JP2963898B1 - Electrolyte for non-aqueous battery and secondary battery using this electrolyte - Google Patents

Electrolyte for non-aqueous battery and secondary battery using this electrolyte

Info

Publication number
JP2963898B1
JP2963898B1 JP10217953A JP21795398A JP2963898B1 JP 2963898 B1 JP2963898 B1 JP 2963898B1 JP 10217953 A JP10217953 A JP 10217953A JP 21795398 A JP21795398 A JP 21795398A JP 2963898 B1 JP2963898 B1 JP 2963898B1
Authority
JP
Japan
Prior art keywords
electrolyte
battery
biphenylyl
weight
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10217953A
Other languages
Japanese (ja)
Other versions
JP2000058112A (en
Inventor
昌利 高橋
尚範 山口
浩司 安部
明 植木
勉 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Ube Corp
Original Assignee
Ube Industries Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Sanyo Denki Co Ltd filed Critical Ube Industries Ltd
Priority to JP10217953A priority Critical patent/JP2963898B1/en
Application granted granted Critical
Publication of JP2963898B1 publication Critical patent/JP2963898B1/en
Publication of JP2000058112A publication Critical patent/JP2000058112A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【要約】 【課題】 電解液に添加しても低温特性や保存特性など
の電池特性に悪影響を及ぼさなく、かつ過充電に対して
は有効に作用する添加剤を用いて電池の安全性を確保で
きるようにする。 【解決手段】 有機溶媒に溶質としてリチウム塩を溶解
した電解液に下記の化10の一般式で表されるエステル
誘導体が含有されている。ただし、化10に示したR1
はフェニル基、ビフェニリル基を示し、R2は炭素数1
〜6のアルキル基、フェニル基を示す。 【化10】
Abstract: PROBLEM TO BE SOLVED: To ensure the safety of a battery by using an additive that does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics even when added to an electrolyte solution and that effectively acts against overcharging. It can be so. SOLUTION: An electrolytic solution obtained by dissolving a lithium salt as a solute in an organic solvent contains an ester derivative represented by the following general formula. However, R 1 shown in Chemical formula 10
Represents a phenyl group or a biphenylyl group, and R 2 has 1 carbon atom.
To 6 alkyl groups and phenyl groups. Embedded image

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機溶媒に溶質とし
てリチウム塩を溶解した非水系電池用電解液およびこの
電解液を用いた非水系二次電池に係り、特に、過充電し
ても安全性が確保できる電解液およびこの電解液を用い
た非水系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a non-aqueous battery in which a lithium salt is dissolved as a solute in an organic solvent and a non-aqueous secondary battery using the electrolyte. And a non-aqueous secondary battery using the electrolyte.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、軽量化はめざ
ましく、それに伴い、電源となる電池に対しても小型軽
量化の要望が非常に大きい。一次電池の分野では既にリ
チウム電池等の小型軽量電池が実用化されているが、こ
れらは一次電池であるが故に繰り返し使用できず、その
用途は限られたものであった。一方、二次電池の分野で
は従来より鉛蓄電池、ニッケル−カドミウム蓄電池、ニ
ッケル−水素蓄電池等が用いられてきたが、これらは小
型軽量化という点で大きな問題点を有している。
2. Description of the Related Art In recent years, there has been a remarkable reduction in the size and weight of electronic devices, and accordingly, there has been a great demand for smaller and lighter batteries that serve as power supplies. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put to practical use, but since these are primary batteries, they cannot be used repeatedly, and their uses have been limited. On the other hand, in the field of secondary batteries, lead storage batteries, nickel-cadmium storage batteries, nickel-hydrogen storage batteries, and the like have been conventionally used, but these have major problems in terms of size and weight reduction.

【0003】そこで、小型軽量でかつ高容量で充放電可
能な電池としてリチウムイオン電池が実用化されるよう
になり、小型ビデオカメラ、携帯電話、ノートパソコン
等の携帯用電子・通信機器等に用いられるようになっ
た。この種のリチウムイオン電池は、負極活物質として
リチウムイオンを吸蔵・脱離し得るカーボン系材料を用
い、正極活物質として、LiCoO2,LiNiO2,L
iMn24,LiFeO2等のリチウム含有遷移金属酸
化物を用い、有機溶媒に溶質としてリチウム塩を溶解し
た電解液を用い、電池として組み立てた後、初回の充電
により正極活物質から出たリチウムイオンがカーボン粒
子内に入って充放電可能となる電池である。
Therefore, lithium-ion batteries have come into practical use as small, lightweight, high-capacity, chargeable / dischargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook personal computers. Is now available. This type of lithium ion battery uses a carbon-based material capable of inserting and extracting lithium ions as a negative electrode active material, and uses LiCoO 2 , LiNiO 2 , L as a positive electrode active material.
using IMN 2 O 4, LiFeO lithium-containing transition metal oxides such as 2, lithium using an electrolyte prepared by dissolving lithium salt as a solute in an organic solvent, after assembling a battery, exiting from the positive electrode active material by the first charging This is a battery in which ions can be charged and discharged by entering carbon particles.

【0004】このようなリチウムイオン電池にあって
は、過充電を行うと、過充電状態になるに伴い、正極か
らは過剰なリチウムが抽出され、負極ではリチウムの過
剰な挿入が生じて、正・負極の両極が熱的に不安定化す
る。正・負極の両極が熱的に不安定になると、やがては
電解液の有機溶媒を分解するように作用し、急激な発熱
反応が生じて、電池が異常に発熱するという事態を生
じ、電池の安全性が損なわれるという問題を生じた。こ
のような状況は、リチウムイオン電池のエネルギー密度
が増加するほど重要な問題となる。
[0004] In such a lithium ion battery, when overcharging is performed, excess lithium is extracted from the positive electrode as the overcharged state occurs, and excessive insertion of lithium occurs in the negative electrode, resulting in a positive charge. -Both electrodes of the negative electrode become thermally unstable. If both the positive and negative electrodes become thermally unstable, they will eventually act to decompose the organic solvent in the electrolytic solution, causing a rapid exothermic reaction and causing the battery to generate abnormal heat. There was a problem that safety was impaired. Such a situation becomes more important as the energy density of the lithium ion battery increases.

【0005】このような問題を解決するため、電解液中
に添加剤として少量の芳香族化合物を添加することによ
って、過充電に対して安全性を確保できるようにしたも
のが、例えば、特開平7−302614号公報、特開平
9−50822号公報において提案された。この特開平
7−302614号公報、特開平9−50822号公報
において提案されたものにあっては、負極に炭素材料を
用い、電解液の添加剤として、分子量500以下で満充
電時の正極電位よりも貴な電位に可逆性酸化還元電位を
有するようなπ電子軌道をもつアニソール誘導体などの
芳香族化合物を使用するようにしている。このような芳
香族化合物は、過充電時に過充電を消費することで電池
が保護される。
In order to solve such a problem, a technique has been proposed in which a small amount of an aromatic compound is added as an additive to an electrolytic solution to ensure safety against overcharging. It has been proposed in JP-A-7-302614 and JP-A-9-50822. In those proposed in JP-A-7-302614 and JP-A-9-50822, a carbon material is used for a negative electrode, and as an additive of an electrolytic solution, a positive electrode potential at full charge with a molecular weight of 500 or less is used. An aromatic compound such as an anisole derivative having a π-electron orbit that has a reversible oxidation-reduction potential at a more noble potential is used. Such an aromatic compound protects the battery by consuming the overcharge at the time of overcharge.

【0006】また、電解液中に添加剤を添加することに
よって、過充電に対して安全性を確保できるようにした
ものが、例えば、特開平9−106835号公報におい
て提案された。この特開平9−106835号公報にお
いて提案されたものにあっては、負極に炭素材料を用
い、電解液の添加剤として、電池の最大動作電圧以上の
電池電圧で重合することによって、電池の内部電圧を高
くし、過充電時に電池を保護することができるようにし
ている。
[0006] In addition, Japanese Patent Application Laid-Open No. 9-106835 has proposed a device capable of ensuring safety against overcharging by adding an additive to an electrolytic solution. In the method proposed in Japanese Patent Application Laid-Open No. 9-106835, a carbon material is used for a negative electrode, and as an additive for an electrolytic solution, polymerization is performed at a battery voltage equal to or higher than the maximum operating voltage of the battery. The voltage is increased so that the battery can be protected during overcharge.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
7−302614号公報、特開平9−50822号公報
において提案されたものにあっては、アニソール誘導体
は過充電に対しては有効に作用するのに対して、サイク
ル特性や保存特性などの電池特性に悪影響を及ぼすとい
う問題を生じた。また、芳香族化合物は4.5V程度の
電位で酸化分解されて、ガスを発生するとともに、重合
物を形成することにより、過充電を消費して電池を保護
する反面、電解液組成によっては、その重合物が溶解し
て過充電を消費できない場合も生じる。結局、π電子軌
道をもつアニソール誘導体などの芳香族化合物は必ずし
も過充電を抑制するとはいえないものである。
However, in those proposed in Japanese Patent Application Laid-Open Nos. 7-302614 and 9-50822, the anisole derivative effectively acts on overcharging. However, there is a problem that the battery characteristics such as cycle characteristics and storage characteristics are adversely affected. Further, the aromatic compound is oxidatively decomposed at a potential of about 4.5 V to generate gas and form a polymer, thereby consuming the overcharge and protecting the battery, but depending on the electrolyte composition, In some cases, the polymer dissolves and the overcharge cannot be consumed. As a result, aromatic compounds such as anisole derivatives having a π-electron orbit cannot always be said to suppress overcharge.

【0008】一方、特開平9−106835号公報にお
いて提案されたものにあっては、電解液の添加剤として
使用するビフェニルは、極性が低く、かつ電解液に対す
る溶解性が低いため、低温作動時に添加剤が一部析出し
て電池特性の低下を惹起するという問題を生じた。ま
た、3−クロロ−チオフェンは刺激性があり、しかも悪
臭が強くて取り扱いが難しく、さらに酸化分解されやす
いという問題点があり、フランも酸化分解されやすく、
いずれの化合物も電池特性に悪影響を及ぼすという問題
点がある。
On the other hand, in the method proposed in Japanese Patent Application Laid-Open No. 9-106835, biphenyl used as an additive for the electrolyte has low polarity and low solubility in the electrolyte. There has been a problem that the additives are partially deposited to cause deterioration of battery characteristics. In addition, 3-chloro-thiophene is irritating, has a strong odor, is difficult to handle, and has a problem that it is easily decomposed by oxidation. Furan is also easily decomposed by oxidation,
All of these compounds have a problem that they adversely affect battery characteristics.

【0009】そこで、本発明は上記問題点に鑑みてなさ
れたものであり、電解液に添加しても低温特性や保存特
性などの電池特性に悪影響を及ぼさなく、かつ過充電に
対しては有効に作用する添加剤を用いて電池の安全性を
確保できるようにすることを目的とするものである。
Accordingly, the present invention has been made in view of the above problems, and does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics even when added to an electrolytic solution, and is effective against overcharging. It is an object of the present invention to ensure the safety of a battery by using an additive that acts on the battery.

【0010】[0010]

【課題を解決するための手段およびその作用・効果】こ
のため、本発明の非水系電池用電解液においては、有機
溶媒に下記の化3の一般式で表されるエステル誘導体が
含有されていることを特徴とする。ただし、化3に示し
たR1 はビフェニリル基を示し、R2は炭素数1〜6のア
ルキル基、フェニル基、ベンジル基を示す。
Means for Solving the Problems and Actions and Effects Therefor, in the electrolyte for a non-aqueous battery of the present invention, the organic solvent contains an ester derivative represented by the following general formula (3). It is characterized by the following. However, R 1 indicated in Chemical Formula 3 represents a bi Feniriru group, R 2 represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group.

【0011】[0011]

【化3】 Embedded image

【0012】上記化3の一般式で表されるエステル誘導
体は、電解液中の有機溶媒との親和性が良いため、低温
特性や保存特性などの電池特性に悪影響を及ぼすことは
ない。このため、上記化3の一般式で表されるエステル
誘導体が含有された電解液は電池性能を劣化させること
がない。また、エステル誘導体が重合反応して生成され
た重合物は、電解液中で再溶解が起こりにくい物質であ
るため、過充電に対しても有効に作用する。このため、
上記化3の一般式で表されるエステル誘導体が含有され
た電解液を用いることにより、電池の安全性が確保でき
るようになる。
Since the ester derivative represented by the general formula (3) has a good affinity for an organic solvent in an electrolytic solution, it does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics. For this reason, the electrolytic solution containing the ester derivative represented by the general formula 3 does not deteriorate the battery performance. Further, a polymer produced by the polymerization reaction of the ester derivative is a substance that is unlikely to be redissolved in the electrolytic solution, and thus effectively acts on overcharging. For this reason,
The use of the electrolytic solution containing the ester derivative represented by the general formula (3) above can ensure the safety of the battery.

【0013】そして、上記のエステル誘導体としては、
4−ビフェニリルアセテート、4−ビフェニリルベンゾ
エート、4−ビフェニリルベンジルカルボキシレートあ
るいは2−ビフェニリルプロピオネートから選択した少
なくとも1種を備えるようにすることが好ましい。
[0013] The above ester derivatives include:
4- biphenylyl acetate tape bets, 4 - biphenylyl benzoate, 4-biphenylyl benzylcarboxy it is preferable to include a rate or at least one selected from 2-biphenylyl propionate.

【0014】また、本発明は、リチウム含有金属酸化物
を正極活物質とする正極と炭素を負極活物質とする負極
とをセパレータを介して積層して構成した電極体を電池
容器内に備えるとともに、有機溶媒に溶質としてリチウ
ム塩を溶解した電解液を備えた非水系二次電池であっ
て、電解液に下記の化4の一般式で表されるエステル誘
導体が含有されていることを特徴とする。ただし、化4
に示したR1 はビフェニリル基を示し、R2は炭素数1〜
6のアルキル基、フェニル基、ベンジル基を示す。
Further, according to the present invention, a battery container is provided with an electrode body formed by laminating a positive electrode using a lithium-containing metal oxide as a positive electrode active material and a negative electrode using carbon as a negative electrode active material via a separator. A non-aqueous secondary battery provided with an electrolyte in which a lithium salt is dissolved as a solute in an organic solvent, wherein the electrolyte contains an ester derivative represented by the following general formula (4). I do. However,
R 1 shown in represents a bi Feniriru group, R 2 is 1 to the number of carbon atoms
6 represents an alkyl group, a phenyl group, and a benzyl group.

【0015】[0015]

【化4】 Embedded image

【0016】上記化4の一般式で表されるエステル誘導
体は電解液中の有機溶媒との親和性が良いため、このよ
うなエステル誘導体をリチウム塩とともに有機溶媒中に
添加された電解液を用いると、低温特性や保存特性など
の電池特性に悪影響を及ぼすことはない。
Since the ester derivative represented by the general formula (4) has a good affinity for the organic solvent in the electrolytic solution, an electrolytic solution in which such an ester derivative is added to the organic solvent together with the lithium salt is used. It does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics.

【0017】また、これらの添加剤は電池電圧が過充電
状態の電圧に達すると、分解反応を開始してガスを発生
するようになるとともに重合反応を開始して重合物が生
成される。この重合物は抵抗体として作用するととも
に、この重合物は電解液中で再溶解が起こりにくい物質
であるため、過充電に対しては有効に作用する。結局、
このようなエステル誘導体をリチウム塩とともに有機溶
媒中に添加された電解液を用いると、低温特性や保存特
性などの電池特性に悪影響を及ぼすことなく、即ち、電
池性能を劣化させることなく電池の安全性を確保できる
ようになる。
When the battery voltage reaches an overcharged voltage, these additives start a decomposition reaction to generate gas and start a polymerization reaction to produce a polymer. This polymer acts as a resistor, and since this polymer is a substance that is unlikely to be redissolved in the electrolytic solution, it effectively acts on overcharging. After all,
The use of an electrolyte solution in which such an ester derivative is added to an organic solvent together with a lithium salt does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics, that is, does not degrade battery performance, and thus, the safety of batteries can be improved. Nature can be secured.

【0018】[0018]

【発明の実施の形態】以下に、本発明のリチウムイオン
電池の一実施形態を図1および図2に基づいて説明す
る。なお、図1は本発明の電解液を備えた一実施形態の
リチウムイオン電池のセパレータを介して重ね合わせた
正・負極板を卷回して外装缶内に収納した状態を示す断
面図であり、図2は外装缶の開口部に装着される電流遮
断封口体を示す一部破断図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the lithium ion battery of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view showing a state in which positive and negative electrodes stacked on each other via a separator of the lithium ion battery of one embodiment including the electrolytic solution of the present invention are wound and housed in an outer can. FIG. 2 is a partially cutaway view showing the current blocking sealing body attached to the opening of the outer can.

【0019】1.負極板の作製 天然黒鉛(d=3.36 )よりなる負極活物質とポリ
ビニリデンフルオライド(PVDF)よりなる結着剤等
とを、N−メチルピロリドンからなる有機溶剤等に溶解
したものを混合して、スラリーあるいはペーストとす
る。これらのスラリーあるいはペーストを、スラリーの
場合はダイコーター、ドクターブレード等を用いて、ペ
ーストの場合はローラコーティング法等により金属芯体
(例えば、厚みが20μmの銅箔)の両面の全面にわた
って均一に塗布して、活物質層を塗布した負極板を形成
する。
1. Preparation of Negative Electrode Plate A negative active material made of natural graphite (d = 3.36) and a binder made of polyvinylidene fluoride (PVDF) dissolved in an organic solvent made of N-methylpyrrolidone are mixed. Then, a slurry or a paste is obtained. These slurries or pastes are uniformly spread over both surfaces of a metal core (for example, a copper foil having a thickness of 20 μm) by a die coater, a doctor blade or the like in the case of a slurry, or by a roller coating method in the case of a paste. By coating, a negative electrode plate coated with the active material layer is formed.

【0020】この後、活物質層を塗布した負極板を乾燥
機中を通過させて、スラリーあるいはペースト作製に必
要であった有機溶剤を除去して乾燥させる。この後、こ
の乾燥負極板をロールプレス機により圧延して、厚みが
0.14mmの負極板10とする。
Thereafter, the negative electrode plate coated with the active material layer is passed through a drier to remove an organic solvent necessary for preparing a slurry or a paste, followed by drying. Thereafter, the dried negative electrode plate is rolled by a roll press to obtain a negative electrode plate 10 having a thickness of 0.14 mm.

【0021】2.正極板の作製 一方、LiCoO2からなる正極活物質と、アセチレン
ブラック、グラファイト等の炭素系導電剤と、ポリビニ
リデンフルオライド(PVDF)よりなる結着剤等と
を、N−メチルピロリドンからなる有機溶剤等に溶解し
たものを混合して、スラリーあるいはペーストとする。
2. Preparation of Positive Electrode On the other hand, a positive electrode active material made of LiCoO 2 , a carbon-based conductive agent such as acetylene black and graphite, a binder made of polyvinylidene fluoride (PVDF), and the like are combined with an organic material made of N-methylpyrrolidone. A solution dissolved in a solvent or the like is mixed to form a slurry or paste.

【0022】これらのスラリーあるいはペーストを、ス
ラリーの場合はダイコーター、ドクターブレード等を用
いて、ペーストの場合はローラコーティング法等により
金属芯体(例えば、厚みが20μmのアルミニウム箔)
の両面に均一に塗布して、活物質層を塗布した正極板を
形成する。この後、活物質層を塗布した正極板を乾燥機
中を通過させて、スラリーあるいはペースト作製に必要
であった有機溶剤を除去して乾燥させる。乾燥後、この
乾燥正極板をロールプレス機により圧延して、厚みが
0.17mmの正極板20とする。
A metal core (for example, an aluminum foil having a thickness of 20 μm) is prepared by using a slurry such as a die coater or a doctor blade in the case of a slurry, or a roller coating method in the case of a paste.
To form a positive electrode plate coated with an active material layer. Thereafter, the positive electrode plate coated with the active material layer is passed through a drier to remove an organic solvent necessary for preparing a slurry or a paste, followed by drying. After drying, the dried positive electrode plate is rolled by a roll press to form a positive electrode plate 20 having a thickness of 0.17 mm.

【0023】3.電極体の作製 上述のようにして作製した負極板10と正極板20と
を、有機溶媒との反応性が低く、かつ安価なポリオレフ
ィン系樹脂からなる微多孔膜、好適にはポリエチレン製
微多孔膜(例えば、厚みが0.025mm)30を間に
し、かつ、各極板10,20の幅方向の中心線を一致さ
せて重ね合わせる。この後、図示しない巻き取り機によ
り卷回する。この後、最外周をテープ止めして渦巻状電
極体とする。角形電池の場合は、プレス機で角形外装缶
に挿入できるような形に成形して電極体とする。
3. Production of Electrode Body The negative electrode plate 10 and the positive electrode plate 20 produced as described above were prepared by forming a microporous film made of an inexpensive polyolefin resin having low reactivity with an organic solvent, preferably a polyethylene microporous film. (For example, the thickness is 0.025 mm), and the electrode plates 10 and 20 are overlapped with their center lines in the width direction coincided with each other. Thereafter, it is wound by a winder (not shown). Thereafter, the outermost periphery is taped to form a spiral electrode body. In the case of a prismatic battery, it is formed into a shape that can be inserted into a prismatic outer can with a press machine to form an electrode body.

【0024】4.電解液の調整 実施例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化5の構造式で表される4−ビフェニリルアセテー
トを2重量%添加混合して作製した電解液aを実施例1
の電解液とする。
4. Preparation of Electrolyte Example 1 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC)
Example 1 was prepared by adding and mixing 1M LiPF 6 as an electrolyte salt and further adding and mixing 2% by weight of 4-biphenylyl acetate represented by the following structural formula.
Electrolyte solution.

【0025】[0025]

【化5】 Embedded image

【0026】参考例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化6の構造式で表されるフェニルプロピオネートを
2重量%添加混合して作製した電解液bを参考例1の電
解液とする。
Reference Example 1 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC)
An electrolyte b prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt and further adding and mixing 2% by weight of phenylpropionate represented by the following structural formula 6 is used as an electrolyte of Reference Example 1 .

【0027】[0027]

【化6】 Embedded image

【0028】実施例2 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化7の構造式で表される4−ビフェニリルベンゾエ
ートを2重量%添加混合して作製した電解液cを実施例
の電解液とする。
Example 2 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
Example 1 was prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt, and further adding and mixing 2 wt% of 4-biphenylylbenzoate represented by the following structural formula.
2 electrolyte solution.

【0029】[0029]

【化7】 Embedded image

【0030】実施例3 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化8の構造式で表される4−ビフェニリルベンジル
カルボキシレートを2重量%添加混合して作製した電解
液dを実施例3の電解液とする。
Example 3 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
An electrolyte d prepared by adding and mixing 1M LiPF 6 as an electrolyte salt and further adding and mixing 2% by weight of 4-biphenylylbenzylcarboxylate represented by the following structural formula was mixed with the electrolyte of Example 3. I do.

【0031】[0031]

【化8】 Embedded image

【0032】実施例4 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに下
記の化9の構造式で表される2−ビフェニリルプロピオ
ネートを2重量%添加混合して作製した電解液eを実施
例4の電解液とする。
Example 4 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
Adding and mixing 1M LiPF 6 as an electrolyte salt, further implementing the electrolyte e a 2-biphenylyl propionate represented by the structural formula was prepared by adding and mixing 2 weight% of the formula 9 below
The electrolyte of Example 4 was used.

【0033】[0033]

【化9】 Embedded image

【0034】実施例5 エチレンカーボネート(EC)40重量部とジメチルカ
ーボネート(DMC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を2重量%添加混合して作製した電解液fを実施例5
電解液とする。
Example 5 In a mixed solvent comprising 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of dimethyl carbonate (DMC),
An electrolyte f prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt, and further adding and mixing 2 wt% of 4-biphenylyl acetate represented by the structural formula of the above formula (5) is used as an electrolyte of Example 5 .

【0035】実施例6 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化5の構造式で表される4−ビフェニリルアセテ
ートを2重量%添加混合して作製した電解液gを実施例
の電解液とする。
Example 6 1 M LiPF 6 as an electrolyte salt was added to a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of methyl ethyl carbonate (MEC), and the mixture was further mixed. An electrolyte g prepared by adding and mixing 2% by weight of 4-biphenylyl acetate was used as an example.
6 as the electrolytic solution.

【0036】実施例7 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)30重量部とジメチルカーボネー
ト(DMC)30重量部よりなる混合溶媒に、電解質塩
として1MLiPF6を添加混合し、さらに上記化5の
構造式で表される4−ビフェニリルアセテートを2重量
%添加混合して作製した電解液hを実施例7の電解液と
する。
Example 7 1 M LiPF 6 as an electrolyte salt was added to a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC), 30 parts by weight of diethyl carbonate (DEC) and 30 parts by weight of dimethyl carbonate (DMC) and mixed. An electrolytic solution h prepared by adding and mixing 2 wt% of 4-biphenylyl acetate represented by the structural formula of Chemical Formula 5 is used as an electrolytic solution of Example 7 .

【0037】実施例8 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として0.5MLiPF6と0.5MLiBF4
を添加混合し、さらに上記化5の構造式で表される4−
ビフェニリルアセテートを2重量%添加混合して作製し
た電解液iを実施例8の電解液とする。
Example 8 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC) was
0.5 M LiPF 6 and 0.5 M LiBF 4 as electrolyte salts
Is added and mixed, and furthermore, 4-
An electrolyte i prepared by adding and mixing 2% by weight of biphenylyl acetate is used as an electrolyte of Example 8 .

【0038】比較例1 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合して作製した
電解液jを比較例1の電解液とする。
Comparative Example 1 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC) was
An electrolyte j prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt is used as an electrolyte of Comparative Example 1.

【0039】比較例2 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらにビ
フェニルを2重量%添加混合して作製した電解液kを比
較例2の電解液とする。
Comparative Example 2 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC) was
An electrolyte k prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt and further adding and mixing 2% by weight of biphenyl is used as an electrolyte of Comparative Example 2.

【0040】比較例3 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに4
−クロロアニソールを2重量%添加混合して作製した電
解液lを比較例3の電解液とする。
Comparative Example 3 A mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC)
1M LiPF 6 was added and mixed as an electrolyte salt.
-An electrolyte 1 prepared by adding and mixing 2% by weight of chloroanisole is used as an electrolyte of Comparative Example 3.

【0041】5.リチウムイオン電池の作製 ついで、図1に示すように、上述のようにして作製した
電極体の上下にそれぞれ絶縁板41を配置した後、1枚
板からプレス加工により円筒状に成形した負極端子を兼
ねるスチール製の外装缶40の開口部より、この電極体
を挿入する。ついで、電極体の負極板10より延出する
負極集電タブ10aを外装缶40の内底部に溶接すると
ともに、電極体の正極板20より延出する正極集電タブ
20aを電流遮断封口体50の底板54の底部に溶接す
る。
5. Production of Lithium Ion Battery Next, as shown in FIG. 1, insulating plates 41 were arranged above and below the electrode body produced as described above, and then a negative electrode terminal formed into a cylindrical shape by pressing from one sheet was formed. This electrode body is inserted through the opening of the steel outer can 40 also serving as the outer case. Next, the negative electrode current collecting tab 10a extending from the negative electrode plate 10 of the electrode body is welded to the inner bottom portion of the outer can 40, and the positive current collecting tab 20a extending from the positive electrode plate 20 of the electrode body is connected to the current blocking sealing body 50. Is welded to the bottom of the bottom plate 54.

【0042】なお、電流遮断封口体50は、図2に示す
ように、逆皿状(キャップ状)に形成されたステンレス
製の正極キャップ51と、皿状に形成されたステンレス
製の底板54とから構成される。正極キャップ51は、
電池外部に向けて膨出する凸部52と、この凸部52の
底辺部を構成する平板状のフランジ部53とからなり、
凸部52の角部には複数のガス抜き孔52aを設けてい
る。一方、底板54は、電池内部に向けて膨出する凹部
55と、この凹部55の底辺部を構成する平板状のフラ
ンジ部56とからなる。凹部55の角部にはガス抜き孔
55aが設けられている。
As shown in FIG. 2, the current blocking sealing body 50 includes a stainless steel positive electrode cap 51 formed in an inverted dish shape (cap shape) and a stainless steel bottom plate 54 formed in a dish shape. Consists of The positive electrode cap 51
A convex portion 52 swelling toward the outside of the battery, and a flat flange portion 53 forming a bottom portion of the convex portion 52;
A plurality of gas vent holes 52a are provided at the corners of the convex portion 52. On the other hand, the bottom plate 54 includes a concave portion 55 that swells toward the inside of the battery, and a flat flange portion 56 that forms the bottom of the concave portion 55. A gas vent hole 55a is provided at a corner of the concave portion 55.

【0043】これらの正極キャップ51と底板54との
内部には、電池内部のガス圧が上昇して所定の圧力以上
になると変形する電力導出板57が収容されている。こ
の電力導出板57は凹部57aとフランジ部57bとか
らなり、例えば、厚みが0.2mmで表面の凹凸が0.
005mmのアルミニウム箔から構成される。凹部57
aの最低部は底板54の凹部55の上表面に接触して配
設されており、フランジ部57bは正極キャップ51の
フランジ部53と底板54のフランジ部56との間に狭
持される。なお、正極キャップ51と底板54とはポリ
プロピレン(PP)製の封口体用絶縁ガスケット59に
より液密に封口されている。
Inside the positive electrode cap 51 and the bottom plate 54, an electric power lead-out plate 57 which is deformed when the gas pressure inside the battery rises and exceeds a predetermined pressure is accommodated. The power lead-out plate 57 is composed of a concave portion 57a and a flange portion 57b.
It is composed of 005 mm aluminum foil. Recess 57
The lowest portion of a is disposed in contact with the upper surface of the concave portion 55 of the bottom plate 54, and the flange portion 57b is sandwiched between the flange portion 53 of the positive electrode cap 51 and the flange portion 56 of the bottom plate 54. In addition, the positive electrode cap 51 and the bottom plate 54 are liquid-tightly sealed by a sealing body insulating gasket 59 made of polypropylene (PP).

【0044】フランジ部57bの上部の一部には、PT
C(Positive Temperature Coefficient)サーミスタ素
子58が配設され、電池内に過電流が流れて異常な発熱
現象を生じると、このPTCサーミスタ素子58の抵抗
値が増大して過電流を減少させる。そして、電池内部の
ガス圧が上昇して所定の圧力以上になると電力導出板5
7の凹部57aは変形するため、電力導出板57と底板
54の凹部55との接触が遮断されて過電流あるいは短
絡電流が遮断されるようになる。
The upper part of the flange portion 57b has a PT
A C (Positive Temperature Coefficient) thermistor element 58 is provided, and when an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the resistance value of the PTC thermistor element 58 increases to reduce the overcurrent. When the gas pressure inside the battery rises to a predetermined pressure or more, the power outlet plate 5
Since the concave portion 57a of the base 7 is deformed, the contact between the power lead-out plate 57 and the concave portion 55 of the bottom plate 54 is cut off, so that overcurrent or short-circuit current is cut off.

【0045】ついで、外装缶40の開口部に上述した電
解液a〜lをそれぞれ注入した後、外装缶40の開口部
にポリプロピレン(PP)製の外装缶用絶縁ガスケット
42を介して電流遮断封口体50を載置し、外装缶40
の開口部の上端部を電流遮断封口体50側にカシメて液
密に封口して、12種類の円筒形のリチウムイオン電池
をそれぞれ作成する。このようにして作製した各リチウ
ムイオン電池A〜Lの公称容量は1350mAhとな
る。
Then, after the above-mentioned electrolyte solutions a to l are respectively injected into the opening of the outer can 40, the current interrupting sealing is carried out through the outer can insulating gasket 42 made of polypropylene (PP) into the opening of the outer can 40. The body 50 is placed and the outer can 40
The upper end of the opening is crimped to the current blocking sealing body 50 side and sealed in a liquid-tight manner to produce 12 types of cylindrical lithium ion batteries. The nominal capacity of each of the lithium ion batteries A to L thus produced is 1350 mAh.

【0046】なお、電池Aは実施例1の電解液aを注入
したものであり、電池Bは実施例2の電解液bを注入し
たものであり、電池Cは実施例3の電解液cを注入した
ものであり、電池Dは実施例4の電解液dを注入したも
のであり、電池Eは実施例5の電解液eを注入したもの
であり、電池Fは実施例6の電解液fを注入したもので
あり、電池Gは実施例7の電解液gを注入したものであ
り、電池Hは実施例8の電解液hを注入したものであ
り、電池Iは実施例9の電解液iを注入したものであ
り、電池Jは比較例1の電解液jを注入したものであ
り、電池Kは比較例2の電解液kを注入したものであ
り、電池Lは比較例3の電解液lを注入したものであ
る。
The battery A was prepared by injecting the electrolyte a of Example 1, the battery B was obtained by injecting the electrolyte b of Example 2, and the battery C was prepared by injecting the electrolyte c of Example 3. The battery D was the one injected with the electrolyte d of the fourth embodiment, the battery E was the one injected with the electrolyte e of the fifth embodiment, and the battery F was the electrolyte f of the sixth embodiment. , The battery G was injected with the electrolyte g of Example 7, the battery H was injected with the electrolyte h of Example 8, and the battery I was injected with the electrolyte h of Example 9. i, the battery J was injected with the electrolyte j of Comparative Example 1, the battery K was injected with the electrolyte k of Comparative Example 2, and the battery L was the electrolyte of Comparative Example 3. Liquid 1 was injected.

【0047】6.試験 a.過充電試験 上述のように作製した12種類の各リチウムイオン電池
A〜Lを1350mA(1C)の充電々流で電池電圧が
4.1Vになるまで充電し、その後、4.1Vの定電圧
で3時間充電して満充電状態とする。このように満充電
された12種類の各リチウムイオン電池A〜Lの各正・
負極端子間に2700mA(2C)の充電電流を流して
過充電を行い、過充電開始から電流遮断封口体50が作
動するまでの時間と、そのときの各電池A〜Lの最高温
度を測定すると、下記の表1に示すような結果となっ
た。
6 Test a. Overcharge test Each of the 12 types of lithium ion batteries A to L produced as described above was charged at a charge current of 1350 mA (1 C) until the battery voltage reached 4.1 V, and then at a constant voltage of 4.1 V. The battery is charged for 3 hours to be fully charged. The positive and negative of each of the 12 types of lithium ion batteries A to L fully charged in this way
When a charging current of 2700 mA (2C) is passed between the negative electrodes to perform overcharging, the time from the start of overcharging to the activation of the current cutoff sealing body 50 and the maximum temperature of each of the batteries A to L at that time are measured. The results were as shown in Table 1 below.

【0048】b.低温特性 上述のように作製した12種類の各リチウムイオン電池
A〜Lを、室温(25℃)で1350mA(1C)の充
電々流で電池電圧が4.1Vになるまで充電し、その
後、4.1Vの定電圧で3時間充電して満充電状態とす
る。その後、室温で3時間休止させた後、室温で135
0mA(1C)の放電々流で終止電圧が2.75Vにな
るまで放電させ、放電時間から室温での放電容量(mA
h)を求めた。
B. Low temperature characteristics The 12 kinds of lithium ion batteries A to L produced as described above were charged at room temperature (25 ° C.) at a charge current of 1350 mA (1 C) until the battery voltage reached 4.1 V. The battery is charged at a constant voltage of 0.1 V for 3 hours to reach a fully charged state. Then, after suspending for 3 hours at room temperature, 135 hours at room temperature.
Discharge was performed at a discharge current of 0 mA (1 C) until the final voltage reached 2.75 V, and the discharge capacity at room temperature (mA
h) was determined.

【0049】一方、上述のように作製した12種類の各
リチウムイオン電池A〜Lを、室温(25℃)で135
0mA(1C)の充電々流で電池電圧が4.1Vになる
まで充電し、その後、4.1Vの定電圧で3時間充電し
て満充電状態とする。その後、0℃の温度で3時間休止
させた後、0℃の温度で1350mA(1C)の放電々
流で終止電圧が2.75Vになるまで放電させ、放電時
間から低温での放電容量(mAh)を求めた。
On the other hand, each of the 12 kinds of lithium ion batteries A to L produced as described above was subjected to 135 at room temperature (25 ° C.).
The battery is charged at a charge current of 0 mA (1 C) until the battery voltage reaches 4.1 V, and then charged at a constant voltage of 4.1 V for 3 hours to be fully charged. Thereafter, the battery was suspended at a temperature of 0 ° C. for 3 hours, and then discharged at a temperature of 0 ° C. with a discharge current of 1350 mA (1 C) until the final voltage reached 2.75 V. From the discharge time, the discharge capacity at a low temperature (mAh) ).

【0050】ついで、上述のようにして求めた各容量に
基づいて、室温での放電容量(mAh)に対する低温で
の放電容量(mAh)の割合を低温特性として下記の数
1の数式により算出すると、下記の表1に示すような結
果となった。
Next, based on the respective capacities obtained as described above, the ratio of the discharge capacity at low temperature (mAh) to the discharge capacity at room temperature (mAh) is calculated as a low temperature characteristic by the following equation (1). The results were as shown in Table 1 below.

【0051】[0051]

【数1】低温特性=(低温での放電容量/室温での放電
容量)×100%(1) c.保存特性 上述のように作製した12種類の各リチウムイオン電池
A〜Lを室温(25℃)で1350mA(1C)の充電
々流で電池電圧が4.1Vになるまで充電し、その後、
4.1Vの定電圧で3時間充電して満充電状態とする。
その後、60℃の雰囲気中に20日間保存した後、13
50mA(1C)の放電々流で電池電圧が2.75Vに
なるまで放電させ、放電時間から高温保存後の放電容量
を求めた。ついで、上記で求めた室温での放電容量に対
する高温保存後の放電容量の割合を保存特性として下記
の数2の数式により算出すると、下記の表1に示すよう
な結果となった。
(1) Low temperature characteristic = (discharge capacity at low temperature / discharge capacity at room temperature) × 100% (1) c. Storage Characteristics The 12 types of lithium-ion batteries A to L produced as described above were charged at room temperature (25 ° C.) at a charge current of 1350 mA (1 C) until the battery voltage reached 4.1 V, and thereafter,
The battery is charged at a constant voltage of 4.1 V for 3 hours to be fully charged.
Then, after storing in an atmosphere of 60 ° C. for 20 days, 13
The battery was discharged at a discharge current of 50 mA (1 C) until the battery voltage reached 2.75 V, and the discharge capacity after high-temperature storage was determined from the discharge time. Then, when the ratio of the discharge capacity after high-temperature storage to the discharge capacity at room temperature determined above was calculated as a storage characteristic by the following mathematical formula 2, the results shown in Table 1 below were obtained.

【0052】[0052]

【数2】保存特性=(高温保存後の放電容量/室温での
放電容量)×100%(2)
## EQU2 ## Storage characteristics = (discharge capacity after high temperature storage / discharge capacity at room temperature) × 100% (2)

【0053】[0053]

【表1】 [Table 1]

【0054】上記表1から明らかなように、添加剤が無
添加の比較例1の電解液jを用いた電池Jは、過充電を
開始してから32分後に破裂が発生したが、低温特性お
よび保存特性は共に良好であった。また、従来例の添加
剤であるビフェニルを添加した比較例2の電解液kを用
いた電池Kは、過充電を開始してから20分後に充電電
流が遮断され、そのときの最高温度は88℃であった。
そして、低温特性および保存特性は共に低い値となっ
た。さらに、従来例の添加剤である4−クロロアニソー
ルを添加した比較例3の電解液lを用いた電池Lは、過
充電を開始してから21分後に充電電流が遮断され、そ
のときの最高温度は90℃であった。そして、低温特性
および保存特性は共に低い値となった。
As is evident from Table 1 above, the battery J using the electrolyte j of Comparative Example 1 in which no additive was added bursted 32 minutes after the start of overcharging, but the low-temperature characteristics And the storage characteristics were both good. Further, in the battery K using the electrolyte solution k of Comparative Example 2 to which biphenyl which is an additive of the conventional example was added, the charging current was interrupted 20 minutes after the start of overcharge, and the maximum temperature at that time was 88. ° C.
Then, both the low temperature characteristics and the storage characteristics were low values. Further, in the battery L using the electrolytic solution 1 of Comparative Example 3 to which 4-chloroanisole as a conventional additive was added, the charging current was interrupted 21 minutes after the start of overcharging, and the highest current at that time was observed. The temperature was 90C. Then, both the low temperature characteristics and the storage characteristics were low values.

【0055】一方、上記化5の構造式で表される4−ビ
フェニリルアセテート、上記化6の構造式で表されるフ
ェニルプロピオネート、上記化7の構造式で表される4
−ビフェニリルベンゾエート、上記化8の構造式で表さ
れる4−ビフェニリルベンジルカルボキシレート、上記
化9の構造式で表される2−ビフェニリルプロピオネー
トを添加した実施例1、参考例1、実施例2〜8の電解
液a〜iを用いた電池A〜Iは、過充電を開始してから
18〜20分後に充電電流が遮断され、そのときの最高
温度も79〜83℃と低く、かつ低温特性および保存特
性も共に良好であった。但し、フェニルプロピオネート
を添加した参考例1の電解液bを用いた電池Bの低温特
性は、各実施例の電池に比較して低温特性が若干劣る。
特に、プロピオネートのエステル誘導体である、フェニ
ルプロピオネートを添加した参考例の電解液bを用いた
電池Bと、2−ビフェニリルプロピオネートを添加した
実施例4の電解液eを用いた電池Eとを比較すると、電
池Eは電池Bに比較して低温特性および保存特性共によ
り良好である。これは、ビフェニリル基を有するエステ
ル誘導体がフェニル基を有するエステル誘導体に比較し
て、電解液の添加剤としてより良好であることを示して
いる。
[0055] hand, 4-biphenylyl acetate represented by the structural formula above hear 5, phenylpropionate represented by the structural formula of the formula 6, 4, represented by the above structural formula of 7
Example 1 and Reference Example 1 in which -biphenylyl benzoate, 4-biphenylylbenzylcarboxylate represented by the above formula (8), and 2-biphenylylpropionate represented by the above formula (9) were added. In the batteries A to I using the electrolytes a to i of Examples 2 to 8 , the charging current was interrupted 18 to 20 minutes after the start of overcharge, and the maximum temperature at that time was 79 to 83 ° C. It was low, and both low-temperature characteristics and storage characteristics were good. However, phenylpropionate
B of the battery B using the electrolyte solution b of Reference Example 1 in which
As for the properties, the low-temperature characteristics are slightly inferior to those of the batteries of the examples.
In particular, phenyl, an ester derivative of propionate,
The electrolyte solution b of the reference example to which lupropionate was added was used.
Battery B and 2-biphenylyl propionate were added.
A comparison with the battery E using the electrolyte solution e of Example 4 shows that
Pond E has better low-temperature and storage characteristics than battery B.
Better. This is an ester with a biphenylyl group.
Derivatives have a phenyl group compared to ester derivatives.
Shows that it is better as an electrolyte additive
I have.

【0056】これは、電池電圧が4.1Vに達してから
過充電を行って過充電状態になると、4−ビフェニリル
アセテート、フェニルプロピオネート、4−ビフェニリ
ルベンゾエート、4−ビフェニリルベンジルカルボキシ
レート、2−ビフェニリルプロピオネートなどの添加剤
は分解反応を開始してガスを発生するようになる。これ
と同時に重合反応を開始して重合熱を発生する。この状
態で過充電をさらに続けると、ガスの発生量が増大し、
過充電を開始してから18〜20分後に電流遮断封口体
50が作動して過充電電流を遮断する。これにより、電
池温度も徐々に低下することとなる。
This is because when overcharging is performed after the battery voltage reaches 4.1 V and the battery is overcharged, 4-biphenylyl acetate, phenylpropionate, 4-biphenylylbenzoate, 4-biphenylylbenzylcarboxylate are obtained. , 2-biphenylyl propionate, etc., initiate a decomposition reaction to generate gas. At the same time, the polymerization reaction is started to generate polymerization heat. If overcharging is continued further in this state, the amount of generated gas will increase,
Eighteen to twenty minutes after the start of the overcharge, the current cutoff sealing body 50 operates to cut off the overcharge current. As a result, the battery temperature also gradually decreases.

【0057】なお、電池A〜Eと電池F〜Iを比較する
と明らかなように、電解液の有機溶媒の種類あるいは溶
質の種類を代えても格別の差異が認められないので、本
発明の添加剤は電解液の種類に関わらず同様な効果を発
揮するということができる。また、電池A〜電池Eを比
較すると明らかなように、本発明の添加剤は上記化5の
構造式で表される4−ビフェニリルアセテート、上記化
7の構造式で表される4−ビフェニリルベンゾエート、
上記化8の構造式で表される4−ビフェニリルベンジル
カルボキシレート、上記化9の構造式で表される2−ビ
フェニリルプロピオネートから選択した少なくとも1種
を用いるのが好ましい。
As apparent from comparison between the batteries A to E and the batteries F to I, no particular difference was observed even when the type of the organic solvent or the type of the solute in the electrolytic solution was changed. It can be said that the agent exerts the same effect regardless of the type of the electrolytic solution. Further, as is apparent from a comparison of cell A~ battery E, the additives of the present invention is 4-biphenylyl acetate tape preparative represented by structural formula of the formula 5 is represented by the structural formula above asked 7 4-biphenylyl benzoate,
It is preferable to use at least one selected from 4-biphenylylbenzylcarboxylate represented by the structural formula of the above formula (8) and 2-biphenylylpropionate represented by the structural formula of the above formula (9).

【0058】7.添加剤の添加量の検討 ついで、添加剤の添加量について検討する。実施例9 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を1重量%添加混合して作製した電解液mを実施例9
電解液とする。
7. Examination of the amount of additive to be added Next, the amount of additive to be added is examined. Example 9 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
An electrolyte m prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt, and further adding and mixing 1 wt% of 4-biphenylyl acetate represented by the structural formula shown above is used as an electrolyte of Example 9 .

【0059】実施例10 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を3重量%添加混合して作製した電解液nを実施例10
の電解液とする。
Example 10 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
An electrolyte n was prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt, and further adding and mixing 3 wt% of 4-biphenylyl acetate represented by the structural formula of the above formula ( 10).
Electrolyte solution.

【0060】実施例11 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を5重量%添加混合して作製した電解液oを実施例11
の電解液とする。
Example 11 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
Example 11 was prepared by adding and mixing 1M LiPF 6 as an electrolyte salt, and further adding and mixing 5% by weight of 4-biphenylyl acetate represented by the structural formula of the above formula ( 11).
Electrolyte solution.

【0061】実施例12 エチレンカーボネート(EC)40重量部とジエチルカ
ーボネート(DEC)60重量部よりなる混合溶媒に、
電解質塩として1MLiPF6を添加混合し、さらに上
記化5の構造式で表される4−ビフェニリルアセテート
を10重量%添加混合して作製した電解液pを実施例1
の電解液とする。
Example 12 In a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of diethyl carbonate (DEC),
Example 1 was prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt and further adding and mixing 10 wt% of 4-biphenylyl acetate represented by the structural formula of the above formula ( 1).
2 electrolyte solution.

【0062】この後、上述と同様にして、外装缶40の
開口部に上述した電解液m〜pをそれぞれ注入した後、
外装缶40の開口部にポリプロピレン(PP)製の外装
缶用絶縁ガスケット42を介して電流遮断封口体50を
載置し、外装缶40の開口部の上端部を電流遮断封口体
50側にカシメて液密に封口して、リチウムイオン電池
M(電解液mを注入したもの)、リチウムイオン電池N
(電解液nを注入したもの)、リチウムイオン電池O
(電解液oを注入したもの)、リチウムイオン電池P
(電解液pを注入したもの)をそれぞれ作製する。
Thereafter, in the same manner as described above, the above-described electrolytes m to p are respectively injected into the openings of the outer can 40, and then,
A current blocking sealing body 50 is placed in the opening of the outer can 40 via an insulating can insulating gasket 42 made of polypropylene (PP), and the upper end of the opening of the outer can 40 is swaged toward the current blocking sealing body 50. Lithium-ion battery M (with electrolyte m injected), lithium-ion battery N
(Injected electrolyte n), lithium ion battery O
(Injected electrolyte o), lithium ion battery P
(The one into which the electrolytic solution p is injected) is prepared.

【0063】ついで、上述と同様にして、これらの各電
池M〜Pに過充電を施して、過充電を開始してから電流
遮断封口体50が作動するまでの時間と、そのときの各
電池M〜Pの最高温度を測定すると、下記の表2に示す
ような結果となった。また、上述と同様にして、低温特
性および保存特性を測定すると、下記の表2に示すよう
な結果となった。
Next, in the same manner as described above, these batteries M to P are overcharged, the time from the start of overcharge to the activation of the current cutoff sealing member 50, and the respective batteries at that time. When the maximum temperatures of M to P were measured, the results were as shown in Table 2 below. When the low-temperature characteristics and the storage characteristics were measured in the same manner as described above, the results shown in Table 2 below were obtained.

【0064】[0064]

【表2】 [Table 2]

【0065】上記表2より明らかなように、添加剤の添
加量が1〜10重量%の範囲であれば、電流遮断時間、
最高温度、低温特性および保存特性において格別の差異
が認められなかった。このことから、添加剤の添加量は
1〜10重量%の範囲にするのが望ましく、好ましくは
1〜5重量%とするのが望ましい。なお、表2には示し
ていないが、上記化5の構造式で表される4−ビフェニ
リルアセテート以外の添加剤、即ち、上記化7の構造式
で表される4−ビフェニリルベンゾエート、上記化8の
構造式で表される4−ビフェニリルベンジルカルボキシ
レート、上記化9の構造式で表される2−ビフェニリル
プロピオネートなどの他の添加剤を用いてもほぼ同様な
結果が得られた。
As is clear from Table 2, when the amount of the additive is in the range of 1 to 10% by weight, the current interruption time,
No particular differences were observed in the maximum temperature, low temperature characteristics and storage characteristics. For this reason, the amount of the additive is desirably in the range of 1 to 10% by weight, and preferably 1 to 5% by weight. Although not shown in Table 2, additives other than 4-biphenylyl acetate represented by the structural formula of the formula 5, immediately Chi, represented by the structural formula above asked 7 4- biphenylyl benzoate Approximately the same results can be obtained by using other additives such as 4-biphenylylbenzylcarboxylate represented by the structural formula of Chemical Formula 8 and 2-biphenylylpropionate represented by the chemical formula of Chemical Formula 9 above. was gotten.

【0066】8.電流遮断封口体を用いなかった場合 上述した実施形態においては、電流遮断封口体50を備
えたリチウムイオン電池に本発明の添加剤を添加した電
解液を注入した例について説明したが、電流遮断封口体
を備えていない角形リチウムイオン電池に本発明の添加
剤を添加した電解液を注入した場合においても検討し
た。
8. In the case where the current-blocking sealing body was not used In the above-described embodiment, an example was described in which the electrolyte solution to which the additive of the present invention was added was injected into the lithium ion battery including the current-blocking sealing body 50. Investigation was also made on a case where an electrolyte solution containing the additive of the present invention was injected into a prismatic lithium ion battery having no body.

【0067】実施例13 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化5の構造式で表される4−ビフェニリルアセテ
ートを2重量%添加混合して作製した電解液qを実施例
13の電解液とする。
Example 13 1 M LiPF 6 as an electrolyte salt was added to a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of methyl ethyl carbonate (MEC), and further mixed. The electrolyte q prepared by adding and mixing 2% by weight of 4-biphenylyl acetate in Example 1 was prepared.
This is the electrolyte of No. 13 .

【0068】参考例2 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合し、さら
に上記化6の構造式で表されるフェニルプロピオネート
を2重量%添加混合して作製した電解液rを参考例2
電解液とする。
REFERENCE EXAMPLE 2 1 M LiPF 6 as an electrolyte salt was added to a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of methyl ethyl carbonate (MEC), and the mixture was further expressed by the above structural formula. An electrolytic solution r prepared by adding and mixing 2% by weight of phenylpropionate was used as an electrolytic solution of Reference Example 2 .

【0069】比較例4 エチレンカーボネート(EC)40重量部とメチルエチ
ルカーボネート(MEC)60重量部よりなる混合溶媒
に、電解質塩として1MLiPF6を添加混合して作製
した電解液sを比較例4の電解液とする。
Comparative Example 4 An electrolyte s prepared by adding and mixing 1 M LiPF 6 as an electrolyte salt to a mixed solvent consisting of 40 parts by weight of ethylene carbonate (EC) and 60 parts by weight of methyl ethyl carbonate (MEC) was used. Electrolyte.

【0070】この後、上述と同様にして、図示しない角
形外装缶の開口部に上述した電解液q〜sをそれぞれ注
入し、リチウムイオン電池Q(電解液qを注入したも
の)、リチウムイオン電池R(電解液rを注入したも
の)、リチウムイオン電池S(電解液sを注入したも
の)をそれぞれ作製する。このようにして作製した角形
の各リチウムイオン電池Q〜Sの公称容量は600mA
hとなる。
Thereafter, in the same manner as described above, the above-mentioned electrolytes q to s were respectively injected into the openings of the rectangular outer can (not shown), and the lithium ion battery Q (the one into which the electrolyte q was injected), the lithium ion battery R (injected electrolyte r) and lithium ion battery S (injected electrolyte s) are prepared. The nominal capacity of each of the rectangular lithium-ion batteries Q to S thus manufactured is 600 mA.
h.

【0071】上述のように作製した3種類の各リチウム
イオン電池Q〜Sを600mA(1C)の充電々流で電
池電圧が4.1Vになるまで充電し、その後4.1Vの
定電圧で3時間充電して満充電状態とする。このように
満充電された3種類の各リチウムイオン電池Q〜Sの各
正・負極端子間に1200mA(2C)の充電電流を流
して過充電を行い、各電池Q〜Sの最高温度を測定する
過充電試験を行った。この結果は下記の表3に示すよう
な結果となった。
The three types of lithium ion batteries Q to S prepared as described above were charged at a charging current of 600 mA (1 C) until the battery voltage reached 4.1 V, and then charged at a constant voltage of 4.1 V. The battery is charged for a time to reach a fully charged state. Overcharging is performed by passing a charging current of 1200 mA (2C) between the positive and negative terminals of each of the three types of lithium-ion batteries Q to S that are fully charged as described above, and the maximum temperature of each of the batteries Q to S is measured. Overcharge test was performed. The result was as shown in Table 3 below.

【0072】ついで、上述のように作製した3種類の各
リチウムイオン電池Q〜Sを、室温(25℃)で600
mA(1C)の充電々流で電池電圧が4.1Vになるま
で充電し、その後4.1Vの定電圧で3時間充電して満
充電状態とする。その後、室温で3時間休止させた後、
室温で600mA(1C)の放電々流で終止電圧が2.
75Vになるまで放電させ、放電時間から室温での放電
容量(mAh)を求めた。
Next, each of the three types of lithium ion batteries Q to S prepared as described above was placed at room temperature (25 ° C.) for 600 ° C.
The battery is charged at a charge current of mA (1C) until the battery voltage reaches 4.1 V, and then charged at a constant voltage of 4.1 V for 3 hours to obtain a fully charged state. Then, after resting at room temperature for 3 hours,
The cut-off voltage is 2. at a discharge current of 600 mA (1 C) at room temperature.
The battery was discharged until the voltage reached 75 V, and the discharge capacity (mAh) at room temperature was determined from the discharge time.

【0073】一方、上述のように作製した3種類の各リ
チウムイオン電池Q〜Sを、室温(25℃)で600m
A(1C)の充電々流で電池電圧が4.1Vになるまで
充電し、その後4.1Vの定電圧で3時間充電して満充
電状態とする。その後、0℃の温度で3時間休止させた
後、0℃の温度で600mA(1C)の放電々流で終止
電圧が2.75Vになるまで放電させ、放電時間から低
温での放電容量(mAh)を求めた。
On the other hand, each of the three types of lithium ion batteries Q to S manufactured as described above was placed at room temperature (25 ° C.) for 600 m.
The battery is charged by the charging current of A (1C) until the battery voltage reaches 4.1 V, and then charged at a constant voltage of 4.1 V for 3 hours to be fully charged. Thereafter, the battery was suspended at a temperature of 0 ° C. for 3 hours, and then discharged at a temperature of 0 ° C. with a discharge current of 600 mA (1 C) until the final voltage reached 2.75 V. From the discharge time, the discharge capacity at a low temperature (mAh) ).

【0074】ついで、上述のように測定した各容量に基
づいて、室温での放電容量(mAh)に対する低温での
放電容量(mAh)の割合を低温特性として上述した数
1の数式により算出すると、下記の表3に示すような結
果となった。
Next, based on each capacity measured as described above, the ratio of the discharge capacity (mAh) at a low temperature to the discharge capacity (mAh) at a room temperature is calculated as a low-temperature characteristic by the above-described equation (1). The results are as shown in Table 3 below.

【0075】また、上述のように作製した3種類の各リ
チウムイオン電池Q〜Sを、室温(25℃)で600m
A(1C)の充電々流で電池電圧が4.1Vになるまで
充電し、その後4.1Vの定電圧で3時間充電して満充
電状態とする。その後、60℃の雰囲気中に20日間保
存した後、600mA(1C)の放電々流で電池電圧が
2.75Vになるまで放電させ、放電時間から高温保存
後の放電容量を求めた。ついで、上記で求めた室温での
放電容量に対する高温保存後の放電容量の割合を保存特
性として、上述した数2の数式により算出すると、下記
の表3に示すような結果となった。
Each of the three types of lithium ion batteries Q to S manufactured as described above was placed at room temperature (25 ° C.) for 600 m.
The battery is charged by the charging current of A (1C) until the battery voltage reaches 4.1 V, and then charged at a constant voltage of 4.1 V for 3 hours to be fully charged. Thereafter, the battery was stored in an atmosphere of 60 ° C. for 20 days, and then discharged at a discharge current of 600 mA (1 C) until the battery voltage reached 2.75 V, and the discharge capacity after high-temperature storage was determined from the discharge time. Then, when the ratio of the discharge capacity after high-temperature storage to the discharge capacity at room temperature determined above was calculated as the storage characteristic using the above-described formula 2, the results shown in Table 3 below were obtained.

【0076】[0076]

【表3】 [Table 3]

【0077】上記表3より明らかなように、添加剤が無
添加の比較例4の電解液sを用いた電池Sは、過充電に
より破裂が発生したが、低温特性および保存特性は共に
良好であった。一方、本発明の添加剤である上記化5の
構造式で表される4−ビフェニリルアセテートを添加し
実施例13の電解液qを用いた電池Qおよび上記化6
の構造式で表されるフェニルプロピオネートを添加した
参考例2の電解液rを用いた電池Rは、過充電を行うと
温度上昇は高いが破裂に至ることはなかった。また、低
温特性および保存特性も、添加剤が無添加のものとほぼ
同様な値を示して、共に良好であった。
As is clear from Table 3, the battery S using the electrolyte s of Comparative Example 4 to which no additive was added was ruptured due to overcharge, but both low-temperature characteristics and storage characteristics were good. there were. On the other hand, a battery Q using the electrolytic solution q of Example 13 to which 4-biphenylyl acetate represented by the structural formula of the above formula (5), which is an additive of the present invention, was added, and
Phenylpropionate represented by the structural formula
In the battery R using the electrolyte solution r of Reference Example 2, the temperature rise was high when overcharging was performed, but the battery did not burst. In addition, the low-temperature characteristics and the storage characteristics were almost the same as those in the case where no additive was added, and both were good.

【0078】上述したように、本発明の上記化5の構造
式で表される4−ビフェニリルアセテート、上記化7の
構造式で表される4−ビフェニリルベンゾエート、上記
化8の構造式で表される4−ビフェニリルベンジルカル
ボキシレート、上記化9の構造式で表される2−ビフェ
ニリルプロピオネートなどのエステル誘導体からなる添
加剤を電解液に添加して用いると、低温特性や保存特性
などの電池特性に悪影響を及ぼすことなく過充電に対し
ては有効に作用して、電池性能を劣化させることなく電
池の安全性を確保できるようになる。
[0078] As described above, the present invention the chemical formula 5 in structural formula represented by 4-biphenylyl acetate tape DOO, 4-biphenylyl benzoate represented by the structural formula above hear 7, of the formula 8 When an additive composed of an ester derivative such as 4-biphenylylbenzylcarboxylate represented by the structural formula or 2-biphenylylpropionate represented by the structural formula shown above is used by adding to the electrolytic solution, It works effectively for overcharging without adversely affecting battery characteristics such as characteristics and storage characteristics, and can secure battery safety without deteriorating battery performance.

【0079】なお、上述の実施形態においては、負極活
物質として天然黒鉛(d=3.36)を用いる例につい
て説明したが、天然黒鉛以外に、リチウムイオンを吸蔵
・脱離し得るカーボン系材料、例えば、グラファイト、
カーボンブラック、コークス、ガラス状炭素、炭素繊
維、またはこれらの焼成体等が好適である。
In the above embodiment, an example in which natural graphite (d = 3.36) is used as the negative electrode active material has been described. In addition to natural graphite, carbon-based materials capable of inserting and extracting lithium ions, For example, graphite,
Carbon black, coke, vitreous carbon, carbon fiber, or a fired body thereof are suitable.

【0080】また、上述の実施形態においては、正極活
物質としてLiCoO2を用いる例について説明した
が、LiCoO2以外に、リチウムイオンをゲストとし
て受け入れ得るリチウム含有遷移金属化合物、例えば、
LiNiO2、LiCoXNi(1-X)2、LiCrO2
LiVO2、LiMnO2、αLiFeO2、LiTi
2、LiScO2、LiYO2、LiMn24等が好ま
しいが、特に、LiNiO2、LiCoXNi(1-X)2
単独で用いるかあるいはこれらの二種以上を混合して用
いるのが好適である。
In the above-described embodiment, an example in which LiCoO 2 is used as the positive electrode active material has been described. In addition to LiCoO 2 , a lithium-containing transition metal compound capable of accepting lithium ions as a guest, for example,
LiNiO 2 , LiCo X Ni (1-X) O 2 , LiCrO 2 ,
LiVO 2 , LiMnO 2 , αLiFeO 2 , LiTi
O 2 , LiScO 2 , LiYO 2 , LiMn 2 O 4 and the like are preferable, and in particular, LiNiO 2 , LiCo X Ni (1-X) O 2 is used alone or a mixture of two or more thereof is used. Is preferred.

【0081】さらに、電解液としては、有機溶媒に溶質
としてリチウム塩を溶解したイオン伝導体であって、イ
オン伝導率が高く、正・負の各電極に対して化学的、電
気化学的に安定で、使用可能温度範囲が広くかつ安全性
が高く、安価なものであれば使用することができる。例
えば、上記した有機溶媒以外に、プロピレンカーボネー
ト(PC)、スルフォラン(SL)、テトラハイドロフ
ラン(THF)、γブチロラクトン(GBL)、等ある
いはこれらの混合溶媒が好適である。また、溶質として
は電子吸引性の強いリチウム塩を使用し、上記したLi
PF6あるいはLiBF4以外に、例えば、LiCl
4、LiAsF6、LiCF3SO3、Li(CF3
22N、Li(C25SO22N、LiC49SO3
等が好適である。
Further, the electrolyte is an ionic conductor in which a lithium salt is dissolved as a solute in an organic solvent, and has a high ionic conductivity and is chemically and electrochemically stable with respect to each of the positive and negative electrodes. In this case, any one that has a wide usable temperature range, high safety, and inexpensive can be used. For example, in addition to the above organic solvents, propylene carbonate (PC), sulfolane (SL), tetrahydrofuran (THF), γ-butyrolactone (GBL), and the like, or a mixed solvent thereof are suitable. As the solute, a lithium salt having a strong electron-withdrawing property is used, and the above-described Li is used.
Other than PF 6 or LiBF 4 , for example, LiCl
O 4 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 S
O 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, LiC 4 F 9 SO 3
Etc. are preferred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電解液を備えた一実施形態の電池の
セパレータを介して重ね合わせた正・負極板を卷回して
外装缶内に収納した状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state in which positive and negative electrode plates superimposed via a separator of a battery provided with an electrolytic solution of the present invention are wound and housed in an outer can.

【図2】 図1の外装缶の開口部に装着される電流遮断
封口体を示す一部破断図である。
FIG. 2 is a partially cutaway view showing a current blocking sealing body attached to an opening of the outer can of FIG. 1;

【符号の説明】[Explanation of symbols]

10…負極板、10a…負極集電タブ、20…正極板、
20a…正極集電タブ、30…セパレータ、40…外装
缶、41…スペーサ、42…外装缶用絶縁ガスケット、
50…電流遮断封口体
10: negative electrode plate, 10a: negative electrode current collecting tab, 20: positive electrode plate,
20a: positive electrode current collecting tab, 30: separator, 40: outer can, 41: spacer, 42: insulating gasket for outer can,
50 ... current interrupting sealing body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 浩司 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (72)発明者 植木 明 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (72)発明者 高井 勉 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (56)参考文献 特開 平10−275632(JP,A) 特開 平9−22722(JP,A) 特開 平8−306387(JP,A) 特開 平8−293323(JP,A) 特開 昭63−114076(JP,A) 特開 平7−22069(JP,A) 特開 平8−96848(JP,A) 特開 平9−92329(JP,A) 特開 平9−147910(JP,A) 特開 平9−306542(JP,A) 特開 平10−92221(JP,A) 特開 平10−92222(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Abe 5-1978 Kogushi, Oji, Ube City, Yamaguchi Prefecture Inside Ube Research Institute, Ltd. (72) Inventor: Tsutomu Takai 1978 Kogushi, Ube City, Ube-shi, Yamaguchi 5 Ube-Kosan Co., Ltd. Ube Laboratory (56) References JP-A-10-275632 (JP, A) JP JP-A-9-22722 (JP, A) JP-A-8-306387 (JP, A) JP-A-8-293323 (JP, A) JP-A-63-114076 (JP, A) JP-A-7-22069 (JP JP-A-8-96848 (JP, A) JP-A-9-92329 (JP, A) JP-A-9-147910 (JP, A) JP-A-9-306542 (JP, A) 10-92221 (JP, A) 222 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機溶媒に溶質としてリチウム塩を溶解
した非水系電池用電解液であって、 前記有機溶媒に下記の化1の一般式で表されるエステル
誘導体が含有されていることを特徴とする非水系電池用
電解液。 【化1】 ただし、上記化1に示したR1 はビフェニリル基を示
し、R2は炭素数1〜6のアルキル基、フェニル基、ベ
ンジル基を示す。
An electrolyte for a non-aqueous battery in which a lithium salt is dissolved as a solute in an organic solvent, wherein the organic solvent contains an ester derivative represented by the following general formula (1). Electrolyte for non-aqueous batteries. Embedded image However, R 1 shown in the chemical formula 1 represents a bi Feniriru group, R 2 represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group.
【請求項2】 前記エステル誘導体は、4−ビフェニリ
ルアセテート、4−ビフェニリルベンゾエート、4−ビ
フェニリルベンジルカルボキシレートあるいは2−ビフ
ェニリルプロピオネートから選択した少なくとも1種を
備えていることを特徴とする請求項1に記載の非水系電
池用電解液。
Wherein said ester derivative is 4-biphenylyl acetate tape bets, 4 - biphenylyl benzoate, that comprises at least one selected from 4-biphenylyl benzyl carboxylate or 2-biphenylyl propionate The electrolyte for a non-aqueous battery according to claim 1, wherein:
【請求項3】 リチウム含有金属酸化物を正極活物質と
する正極と炭素を負極活物質とする負極とをセパレータ
を介して積層して構成された電極体を電池容器内に備え
るとともに、有機溶媒に溶質としてリチウム塩を溶解し
た電解液を備えた非水系二次電池であって、 前記電解液に下記の化2の一般式で表されるエステル誘
導体が含有されていることを特徴とする非水系二次電
池。 【化2】 ただし、上記化2に示したR1 はビフェニリル基を示
し、R2は炭素数1〜6のアルキル基、フェニル基、ベ
ンジル基を示す。
3. A battery container comprising an electrode body formed by laminating a positive electrode using a lithium-containing metal oxide as a positive electrode active material and a negative electrode using carbon as a negative electrode active material in a battery container, and further comprising an organic solvent. A non-aqueous secondary battery provided with an electrolyte solution in which a lithium salt is dissolved as a solute, wherein the electrolyte solution contains an ester derivative represented by the following general formula (2). Water-based secondary battery. Embedded image However, R 1 shown in the chemical formula 2 represents an bi Feniriru group, R 2 represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group.
【請求項4】 前記エステル誘導体は、4−ビフェニリ
ルアセテート、4−ビフェニリルベンゾエート、4−ビ
フェニリルベンジルカルボキシレートあるいは2−ビフ
ェニリルプロピオネートから選択した少なくとも1種を
備えていることを特徴とする請求項3に記載の非水系二
次電池。
Wherein said ester derivative is 4-biphenylyl acetate tape bets, 4 - biphenylyl benzoate, that comprises at least one selected from 4-biphenylyl benzyl carboxylate or 2-biphenylyl propionate The non-aqueous secondary battery according to claim 3, wherein:
JP10217953A 1998-07-31 1998-07-31 Electrolyte for non-aqueous battery and secondary battery using this electrolyte Expired - Lifetime JP2963898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217953A JP2963898B1 (en) 1998-07-31 1998-07-31 Electrolyte for non-aqueous battery and secondary battery using this electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217953A JP2963898B1 (en) 1998-07-31 1998-07-31 Electrolyte for non-aqueous battery and secondary battery using this electrolyte

Publications (2)

Publication Number Publication Date
JP2963898B1 true JP2963898B1 (en) 1999-10-18
JP2000058112A JP2000058112A (en) 2000-02-25

Family

ID=16712313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217953A Expired - Lifetime JP2963898B1 (en) 1998-07-31 1998-07-31 Electrolyte for non-aqueous battery and secondary battery using this electrolyte

Country Status (1)

Country Link
JP (1) JP2963898B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402233B2 (en) * 1998-12-28 2003-05-06 日本電池株式会社 Non-aqueous electrolyte secondary battery
JP4940501B2 (en) * 2001-03-21 2012-05-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100417084B1 (en) * 2001-05-08 2004-02-05 주식회사 엘지화학 New additives for electrolyte and lithium ion battery using the same
JP3512021B2 (en) 2001-05-15 2004-03-29 株式会社日立製作所 Lithium secondary battery
WO2002095861A1 (en) * 2001-05-22 2002-11-28 Lg Chem, Ltd. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery comprising the same
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
CN100438198C (en) 2004-12-31 2008-11-26 比亚迪股份有限公司 Mixed additive and electrolyte and lithium ion secondary battery containing same
JP5433529B2 (en) * 2010-08-25 2014-03-05 株式会社日立製作所 Lithium ion secondary battery
JP2014192153A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Electrolytic solution for nonaqueous secondary battery use, nonaqueous secondary battery, and additive agent for nonaqueous electrolytic solution use
EP3132486B1 (en) * 2014-04-17 2018-06-06 Gotion, Inc. Alkylbenzoate derivatives as electrolyte additive for lithium based batteries
JP6673225B2 (en) * 2014-12-24 2020-03-25 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
JP6759847B2 (en) * 2016-08-19 2020-09-23 三菱ケミカル株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
KR20160107262A (en) 2014-01-22 2016-09-13 미쓰비시 가가꾸 가부시키가이샤 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
US10177414B2 (en) 2014-01-22 2019-01-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same
US10777850B2 (en) 2014-01-22 2020-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2000058112A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
JP2983205B1 (en) Non-aqueous secondary battery
JP3113652B1 (en) Lithium secondary battery
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP3080609B2 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
US5766791A (en) Sealed nonaqueous secondary battery
JP4236308B2 (en) Lithium ion battery
JP2004327445A (en) Lithium cell electrolyte and lithium cell containing the same
JP2963898B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2010086722A (en) Nonaqueous electrolyte battery
JP4595205B2 (en) Nonaqueous electrolyte secondary battery
JP4474844B2 (en) Electrolytic solution and battery using the same
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2928779B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2001015156A (en) Nonaqueous electrolyte battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2000348759A (en) Nonaqueous electrolytic solution and secondary battery using it
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP4938923B2 (en) Secondary battery
JP2007109612A (en) Nonaqueous electrolyte secondary battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4115006B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term