAh)に対する低温で
の放電容量(mAh)の割合を低温特性として下記の数
1の数式により算出すると、下記の表1に示すような結
果となった。
【0051】
【数1】低温特性=(低温での放電容量/室温での放電
容量)×100%(1) c.保存特性 上述のように作製した12種類の各リチウムイオン電池
A〜Lを室温(25℃)で1350mA(1C)の充電
々流で電池電圧が4.1Vになるまで充電し、その後、
4.1Vの定電圧で3時間充電して満充電状態とする。
その後、60℃の雰囲気中に20日間保存した後、13
50mA(1C)の放電々流で電池電圧が2.75Vに
なるまで放電させ、放電時間から高温保存後の放電容量
を求めた。ついで、上記で求めた室温での放電容量に対
する高温保存後の放電容量の割合を保存特性として下記
の数2の数式により算出すると、下記の表1に示すよう
な結果となった。
【0052】
【数2】保存特性=(高温保存後の放電容量/室温での
放電容量)×100%(2)
【0053】
【表1】
【0054】上記表1から明らかなように、添加剤が無
添加の比較例1の電解液jを用いた電池Jは、過充電を
開始してから32分後に破裂が発生したが、低温特性お
よび保存特性は共に良好であった。また、従来例の添加
剤であるビフェニルを添加した比較例2の電解液kを用
いた電池Kは、過充電を開始してから20分後に充電電
流が遮断され、そのときの最高温度は88℃であった。
そして、低温特性および保存特性は共に低い値となっ
た。さらに、従来例の添加剤である4−クロロアニソー
ルを添加した比較例3の電解液lを用いた電池Lは、過
充電を開始してから21分後に充電電流が遮断され、そ
のときの最高温度は90℃であった。そして、低温特性
および保存特性は共に低い値となった。
【0055】一方、上記化5の構造式で表される4−ビ
フェニリルアセテート、上記化6の構造式で表されるフ
ェニルプロピオネート、上記化7の構造式で表される4
−ビフェニリルベンゾエート、上記化8の構造式で表さ
れる4−ビフェニリルベンジルカルボキシレート、上記
化9の構造式で表される2−ビフェニリルプロピオネー
トを添加した実施例1、参考例1、実施例2〜8の電解
液a〜iを用いた電池A〜Iは、過充電を開始してから
18〜20分後に充電電流が遮断され、そのときの最高
温度も79〜83℃と低く、かつ低温特性および保存特
性も共に良好であった。但し、フェニルプロピオネート
を添加した参考例1の電解液bを用いた電池Bの低温特
性は、各実施例の電池に比較して低温特性が若干劣る。
特に、プロピオネートのエステル誘導体である、フェニ
ルプロピオネートを添加した参考例の電解液bを用いた
電池Bと、2−ビフェニリルプロピオネートを添加した
実施例4の電解液eを用いた電池Eとを比較すると、電
池Eは電池Bに比較して低温特性および保存特性共によ
り良好である。これは、ビフェニリル基を有するエステ
ル誘導体がフェニル基を有するエステル誘導体に比較し
て、電解液の添加剤としてより良好であることを示して
いる。
【0056】これは、電池電圧が4.1Vに達してから
過充電を行って過充電状態になると、4−ビフェニリル
アセテート、フェニルプロピオネート、4−ビフェニリ
ルベンゾエート、4−ビフェニリルベンジルカルボキシ
レート、2−ビフェニリルプロピオネートなどの添加剤
は分解反応を開始してガスを発生するようになる。これ
と同時に重合反応を開始して重合熱を発生する。この状
態で過充電をさらに続けると、ガスの発生量が増大し、
過充電を開始してから18〜20分後に電流遮断封口体
50が作動して過充電電流を遮断する。これにより、電
池温度も徐々に低下することとなる。
【0057】なお、電池A〜Eと電池F〜Iを比較する
と明らかなように、電解液の有機溶媒の種類あるいは溶
質の種類を代えても格別の差異が認められないので、本
発明の添加剤は電解液の種類に関わらず同様な効果を発
揮するということができる。また、電池A〜電池Eを比
較すると明らかなように、本発明の添加剤は上記化5の
構造式で表される4−ビフェニリルアセテート、上記化
7の構造式で表される4−ビフェニリルベンゾエート、
上記化8の構造式で表される4−ビフェニリルベンジル
カルボキシレート、上記化9の構造式で表される2−ビ
フェニリルプロピオネートから選択した少なくとも1種
を用いるのが好ましい。
【0058】7.添加剤の添加量の検討 ついで、添加剤の添加量について検討する。実施例9 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を1重量%添加混合して作製した電解液mを実施例9
電解液とする。
【0059】実施例10 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を3重量%添加混合して作製した電解液nを実施例10
の電解液とする。
【0060】実施例11 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を5重量%添加混合して作製した電解液oを実施例11
の電解液とする。
【0061】実施例12 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を10重量%添加混合して作製した電解液pを実施例1
の電解液とする。
【0062】この後、上述と同様にして、外装缶40の
開口部に上述した電解液m〜pをそれぞれ注入した後、
外装缶40の開口部にポリプロピレン(PP)製の外装
缶用絶縁ガスケット42を介して電流遮断封口体50を
載置し、外装缶40の開口部の上端部を電流遮断封口体
50側にカシメて液密に封口して、リチウムイオン電池
M(電解液mを注入したもの)、リチウムイオン電池N
(電解液nを注入したもの)、リチウムイオン電池O
(電解液oを注入したもの)、リチウムイオン電池P
(電解液pを注入したもの)をそれぞれ作製する。
【0063】ついで、上述と同様にして、これらの各電
池M〜Pに過充電を施して、過充電を開始してから電流
遮断封口体50が作動するまでの時間と、そのときの各
電池M〜Pの最高温度を測定すると、下記の表2に示す
ような結果となった。また、上述と同様にして、低温特
性および保存特性を測定すると、下記の表2に示すよう
な結果となった。
【0064】
【表2】
【0065】上記表2より明らかなように、添加剤の添
加量が1〜10重量%の範囲であれば、電流遮断時間、
最高温度、低温特性および保存特性において格別の差異
が認められなかった。このことから、添加剤の添加量は
1〜10重量%の範囲にするのが望ましく、好ましくは
1〜5重量%とするのが望ましい。なお、表2には示し
ていないが、上記化5の構造式で表される4−ビフェニ
リルアセテート以外の添加剤、即ち、上記化7の構造式
で表される4−ビフェニリルベンゾエート、上記化8の
構造式で表される4−ビフェニリルベンジルカルボキシ
レート、上記化9の構造式で表される2−ビフェニリル
プロピオネートなどの他の添加剤を用いてもほぼ同様な
結果が得られた。
【0066】8.電流遮断封口体を用いなかった場合 上述した実施形態においては、電流遮断封口体50を備
えたリチウムイオン電池に本発明の添加剤を添加した電
解液を注入した例について説明したが、電流遮断封口体
を備えていない角形リチウムイオン電池に本発明の添加
剤を添加した電解液を注入した場合においても検討し
た。
【0067】実施例13 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化5の構造式で表される4−ビフェニリルアセテ
ートを2重量%添加混合して作製した電解液qを実施例
13の電解液とする。
【0068】参考例2 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化6の構造式で表されるフェニルプロピオネート
を2重量%添加混合して作製した電解液rを参考例2
電解液とする。
【0069】比較例4 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合して作製
した電解液sを比較例4の電解液とする。
【0070】この後、上述と同様にして、図示しない角
形外装缶の開口部に上述した電解液q〜sをそれぞれ注
入し、リチウムイオン電池Q(電解液qを注入したも
の)、リチウムイオン電池R(電解液rを注入したも
の)、リチウムイオン電池S(電解液sを注入したも
の)をそれぞれ作製する。このようにして作製した角形
の各リチウムイオン電池Q〜Sの公称容量は600mA
hとなる。
【0071】上述のように作製した3種類の各リチウム
イオン電池Q〜Sを600mA(1C)の充電々流で電
池電圧が4.1Vになるまで充電し、その後4.1Vの
定電圧で3時間充電して満充電状態とする。このように
満充電された3種類の各リチウムイオン電池Q〜Sの各
正・負極端子間に1200mA(2C)の充電電流を流
して過充電を行い、各電池Q〜Sの最高温度を測定する
過充電試験を行った。この結果は下記の表3に示すよう
な結果となった。
【0072】ついで、上述のように作製した3種類の各
リチウムイオン電池Q〜Sを、室温(25℃)で600
mA(1C)の充電々流で電池電圧が4.1Vになるま
で充電し、その後4.1Vの定電圧で3時間充電して満
充電状態とする。その後、室温で3時間休止させた後、
室温で600mA(1C)の放電々流で終止電圧が2.
75Vになるまで放電させ、放電時間から室温での放電
容量(mAh)を求めた。
【0073】一方、上述のように作製した3種類の各リ
チウムイオン電池Q〜Sを、室温(25℃)で600m
A(1C)の充電々流で電池電圧が4.1Vになるまで
充電し、その後4.1Vの定電圧で3時間充電して満充
電状態とする。その後、0℃の温度で3時間休止させた
後、0℃の温度で600mA(1C)の放電々流で終止
電圧が2.75Vになるまで放電させ、放電時間から低
温での放電容量(mAh)を求めた。
【0074】ついで、上述のように測定した各容量に基
づいて、室温での放電容量(mAh)に対する低温での
放電容量(mAh)の割合を低温特性として上述した数
1の数式により算出すると、下記の表3に示すような結
果となった。
【0075】また、上述のように作製した3種類の各リ
チウムイオン電池Q〜Sを、室温(25℃)で600m
A(1C)の充電々流で電池電圧が4.1Vになるまで
充電し、その後4.1Vの定電圧で3時間充電して満充
電状態とする。その後、60℃の雰囲気中に20日間保
存した後、600mA(1C)の放電々流で電池電圧が
2.75Vになるまで放電させ、放電時間から高温保存
後の放電容量を求めた。ついで、上記で求めた室温での
放電容量に対する高温保存後の放電容量の割合を保存特
性として、上述した数2の数式により算出すると、下記
の表3に示すような結果となった。
【0076】
【表3】
【0077】上記表3より明らかなように、添加剤が無
添加の比較例4の電解液sを用いた電池Sは、過充電に
より破裂が発生したが、低温特性および保存特性は共に
良好であった。一方、本発明の添加剤である上記化5の
構造式で表される4−ビフェニリルアセテートを添加し
実施例13の電解液qを用いた電池Qおよび上記化6
の構造式で表されるフェニルプロピオネートを添加した
参考例2の電解液rを用いた電池Rは、過充電を行うと
温度上昇は高いが破裂に至ることはなかった。また、低
温特性および保存特性も、添加剤が無添加のものとほぼ
同様な値を示して、共に良好であった。
【0078】上述したように、本発明の上記化5の構造
式で表される4−ビフェニリルアセテート、上記化7の
構造式で表される4−ビフェニリルベンゾエート、上記
化8の構造式で表される4−ビフェニリルベンジルカル
ボキシレート、上記化9の構造式で表される2−ビフェ
ニリルプロピオネートなどのエステル誘導体からなる添
加剤を電解液に添加して用いると、低温特性や保存特性
などの電池特性に悪影響を及ぼすことなく過充電に対し
ては有効に作用して、電池性能を劣化させることなく電
池の安全性を確保できるようになる。
【0079】なお、上述の実施形態においては、負極活
物質として天然黒鉛(d=3.36)を用いる例につい
て説明したが、天然黒鉛以外に、リチウムイオンを吸蔵
・脱離し得るカーボン系材料、例えば、グラファイト、
カーボンブラック、コークス、ガラス状炭素、炭素繊
維、またはこれらの焼成体等が好適である。
【0080】また、上述の実施形態においては、正極活
物質としてLiCoO2を用いる例について説明した
が、LiCoO2以外に、リチウムイオンをゲストとし
て受け入れ得るリチウム含有遷移金属化合物、例えば、
LiNiO2、LiCoXNi(1-X)2、LiCrO2
LiVO2、LiMnO2、αLiFeO2、LiTi
2、LiScO2、LiYO2、LiMn24等が好ま
しいが、特に、LiNiO2、LiCoXNi(1-X)2
単独で用いるかあるいはこれらの二種以上を混合して用
いるのが好適である。
【0081】さらに、電解液としては、有機溶媒に溶質
としてリチウム塩を溶解したイオン伝導体であって、イ
オン伝導率が高く、正・負の各電極に対して化学的、電
気化学的に安定で、使用可能温度範囲が広くかつ安全性
が高く、安価なものであれば使用することができる。例
えば、上記した有機溶媒以外に、プロピレンカーボネー
ト(PC)、スルフォラン(SL)、テトラハイドロフ
ラン(THF)、γブチロラクトン(GBL)、等ある
いはこれらの混合溶媒が好適である。また、溶質として
は電子吸引性の強いリチウム塩を使用し、上記したLi
PF6あるいはLiBF4以外に、例えば、LiCl
4、LiAsF6、LiCF3SO3、Li(CF3
22N、Li(C25SO22N、LiC49SO3
等が好適である。
【図面の簡単な説明】
【図1】 本発明の電解液を備えた一実施形態の電池の
セパレータを介して重ね合わせた正・負極板を卷回して
外装缶内に収納した状態を示す断面図である。
【図2】 図1の外装缶の開口部に装着される電流遮断
封口体を示す一部破断図である。
【符号の説明】
10…負極板、10a…負極集電タブ、20…正極板、
20a…正極集電タブ、30…セパレータ、40…外装
缶、41…スペーサ、42…外装缶用絶縁ガスケット、
50…電流遮断封口体
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 浩司 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (72)発明者 植木 明 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (72)発明者 高井 勉 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (56)参考文献 特開 平10−275632(JP,A) 特開 平9−22722(JP,A) 特開 平8−306387(JP,A) 特開 平8−293323(JP,A) 特開 昭63−114076(JP,A) 特開 平7−22069(JP,A) 特開 平8−96848(JP,A) 特開 平9−92329(JP,A) 特開 平9−147910(JP,A) 特開 平9−306542(JP,A) 特開 平10−92221(JP,A) 特開 平10−92222(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/40

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 有機溶媒に溶質としてリチウム塩を溶解
    した非水系電池用電解液であって、 前記有機溶媒に下記の化1の一般式で表されるエステル
    誘導体が含有されていることを特徴とする非水系電池用
    電解液。 【化1】 ただし、上記化1に示したR1 はビフェニリル基を示
    し、R2は炭素数1〜6のアルキル基、フェニル基、ベ
    ンジル基を示す。
  2. 【請求項2】 前記エステル誘導体は、4−ビフェニリ
    ルアセテート、4−ビフェニリルベンゾエート、4−ビ
    フェニリルベンジルカルボキシレートあるいは2−ビフ
    ェニリルプロピオネートから選択した少なくとも1種を
    備えていることを特徴とする請求項1に記載の非水系電
    池用電解液。
  3. 【請求項3】 リチウム含有金属酸化物を正極活物質と
    する正極と炭素を負極活物質とする負極とをセパレータ
    を介して積層して構成された電極体を電池容器内に備え
    るとともに、有機溶媒に溶質としてリチウム塩を溶解し
    た電解液を備えた非水系二次電池であって、 前記電解液に下記の化2の一般式で表されるエステル誘
    導体が含有されていることを特徴とする非水系二次電
    池。 【化2】 ただし、上記化2に示したR1 はビフェニリル基を示
    し、R2は炭素数1〜6のアルキル基、フェニル基、ベ
    ンジル基を示す。
  4. 【請求項4】 前記エステル誘導体は、4−ビフェニリ
    ルアセテート、4−ビフェニリルベンゾエート、4−ビ
    フェニリルベンジルカルボキシレートあるいは2−ビフ
    ェニリルプロピオネートから選択した少なくとも1種を
    備えていることを特徴とする請求項3に記載の非水系二
    次電池。
JP10217953A 1998-07-31 1998-07-31 非水系電池用電解液およびこの電解液を用いた二次電池 Expired - Lifetime JP2963898B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217953A JP2963898B1 (ja) 1998-07-31 1998-07-31 非水系電池用電解液およびこの電解液を用いた二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217953A JP2963898B1 (ja) 1998-07-31 1998-07-31 非水系電池用電解液およびこの電解液を用いた二次電池

Publications (2)

Publication Number Publication Date
JP2963898B1 true JP2963898B1 (ja) 1999-10-18
JP2000058112A JP2000058112A (ja) 2000-02-25

Family

ID=16712313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217953A Expired - Lifetime JP2963898B1 (ja) 1998-07-31 1998-07-31 非水系電池用電解液およびこの電解液を用いた二次電池

Country Status (1)

Country Link
JP (1) JP2963898B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (ja) 2014-01-22 2015-07-30 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402233B2 (ja) * 1998-12-28 2003-05-06 日本電池株式会社 非水電解質二次電池
JP4940501B2 (ja) * 2001-03-21 2012-05-30 パナソニック株式会社 非水電解質二次電池
KR100417084B1 (ko) * 2001-05-08 2004-02-05 주식회사 엘지화학 새로운 전해액 첨가제와 이를 이용하는 리튬 이온 전지
JP3512021B2 (ja) 2001-05-15 2004-03-29 株式会社日立製作所 リチウム二次電池
CN1316671C (zh) * 2001-05-22 2007-05-16 Lg化学株式会社 用于改进安全的非水电解液添加剂和包括该添加剂的锂离子二次电池
JP2004063432A (ja) * 2002-06-05 2004-02-26 Sony Corp 電池
CN100438198C (zh) 2004-12-31 2008-11-26 比亚迪股份有限公司 一种混合添加剂以及含该添加剂的电解液和锂离子二次电池
JP5433529B2 (ja) * 2010-08-25 2014-03-05 株式会社日立製作所 リチウムイオン二次電池
JP2014192153A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp 非水二次電池用電解液、非水二次電池及び非水電解液用添加剤
US10388992B2 (en) * 2014-04-17 2019-08-20 Gotion Inc. Alkylbenzoate derivatives as electrolyte additive for lithium based batteries
US20170373348A1 (en) * 2014-12-24 2017-12-28 Ube Industries, Ltd Nonaqueous electrolytic solution and energy storage device using the same
JP6759847B2 (ja) * 2016-08-19 2020-09-23 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (ja) 2014-01-22 2015-07-30 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
KR20160107262A (ko) 2014-01-22 2016-09-13 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
US10177414B2 (en) 2014-01-22 2019-01-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same
US10777850B2 (en) 2014-01-22 2020-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2000058112A (ja) 2000-02-25

Similar Documents

Publication Publication Date Title
JP2983205B1 (ja) 非水系二次電池
JP3113652B1 (ja) リチウム二次電池
JP2939469B1 (ja) 非水系電池用電解液およびこの電解液を用いた二次電池
JP3080609B2 (ja) 非水系電池用電解液およびこの電解液を用いた二次電池
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP3797197B2 (ja) 非水電解質二次電池
US5766791A (en) Sealed nonaqueous secondary battery
JP4236308B2 (ja) リチウムイオン電池
JP2004327445A (ja) リチウム電池用電解質およびこれを含むリチウム電池
JP2963898B1 (ja) 非水系電池用電解液およびこの電解液を用いた二次電池
JP2010086722A (ja) 非水電解質電池
JP4595205B2 (ja) 非水電解質二次電池
JP4474844B2 (ja) 電解液およびそれを用いた電池
JP2939468B1 (ja) 非水系電池用電解液およびこの電解液を用いた二次電池
JP2928779B1 (ja) 非水系電池用電解液およびこの電解液を用いた二次電池
JP2001015156A (ja) 非水電解質電池
JP5205863B2 (ja) 非水電解液二次電池
JP2000348759A (ja) 非水電解液およびそれを用いた二次電池
JP2000149996A (ja) 非水電解液二次電池の製造方法
JP2000188132A (ja) 非水電解質二次電池
JP2007109612A (ja) 非水電解質二次電池
JP3448494B2 (ja) 非水電解質二次電池
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4115006B2 (ja) リチウムイオン電池
JP4938923B2 (ja) 二次電池

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term