JP2933634B2 - Multilayer ceramic capacitors - Google Patents

Multilayer ceramic capacitors

Info

Publication number
JP2933634B2
JP2933634B2 JP1062475A JP6247589A JP2933634B2 JP 2933634 B2 JP2933634 B2 JP 2933634B2 JP 1062475 A JP1062475 A JP 1062475A JP 6247589 A JP6247589 A JP 6247589A JP 2933634 B2 JP2933634 B2 JP 2933634B2
Authority
JP
Japan
Prior art keywords
dielectric
multilayer ceramic
weight
ceramic capacitor
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1062475A
Other languages
Japanese (ja)
Other versions
JPH02242524A (en
Inventor
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062475A priority Critical patent/JP2933634B2/en
Publication of JPH02242524A publication Critical patent/JPH02242524A/en
Application granted granted Critical
Publication of JP2933634B2 publication Critical patent/JP2933634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパラジウムを含む内部電極を有する積層セラ
ミックコンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having an internal electrode containing palladium.

従来の技術 例えば0.11BaO−0.88TiO2−0.21Nd2O3等のBaO−TiO2
−Nd2O3の誘電体材料を使用して誘電体層を形成し、パ
ラジウムを内部電極とした積層セラミックコンデンサで
あった。
Description of the Related Art For example 0.11BaO-0.88TiO 2 -0.21Nd 2 BaO- TiO 2 of O 3,
A dielectric ceramic layer was formed using a dielectric material of —Nd 2 O 3 , and the laminated ceramic capacitor had palladium as an internal electrode.

発明が解決しようとする課題 上記構造の積層セラミックコンデンサにおいては、内
部電極のデラミネーションの発生を防止するために、内
部電極を薄くする。しかしながら、Ba/Ti比の小さいも
のなど一般的にTiO2を多く含む誘電体層は焼成する際、
誘電体層中に含まれる有機バインダーなどにより、TiO2
が還元される。そして還元により生じたTiが内部電極の
Pdと化合物を作るためか、内部電極が体積膨張し、その
結果内部電極は一見玉状のようになり、内部電極切れを
起こし、誘電体層とPdを含む内部電極との界面の密着性
が低下する。その結果、静電容量とQ値が低下し、その
バラツキが大きくなるという問題点を有していた。
Problems to be Solved by the Invention In the multilayer ceramic capacitor having the above structure, the internal electrodes are made thin in order to prevent the occurrence of delamination of the internal electrodes. However, when the dielectric layer containing a large amount of TiO 2 such as a material having a small Ba / Ti ratio is generally fired,
The organic binder contained in the dielectric layer allows TiO 2
Is reduced. And the Ti generated by the reduction is
Perhaps because of the formation of a compound with Pd, the internal electrode expands in volume, and as a result, the internal electrode looks like a bead, causing the internal electrode to break, and the adhesion at the interface between the dielectric layer and the internal electrode containing Pd is reduced. descend. As a result, there has been a problem that the capacitance and the Q value decrease and the variation increases.

そこで本発明の積層セラミックコンデンサは、内部電
極切れを抑制することにより、静電容量とQ値が大き
く、そのバラツキが小さい積層セラミックコンデンサを
提供することを目的とするものである。
Therefore, an object of the multilayer ceramic capacitor of the present invention is to provide a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation by suppressing disconnection of internal electrodes.

課題を解決するための手段 この目的を達成するために、本発明の積層セラミック
コンデンサは、誘電体層と内部電極とを交互に積層した
積層体と、この積層体の前記内部電極の露出した端面に
設けた外部電極とを備え、前記誘電体層は、一般式xBaO
−y{(TiO2(1-m)(ZrO2}−zRe2O3(ただし、
x+y+z=1.00、0.001≦m≦0.200、Re2O3は、La
2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なくとも1種
類以上の希土類元素の酸化物。)と表した時、x,y,zが
以下の表に示す各点a,b,c,d,e,fで囲まれるモル比の範
囲からなる主成分100重量部に対し、副成分としてNb2O5
を0.3〜5.0重量部含有したものであり、前記内部電極は
パラジウムを含有することを特徴とするものである。
Means for Solving the Problems In order to achieve this object, a multilayer ceramic capacitor according to the present invention includes a laminated body in which dielectric layers and internal electrodes are alternately laminated, and an exposed end face of the internal electrode of the laminated body. And an external electrode provided in the dielectric layer, wherein the dielectric layer has a general formula xBaO
−y {(TiO 2 ) (1-m) (ZrO 2 ) m } −zRe 2 O 3 (However,
x + y + z = 1.00, 0.001 ≦ m ≦ 0.200, Re 2 O 3 is La
An oxide of at least one or more rare earth elements selected from 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X, y, z are the sub-components for 100 parts by weight of the main component consisting of the molar ratio range surrounded by the points a, b, c, d, e, f shown in the table below. Nb 2 O 5
Is contained in an amount of 0.3 to 5.0 parts by weight, and the internal electrode contains palladium.

作用 この構成によると、誘電体層中の4価のTiの一部を5
価のNbで置換することによりTiO2が還元されるの抑制
し、TiとPdとの化合物の生成を防止する。その結果、誘
電体層と内部電極の界面の密着性が向上するため、静電
容量とQ値が大きく、そのバラツキが小さい積層セラミ
ックコンデンサとなる。
Action According to this configuration, a part of the tetravalent Ti in the dielectric layer is reduced to 5%.
Substitution with valence Nb suppresses the reduction of TiO 2 and prevents the formation of a compound of Ti and Pd. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation is obtained.

また従来の誘電体層は焼成により還元されたTiO2が冷
却過程である程度再酸化されるが、誘電体層の内部、及
び各結晶粒子の内側は再酸化されにくく酸素欠乏状態の
まま残る。従って酸素原子の持つ有効電荷+2eをチタン
原子上の3d電子で中和することにより、各酸素空孔につ
いて2個のTi3+が形成され、Ti3+を介した電子ホッピン
グによって、誘電体層の絶縁抵抗、絶縁破壊強度を劣化
させる。そこで本発明は誘電体層中の4価のTiの一部を
5価のNbで置換することにより生じた陽イオン空孔で、
焼成時の酸素欠陥によるe-を補償する。その結果絶縁抵
抗、絶縁破壊強度が従来よりも向上した積層セラミック
コンデンサを得ることができる。
In the conventional dielectric layer, TiO 2 reduced by firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal grain are hardly reoxidized and remain in an oxygen-deficient state. Therefore, by neutralizing the effective charge + 2e of the oxygen atom with 3d electrons on the titanium atom, two Ti 3+ are formed for each oxygen vacancy, and electron hopping via the Ti 3+ causes the dielectric layer Degrades insulation resistance and dielectric breakdown strength. Therefore, the present invention provides a cationic vacancy generated by substituting a part of tetravalent Ti in a dielectric layer with pentavalent Nb,
Due to oxygen defect during firing e - to compensate for. As a result, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with conventional ones.

実施例 以下に、本発明を具体的実施例により説明する。EXAMPLES Hereinafter, the present invention will be described with reference to specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3およびNb2O5粉末を下記の第1表
に示す組成比になるように秤量し、めのうボールを備え
たゴム内張りのボールミルに純水とともに入れ、湿式混
合後、脱水乾燥した。この乾燥粉末を高アルミナ質のル
ツボに入れ、空気中で1100℃にて2時間仮焼した。この
仮焼粉末をめのうボールを備えた内張りのボールミルに
純水とともに入れ、湿式粉砕後、脱水乾燥した。この粉
砕粉末に、有機バインダーを加え、均質とした後、32メ
ッシュのふるいを通して整粒し、金型と油圧プレスを用
して成形圧力1ton/cm2で、直径15mm、厚み0.4mmに成形
した、次いで成形円板をジルコニア粉末を敷いたアルミ
ナ質のサヤに入れ、空気中にて下記の第1表に示す組成
比の誘電体磁器を得た。このようにして得られた誘電体
磁器円板は、厚みと直径を測定し、誘電率、良好度Q、
静電容量温度係数測定用試料は、誘電体磁器円板の両面
全体に銀電極を焼き付け、絶縁抵抗、絶縁破壊強度測定
用試料は、誘電体磁器円板の外周より内側に1mmの幅で
銀電極のない部分を設け、銀電極を焼き付けた。そして
誘電率、良好度Q、静電容量温度係数はYHP社製デジタ
ルLCRメータのモデル4275Aを使用し、測定温度20℃、測
定電圧1.0Vrms、測定周波数1MHzでの測定より求めた。
なお、静電容量温度係数は、20℃と85℃の静電容量を用
いて、次式により求めた。
(Example 1) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3, and Nb 2 O 5 powders are weighed so as to have the composition ratios shown in Table 1 below, and purified in a rubber-lined ball mill equipped with an agate ball. It was put together with water, wet-mixed, and dehydrated and dried. The dried powder was placed in a high alumina crucible and calcined in air at 1100 ° C. for 2 hours. The calcined powder was put together with pure water in a ball mill equipped with an agate ball together with pure water, wet pulverized, and then dehydrated and dried. An organic binder was added to the pulverized powder, and the mixture was homogenized, sieved through a 32 mesh sieve, and molded into a diameter of 15 mm and a thickness of 0.4 mm using a mold and a hydraulic press at a molding pressure of 1 ton / cm 2 . Then, the molded disk was placed in an alumina sheath covered with zirconia powder, and a dielectric ceramic having a composition ratio shown in Table 1 below was obtained in air. The thickness and diameter of the dielectric porcelain disk thus obtained were measured, and the dielectric constant, goodness Q,
The capacitance temperature coefficient measurement sample has silver electrodes baked on both sides of the dielectric porcelain disk, and the insulation resistance and dielectric strength measurement samples have a silver width of 1 mm inside the outer circumference of the dielectric porcelain disk. A portion without an electrode was provided and a silver electrode was baked. The dielectric constant, the degree of goodness Q, and the temperature coefficient of capacitance were determined by measuring using a digital LCR meter model 4275A manufactured by YHP at a measurement temperature of 20 ° C., a measurement voltage of 1.0 Vrms, and a measurement frequency of 1 MHz.
The capacitance temperature coefficient was obtained by the following equation using the capacitances at 20 ° C. and 85 ° C.

TC=(C−C0)/C0×1/65×106 TC:静電容量温度係数(ppm/℃) C0:20℃での静電容量(pF) C :85℃での静電容量(pF) また、誘電率は次式より求めた。TC = (C−C 0 ) / C 0 × 1/65 × 10 6 TC: Temperature coefficient of capacitance (ppm / ° C) C 0 : Capacitance at 20 ° C (pF) C: Static at 85 ° C Capacitance (pF) The dielectric constant was determined by the following equation.

K=143.8×C×t/D2 K :誘電率 C0:20℃での静電容量(pF) D :誘電体磁器の直径(mm) t :誘電体磁器の厚み(mm) さらに、絶縁抵抗は、YHP社製HRメータのモデル4329A
を使用し、測定電圧50V.D.C.,測定時間1分間による測
定により求めた。
K = 143.8 × C × t / D 2 K: Dielectric constant C 0 : Capacitance at 20 ° C (pF) D: Diameter of dielectric porcelain (mm) t: Thickness of dielectric porcelain (mm) Resistance is YHP HR meter model 4329A
The measurement was carried out using a measuring voltage of 50 V DC and a measuring time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業(株)製高電
圧電源PHS35K−3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50V/secにより求めた絶縁破壊電圧を
誘導体厚みで除算し、1mm当たりの絶縁破壊強度とし
た。また、結晶粒径は、倍率400での光学顕微鏡観察に
より求めた。
The dielectric strength was measured by using a high voltage power supply PHS35K-3 manufactured by Kikusui Electronics Co., Ltd., placing the sample in silicon oil, and dividing the dielectric breakdown voltage obtained at a step-up speed of 50 V / sec by the dielectric thickness. , And dielectric breakdown strength per 1 mm. Further, the crystal grain size was determined by observation with an optical microscope at a magnification of 400.

試験条件を第1表に併せて示し、試験結果を下記の第
2表に示す。
The test conditions are shown in Table 1, and the test results are shown in Table 2 below.

ここで第1図は誘電体層の主成分の組成範囲を示す三
元図であり、主成分の組成範囲を限定した理由を第1図
を参照しながら説明する。すなわち、A領域では焼結が
著しく困難である。また、B領域では良好度Qが低下
し、実用的でなくなる。さらに、C,D領域では静電容量
温度係数がマイナス側に大きくなりすぎて実用的でなく
なる。そして、E領域では静電容量温度係数がプラス方
向に移行するが、誘電率が小さく実用的でなくなる。
Here, FIG. 1 is a ternary diagram showing the composition range of the main component of the dielectric layer, and the reason for limiting the composition range of the main component will be described with reference to FIG. That is, sintering is extremely difficult in the region A. Further, in the region B, the degree of goodness Q is reduced, and is not practical. Furthermore, in the C and D regions, the temperature coefficient of capacitance becomes too large on the minus side, which is not practical. Then, in the E region, the capacitance temperature coefficient shifts in the positive direction, but the dielectric constant is too small to be practical.

また、Re2O3をLa2O3,Pr2O11/3,Nd2O3,Sm2O3から選ぶ
ことにより、La2O3,Pr2O11/3,Nd2O3,Sm2O3の順で誘電率
を大きく下げることなく、静電容量温度係数をプラス方
向に移行することが可能であり、La2O3,Pr2O11/3,Nd
2O3,Sm2O3の1種あるいは組合わせにより静電容量温度
係数の調整が可能である。
Also, by selecting Re 2 O 3 from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Without significantly lowering the dielectric constant in the order of Sm 2 O 3 , it is possible to shift the temperature coefficient of capacitance in the positive direction, La 2 O 3 , Pr 2 O 11/3 , Nd
The capacitance temperature coefficient can be adjusted by one or a combination of 2 O 3 and Sm 2 O 3 .

また、TiO2をZrO2で置換することにより、誘電率、良
好度Q、静電容量温度係数、絶縁抵抗の値を大きく変え
ることなく、結晶粒径を小さくし、絶縁破壊強度を大き
くする効果を有し、その置換率mが0.001未満では置換
効果がなく、一方0.200を超えると誘電率、良好度Q、
絶縁抵抗が低下する。
In addition, by replacing TiO 2 with ZrO 2 , the effect of reducing the crystal grain size and increasing the dielectric breakdown strength without greatly changing the values of dielectric constant, goodness Q, capacitance temperature coefficient, and insulation resistance. When the substitution rate m is less than 0.001, there is no substitution effect, while when it exceeds 0.200, the dielectric constant, the degree of goodness Q,
Insulation resistance decreases.

(実施例2) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3およびSiO
2粉末を第3表に示す組成比になるように秤量し、それ
以降は実施例1の場合と同様に処理して第3表に示す組
成比の誘電体磁器を得た。
(Example 2) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO
The two powders were weighed so as to have the composition ratios shown in Table 3 and thereafter processed in the same manner as in Example 1 to obtain a dielectric ceramic having the composition ratios shown in Table 3.

これらの試料の試料方法は、実施例1と同様であり、
試験条件を第3表に併せて示し、試験結果を下記の第4
表に示す。
The sample method for these samples is the same as in Example 1,
The test conditions are shown in Table 3 and the test results are shown in Table 4 below.
It is shown in the table.

このようにマンガン、亜鉛、鉄、及びケイ素の酸化物
から選ばれる少なくとも1種以上をそれぞれMnO2,ZnO,F
e2O3及びSiO2に換算して、さらに0.05〜1.00重量部添加
することにより、誘電体磁器の焼結性を向上させること
ができる。その添加量が0.05重量部未満では添加効果が
なく、一方1.00重量部を越えると誘電率が低下し実用的
でなくなる。
As described above, at least one or more selected from manganese, zinc, iron, and silicon oxides are each MnO 2 , ZnO, F
By adding 0.05 to 1.00 part by weight in terms of e 2 O 3 and SiO 2 , the sinterability of the dielectric ceramic can be improved. If the addition amount is less than 0.05 part by weight, there is no effect of addition, while if it exceeds 1.00 part by weight, the dielectric constant is lowered and is not practical.

(実施例3) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3およびNb2O5粉末を使用し、主成
分 0.11BaO−0.68{(TiO20.9(ZrO20.1}−0.21Nd2O3
に対し、Nb2O5を0,0.1,0.3,0.5,1.0,5.0,7.0wt%含有し
た仮焼粉砕粉を実施例1と同様の方法で作製する。ただ
し、Nd2O5の含有量が0,0.1、7.0wt%は本発明の範囲外
であり、0.3,0.5,0,1.0,5.0wt%は本発明の範囲内であ
る。
(Example 3) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3 and Nb 2 O 5 powder are used, and the main component is 0.11BaO−0.68 {(TiO 2 ) 0.9 (ZrO 2 ) 0.1 } −0.21Nd 2 O 3
On the other hand, calcined and pulverized powder containing Nb 2 O 5 at 0, 0.1, 0.3, 0.5, 1.0, 5.0 and 7.0 wt% is produced in the same manner as in Example 1. However, the contents of Nd 2 O 5 of 0,0.1 and 7.0 wt% are outside the scope of the present invention, and 0.3,0.5,0,1.0,5.0 wt% are within the scope of the present invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤、分散
剤、有機溶剤を加え、アルミナボールを備えたポリエチ
レン製ポットで混合し、スラリーを作製した。混合後、
300メッシュのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエス
テルフィルム上にシートを成形した。
An organic binder, a plasticizer, a dispersant, and an organic solvent were added to the calcined and pulverized powder, and mixed with a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing
Filtration was performed using a 300 mesh nylon cloth. The slurry after filtration was formed into a sheet on a polyester film that had been subjected to a mold release treatment by a doctor blade so that the dielectric thickness after sintering was 12 μm.

次に、ポリエステルフィルムから剥がしたシート10枚
を支持台の上に積層した。この上に、昭栄化学(株)製
内部電極パラジウムペーストML−3724を焼結後の内部電
極厚みが2μmとなるようにスクリーン印刷し、乾燥し
た。この上にポリエステルフィルムから剥がしたシート
1枚を積層した。この上に、焼結後の内部電極重なり寸
法が1.2mm×0.7mmとなるように印刷位置をずらして内部
電極パラジウムペーストを印刷し、乾燥後、ポリエステ
ルフィルムから剥がしたシート1枚を積層した。これら
の操作を、誘電体層数が19となるまで繰り返した。この
上に、ポリエステルフィルムから剥がしたシート10枚を
積層した。この積層体を焼結後、内部電極重なり寸法が
1.2mm×0.7mm、誘電体厚みが12μm、誘電体層数が19の
積層構造を持つ積層セラミックコンデンサとなるように
切断した。この切断した試料は、ジルコニア粉末を敷い
たアルミナ質のサヤに入れ、空気中にて室温から350℃
までを5℃/hrで昇温し、350℃より100℃/hrで昇温し、
1270℃で2時間焼成後、100℃/hrで室温まで降温した。
次いで、焼成後の試料は、耐水サンドペーパーを内側に
貼ったポリエチレンポットに純水と共に入れ、ポリエチ
レンポットを回転させ焼成後の試料面を研磨し、外部電
極と接合する内部電極部分を充分露出させた。この試料
はポリエチレンポットより取り出し乾燥後、内部電極露
出部分に銀の外部電極を焼き付け、内部電極と導通さ
せ、積層セラミックコンデンサを作製した。
Next, ten sheets peeled from the polyester film were laminated on a support. On this, an internal electrode palladium paste ML-3724 manufactured by Shoei Chemical Co., Ltd. was screen-printed such that the internal electrode thickness after sintering became 2 μm, and dried. One sheet peeled from the polyester film was laminated thereon. On this, the printing position was shifted so that the internal electrode overlapping dimension after sintering was 1.2 mm × 0.7 mm, the internal electrode palladium paste was printed, and after drying, one sheet peeled off from the polyester film was laminated. These operations were repeated until the number of dielectric layers reached 19. On this, 10 sheets peeled from the polyester film were laminated. After sintering this laminate, the internal electrode overlap dimension
The multilayer ceramic capacitor was cut into a laminated ceramic capacitor having a laminated structure of 1.2 mm × 0.7 mm, a dielectric thickness of 12 μm, and 19 dielectric layers. The cut sample is placed in an alumina sheath covered with zirconia powder, and is heated from room temperature to 350 ° C. in air.
Up to 5 ° C / hr, from 350 ° C at 100 ° C / hr,
After firing at 1270 ° C for 2 hours, the temperature was lowered to room temperature at 100 ° C / hr.
Next, the fired sample is put together with pure water into a polyethylene pot with a waterproof sandpaper stuck on the inside, and the polyethylene pot is rotated to polish the fired sample surface to sufficiently expose the internal electrode portion to be joined to the external electrode. Was. This sample was taken out of the polyethylene pot and dried, and then a silver external electrode was baked on the exposed portion of the internal electrode to make conduction with the internal electrode, thereby producing a multilayer ceramic capacitor.

これらの試料の静電容量、良好度Q、静電容量温度係
数、絶縁抵抗、絶縁破壊強度は実施例1と同様の条件で
測定により求めた。また、積層構造の確認は、積層セラ
ミックコンデンサの長さ方向および幅方向の約1/2を研
磨断面を、内部電極の重なり寸法は倍率100、誘電体厚
みと内部電極厚みは倍率400での光学顕微鏡観察により
求めた。
The capacitance, goodness Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength of these samples were determined by measurement under the same conditions as in Example 1. In addition, the confirmation of the laminated structure was performed by polishing about 断面 of the length and width directions of the multilayer ceramic capacitor in a polished cross section, the overlap size of the internal electrodes was 100, and the dielectric thickness and internal electrode thickness were 400 magnifications. It was determined by microscopic observation.

この測定結果を第2図に示す。この第2図を用いて誘
導体層中の副成分Nb2O5の含有範囲を限定した理由をグ
ラブで説明する。第2図に示すようにNb2O5を含有する
ことにより、絶縁抵抗、絶縁破壊強度が向上し、また静
電容量と良好度Qを高め、静電容量と良好度Qのバラツ
キを小さくする効果を有する。そして、Nb2O5の含有に
より、絶縁抵抗、絶縁破壊強度は向上するが、Nb2O5
含有量が主成分100重量部に対し、0.3重量部未満はそれ
ほど絶縁破壊強度を大きくなく、静電容量と良好度Qが
低く、また静電容量と良好度Qのバラツキが大きいた
め、本発明の範囲から除外した。一方、Nb2O5の含有量
が主成分に対し、5.0重量部を越えると良好度Q、絶縁
抵抗が低下し、静電容量温度係数がマイナス側に大きく
なり、さらに静電容量の変化の直線性が失われ実用的で
なくなる。
FIG. 2 shows the measurement results. The reason why the content range of the subcomponent Nb 2 O 5 in the derivative layer is limited will be described with reference to FIG. As shown in FIG. 2, by containing Nb 2 O 5 , the insulation resistance and the dielectric breakdown strength are improved, the capacitance and the goodness Q are increased, and the variation between the capacitance and the goodness Q is reduced. Has an effect. And, by the inclusion of Nb 2 O 5 , the insulation resistance and the dielectric breakdown strength are improved, but the Nb 2 O 5 content is less than 0.3 parts by weight with respect to 100 parts by weight of the main component, the dielectric breakdown strength is not so large, Since the capacitance and the degree of goodness Q were low and the variation between the capacitance and the degree of goodness Q was large, they were excluded from the scope of the present invention. On the other hand, when the content of Nb 2 O 5 exceeds 5.0 parts by weight with respect to the main component, the degree of goodness Q, the insulation resistance decreases, the temperature coefficient of capacitance increases on the negative side, and the change in capacitance further decreases. Linearity is lost and is not practical.

なお、実施例における誘電体磁器及び積層セラミック
コンデンサの作製方法では、BaCO3,TiO2,ZrO2,La2O3,Pr
6O11,Nd2O3,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3およびSiO2
使用したが、この方法に限定されるものではなく、所望
の組成比になるようにBaTiO3などの化合物、あるいは炭
酸塩、水酸化物など空気中での加熱により、BaO,TiO2,Z
rO2,La2O3,Pr6O11,Nd2O3,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3
およびSiO2となる化合物を使用しても実施例と同程度の
特性を得ることができる。
In the method of manufacturing the dielectric porcelain and the multilayer ceramic capacitor in Examples, BaCO 3 , TiO 2 , ZrO 2 , La 2 O 3 , Pr
6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO 2 were used, but it is not limited to this method, and the desired composition ratio By heating in air such as BaTiO 3 or a compound such as carbonate or hydroxide, BaO, TiO 2 , Z
rO 2 , La 2 O 3 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3
Even if a compound that becomes SiO 2 is used, the same characteristics as those of the examples can be obtained.

また、主成分をあらかじめ仮焼し、副成分を添加して
も実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponent is added, the same characteristics as those of the embodiment can be obtained.

さらに誘電体磁器用として一般に使用される工業用原
料の酸化チタン、例えばチタン工業(株)製酸化チタン
KA−10、古河工業(株)製酸化チタンFA−55Wには、最
大0.45重量%のNb2O5が含まれるが、これらの酸化チタ
ンを使用して誘電体磁器を作製しても主成分100重量部
に対して、Nb2O5の含有量は最大で0.23重量部であり、
この発明の範囲外であるが、工業用原料の酸化チタン中
のNb2O5量を考慮し、不足分のNb2O5を含有させることに
より、実施例と同程度の特性を得ることができる。
Furthermore, titanium oxide, which is an industrial raw material generally used for dielectric porcelain, such as titanium oxide manufactured by Titanium Industry Co., Ltd.
KA-10, the Furukawa Kogyo Co. titanium oxide FA-55W, including but Nb 2 O 5 up to 0.45 wt%, the main component be made of dielectric ceramics using these titanium oxide For 100 parts by weight, the content of Nb 2 O 5 is at most 0.23 parts by weight,
Although it is outside the scope of the present invention, considering the amount of Nb 2 O 5 in titanium oxide as an industrial raw material, it is possible to obtain the same level of characteristics as those of the examples by including the insufficient Nb 2 O 5. it can.

発明の効果 以上、本発明によると、誘導体層中の4価のTiの一部
を5価のNbで置換することにより生じた陽イオン空孔
で、焼成時の酸素欠陥によるe-を補償し、TiO2が還元さ
れるのを抑制するため、TiとPdとの化合物の生成を防止
できる。その結果、誘電体層と内部電極の界面の密着性
が向上するため、静電容量とQ値が大きく、そのバラツ
キが小さい積層セラミックコンデンサを得ることができ
る。
Effects of the Invention As described above, according to the present invention, cation vacancies generated by substituting a part of tetravalent Ti in a derivative layer with pentavalent Nb compensate for e due to oxygen vacancies during firing. In addition, since the reduction of TiO 2 is suppressed, the formation of a compound of Ti and Pd can be prevented. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation can be obtained.

また従来の誘電体層は焼成時に還元された、TiO2が冷
却過程である程度再酸化されるが、誘電体層の内部、及
び各結晶粒子の内側は再酸化されにくく酸素欠乏状態の
まま残る。この酸素欠乏が電気伝導に寄与し、誘電体層
の絶縁抵抗、絶縁破壊強度を劣化させる。本発明の誘電
体層は、4価のTiの一部を5価のNbで置換することによ
り生じた陽イオン空孔で、焼成時の酸素欠陥によるe-
補償する。従って絶縁抵抗、絶縁破壊強度が従来よりも
向上した積層セラミックコンデンサを得ることができ
る。
In the conventional dielectric layer, TiO 2 reduced during firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal grain are hardly reoxidized and remain in an oxygen-deficient state. This oxygen deficiency contributes to electric conduction and degrades the insulation resistance and dielectric breakdown strength of the dielectric layer. The dielectric layer of the present invention is a cation vacancy generated by substituting a part of tetravalent Ti with pentavalent Nb, and compensates for e due to oxygen deficiency during firing. Therefore, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる誘電体層の主成分の組成範囲を
説明する三元図、第2図は本発明に係る誘電体層の主成
分0.11BaO−0.63{(TiO20.9(ZrO20.1}−0.21Nd2
O3に対する副成分Nb2O5の含有効果を、誘導体厚み;12μ
m、内部電極重なり寸法;1.2mm×0.7mm、誘電体層数:19
の積層構造をもつ積層セラミックコンデンサの電気特性
で示すグラブである。
FIG. 1 is a ternary diagram for explaining the composition range of the main component of the dielectric layer according to the present invention, and FIG. 2 is the ternary diagram of the main component of the dielectric layer according to the present invention, 0.11BaO−0.63 {(TiO 2 ) 0.9 (ZrO). 2 ) 0.1 } −0.21Nd 2
The effect of containing the subcomponent Nb 2 O 5 on O 3 was calculated as the derivative thickness: 12 μ
m, overlap size of internal electrodes; 1.2 mm x 0.7 mm, number of dielectric layers: 19
3 is a glove indicated by electrical characteristics of the multilayer ceramic capacitor having the multilayer structure of FIG.

フロントページの続き (56)参考文献 特開 昭62−56361(JP,A) 特開 昭62−17069(JP,A) 特開 昭57−90808(JP,A) 特開 昭63−246810(JP,A) 特開 昭61−291457(JP,A) 特開 昭57−17463(JP,A) 特開 昭59−154703(JP,A) 「工業材料」1985年4月(第33巻、第 4号)P.39−48 「ニューケラス3 積層セラミックコ ンデンサ」1988年9月26日(株)学献社 発行、P.19〜25Continuation of the front page (56) References JP-A-62-56361 (JP, A) JP-A-62-17069 (JP, A) JP-A-57-90808 (JP, A) JP-A-63-246810 (JP, A) JP-A-61-291457 (JP, A) JP-A-57-17463 (JP, A) JP-A-59-154703 (JP, A) "Industrial materials", April 1985 (Vol. 33, No. No. 4) p. 39-48 “New Keras 3 Multilayer Ceramic Capacitor” Published by Gakudensha Co., Ltd. on September 26, 1988, p. 19-25

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体層と内部電極とを交互に積層した積
層体と、この積層体の前記内部電極の露出した端面に設
けた外部電極とを備え、前記誘電体層は、一般式xBaO−
y{(TiO2(1-m)(ZrO2}−zRe2O3(ただし、x
+y+z=1.00,0.001≦m≦0.200,Re2O3は、La2O3,Pr2
O11/3,Nd2O3,Sm2O3から選ばれる少なくとも1種類以上
の希土類元素の酸化物。)と表した時、x,y,zが以下の
表に示す各点a,b,c,d,e,fで囲まれるモル比の範囲から
なる主成分100重量部に対し、副成分としてNb2O5を0.3
〜5.0重量部含有したものであり、前記内部電極は、パ
ラジウムを含有することを特徴とする積層セラミックコ
ンデンサ。
1. A laminate comprising alternately laminated dielectric layers and internal electrodes, and an external electrode provided on an exposed end face of the internal electrode of the laminate, wherein the dielectric layer has a general formula xBaO −
y {(TiO 2 ) (1-m) (ZrO 2 ) m } -zRe 2 O 3 (where x
+ Y + z = 1.00, 0.001 ≦ m ≦ 0.200, Re 2 O 3 is La 2 O 3 , Pr 2
An oxide of at least one or more rare earth elements selected from O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X, y, z are the sub-components for 100 parts by weight of the main component consisting of the molar ratio range surrounded by the points a, b, c, d, e, f shown in the table below. Nb 2 O 5 to 0.3
-5% by weight, wherein the internal electrode contains palladium.
【請求項2】誘電体層の主成分と副成分を合わせたもの
100重量部に対して、さらにマンガン、亜鉛、鉄、及び
ケイ素の酸化物の中から選ばれる少なくとも1種類以上
をそれぞれMnO2,ZnO,Fe2O3及びSiO2に換算して0.05〜1.
00重量部含有させたことを特徴とする特許請求の範囲第
1項に記載の積層セラミックコンデンサ。
2. A combination of a main component and a sub-component of a dielectric layer.
Per 100 parts by weight, more manganese, zinc, iron, and at least one or more, respectively MnO 2, ZnO selected from the oxides of silicon, in terms of Fe 2 O 3 and SiO 2 0.05 to 1.
2. The multilayer ceramic capacitor according to claim 1, wherein said multilayer ceramic capacitor is contained by 00 parts by weight.
JP1062475A 1989-03-15 1989-03-15 Multilayer ceramic capacitors Expired - Lifetime JP2933634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062475A JP2933634B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062475A JP2933634B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02242524A JPH02242524A (en) 1990-09-26
JP2933634B2 true JP2933634B2 (en) 1999-08-16

Family

ID=13201254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062475A Expired - Lifetime JP2933634B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2933634B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930669B2 (en) * 1980-07-01 1984-07-28 共立窯業原料株式会社 Raw material composition for manufacturing high dielectric constant porcelain
JPS5790808A (en) * 1980-11-28 1982-06-05 Fujitsu Ltd Porcelain composition having high permittivity
JPS61291457A (en) * 1985-06-14 1986-12-22 タム・セラミックス・インコーポレイテッド Dielectric composition
JPS6217069A (en) * 1985-07-15 1987-01-26 三菱電機株式会社 Dielectric ceramic material
JPS6256361A (en) * 1985-09-05 1987-03-12 富士チタン工業株式会社 Dielectric ceramic composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「ニューケラス3 積層セラミックコンデンサ」1988年9月26日(株)学献社発行、P.19〜25
「工業材料」1985年4月(第33巻、第4号)P.39−48

Also Published As

Publication number Publication date
JPH02242524A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
JP4991564B2 (en) Multilayer ceramic capacitor
JP3838036B2 (en) Dielectric porcelain composition, capacitor using the same, and method of manufacturing the same
JP3568030B2 (en) Method for producing dielectric ceramic composition and method for producing electronic component containing dielectric layer
JP2003040671A (en) Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP2938468B2 (en) Multilayer ceramic capacitors
JP2899302B2 (en) Multilayer ceramic capacitors
JP2899303B2 (en) Multilayer ceramic capacitors
JP2933634B2 (en) Multilayer ceramic capacitors
JP2917505B2 (en) Multilayer ceramic capacitors
JP2933635B2 (en) Multilayer ceramic capacitors
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP2907437B2 (en) Multilayer ceramic capacitors
JP2847767B2 (en) Multilayer ceramic capacitors
JP2928259B2 (en) Multilayer ceramic capacitors
JP2928258B2 (en) Multilayer ceramic capacitors
JP2928260B2 (en) Multilayer ceramic capacitors
JP2847766B2 (en) Multilayer ceramic capacitors
JP4771817B2 (en) Multilayer ceramic capacitor
JP2000169226A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same and its production
JP2684754B2 (en) Dielectric porcelain composition
JP2847765B2 (en) Multilayer ceramic capacitors
JPH0912364A (en) Dielectric porcelain composition
JP2936661B2 (en) Dielectric porcelain composition
JP2917454B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

EXPY Cancellation because of completion of term