JP2899303B2 - Multilayer ceramic capacitors - Google Patents

Multilayer ceramic capacitors

Info

Publication number
JP2899303B2
JP2899303B2 JP1062408A JP6240889A JP2899303B2 JP 2899303 B2 JP2899303 B2 JP 2899303B2 JP 1062408 A JP1062408 A JP 1062408A JP 6240889 A JP6240889 A JP 6240889A JP 2899303 B2 JP2899303 B2 JP 2899303B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
dielectric
ceramic capacitor
dielectric layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1062408A
Other languages
Japanese (ja)
Other versions
JPH02242517A (en
Inventor
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062408A priority Critical patent/JP2899303B2/en
Publication of JPH02242517A publication Critical patent/JPH02242517A/en
Application granted granted Critical
Publication of JP2899303B2 publication Critical patent/JP2899303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパラジウムを含む内部電極を有する積層セラ
ミックコンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having an internal electrode containing palladium.

従来の技術 例えば0.11BaO−0.88TiO2−0.21Nd2O3等のBaO−TiO2
−Nd2O3系の誘電体材料を使用して誘電体層を形成し、
パラジウムを内部電極とした積層セラミックコンデンサ
であった。
Description of the Related Art For example 0.11BaO-0.88TiO 2 -0.21Nd 2 BaO- TiO 2 of O 3,
Forming a dielectric layer using -Nd 2 O 3 based dielectric material,
It was a multilayer ceramic capacitor using palladium as an internal electrode.

発明が解決しようとする課題 上記構造の積層セラミックコンデンサにおいては、内
部電極のデラミネーションの発生を防止するために、内
部電極を薄くする。しかしながら、Ba/Ti比の小さいも
のなど一般的にTiO2を多く含む誘電体層は焼成する際、
誘電体層中に含まれる有機バインダーなどにより、TiO2
が還元される。そして還元により生じたTiが内部電極の
Pdと化合物を作るためか、内部電極が体積膨張し、その
結果内部電極は一見玉状のようになり、内部電極切れを
起こし、誘電体層とPdを含む内部電極との界面の密着性
が低下する。その結果、静電容量とQ値が低下し、その
バラツキが大きくなるという問題点を有していた。
Problems to be Solved by the Invention In the multilayer ceramic capacitor having the above structure, the internal electrodes are made thin in order to prevent the occurrence of delamination of the internal electrodes. However, when the dielectric layer containing a large amount of TiO 2 such as a material having a small Ba / Ti ratio is generally fired,
The organic binder contained in the dielectric layer allows TiO 2
Is reduced. And the Ti generated by the reduction is
Perhaps because of the formation of a compound with Pd, the internal electrode expands in volume, and as a result, the internal electrode looks like a bead, causing the internal electrode to break, and the adhesion at the interface between the dielectric layer and the internal electrode containing Pd is reduced. descend. As a result, there has been a problem that the capacitance and the Q value decrease and the variation increases.

そこで本発明の積層セラミックコンデンサは、内部電
極切れを抑制することにより、静電容量とQ値が大き
く、そのバラツキが小さい積層セラミックコンデンサを
提供することを目的とするものである。
Therefore, an object of the multilayer ceramic capacitor of the present invention is to provide a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation by suppressing disconnection of internal electrodes.

課題を解決するための手段 この目的を達成するために、本発明の積層セラミック
コンデンサは、誘電体層と内部電極とを交互に積層した
積層体と、この積層体の前記内部電極の露出した端面に
設けた外部電極とを備え、前記誘電体層は、一般式xBaO
−yTiO2−zRe2O3(ただし、x+y+z=1.00,Re2O
3は、La2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なく
とも一種以上の希土類元素の酸化物。)と表した時、x,
y,zが以下の表に示す各点a,b,c,d,e,fで囲まれるモル比
の範囲からなる主成分100重量部に対し、副成分としてV
2O5を0.005〜2.000重量部含有したものであり、前記内
部電極はパラジウムを含有することを特徴とするもので
ある。
Means for Solving the Problems In order to achieve this object, a multilayer ceramic capacitor according to the present invention includes a laminated body in which dielectric layers and internal electrodes are alternately laminated, and an exposed end face of the internal electrode of the laminated body. And an external electrode provided in the dielectric layer, wherein the dielectric layer has a general formula xBaO
−yTiO 2 −zRe 2 O 3 (where x + y + z = 1.00, Re 2 O
3 is an oxide of at least one rare earth element selected from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X,
y, z is 100% by weight of the main component consisting of the range of the molar ratio surrounded by each point a, b, c, d, e, f shown in the following table,
The 2 O 5 is obtained by containing from 0.005 to 2.000 part by weight, the internal electrode is characterized in that it contains palladium.

作用 この構成によると、誘電体層中の4価のTiの一部を5
価のVで置換することによりTiO2が還元されるのを抑制
し、TiとPdとの化合物の生成を防止する。その結果、誘
電体層と内部電極の界面の密着性が向上するため、静電
容量とQ値が大きく、そのバラツキが小さい積層セラミ
ックコンデンサとなる。
Action According to this configuration, a part of the tetravalent Ti in the dielectric layer is reduced to 5%.
Substitution with a valence V suppresses the reduction of TiO 2 and prevents the formation of a compound of Ti and Pd. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation is obtained.

また本来の誘電体層は焼成により還元されたTiO2が冷
却過程である程度再酸化されるが、誘電体層の内部、及
び各結晶粒子の内側は再酸化されにくく酸素欠乏状態の
まま残る。従って酸素原子の持つ有効電荷+2eをチタン
原子上の3d電子で中和することにより、各酸素空孔につ
いて2個のTi3+が形成され、Ti3+を介した電子ホッピン
グによって、誘導体層の絶縁抵抗、絶縁破壊強度を劣化
させる。そこで本発明は誘電体層中の4価のTiの一部を
5価のVで置換することにより生じた陽イオン空孔で、
焼成時の酸素欠陥によるe-を補償する。その結果絶縁抵
抗、絶縁破壊強度が従来よりも向上した積層セラミック
コンデンサを得ることができる。
In the original dielectric layer, TiO 2 reduced by firing is reoxidized to some extent in the cooling process, but the inside of the dielectric layer and the inside of each crystal particle are hardly reoxidized and remain in an oxygen-deficient state. The effective charge + 2e having an oxygen atom by neutralization with 3d electrons on the titanium atom Accordingly, two Ti 3+ for each oxygen vacancies are formed by electron hopping through the Ti 3+, the dielectric layer It degrades insulation resistance and dielectric breakdown strength. Therefore, the present invention provides a cation vacancy generated by substituting a part of tetravalent Ti in the dielectric layer with pentavalent V,
Due to oxygen defect during firing e - to compensate for. As a result, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with conventional ones.

実施例 以下に、本発明を具体的実施例により説明する。EXAMPLES Hereinafter, the present invention will be described with reference to specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3およびV2O3粉末を下記の第1表に
示す組成比になるように秤量し、めのうボールを備えた
ゴム内張りのボールミルに純水とともに入れ、湿式混合
後、脱水乾燥した。この乾燥粉末を高アルミナ質のルツ
ボに入れ、空気中で1100℃にて2時間仮焼した。この仮
焼粉末をめのうボールを備えたゴム内張りのボールミル
に純水とともに入れ、湿式混合後、脱水乾燥した。この
粉砕粉末に、有機バインダーを加え、均質とした後、32
メッシュのふるいを通して整粒し、金型と油圧プレスを
用いて成形圧力1ton/cm2で、直径15mm、厚み0.4mmに成
形した。次いで成形円板をジルコニア粉末を敷いたアル
ミナ質のサヤに入れ、空気中にて下記の第1表に示す組
成比の誘電体磁器を得た。このようにして得られた誘電
体磁器円板は、厚みと直径を測定し、誘電率、良好度
Q、静電容量温度係数測定用試料は、誘電体磁器円板の
両面全体に銀電極を焼き付け、絶縁抵抗、絶縁破壊強度
測定用試料は、誘電体磁器円板の外周より内側に1mmの
幅で銀電極のない部分を設け、銀電極を焼き付けた。そ
の誘電率、良好度Q、静電容量温度係数はYHP社製デジ
タルLCRメータのモデル4275Aを使用し、測定温度20℃、
測定電圧1.0Vrms、測定周波数1MHzでの測定より求め
た。なお、静電容量温度係数は、20℃と85℃の静電容量
を用いて、次式により求めた。
(Example 1) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3 and V 2 O 3 powders are weighed so as to have the composition ratios shown in Table 1 below, and purified in a rubber-lined ball mill equipped with an agate ball. It was put together with water, wet-mixed, and dehydrated and dried. The dried powder was placed in a high alumina crucible and calcined in air at 1100 ° C. for 2 hours. The calcined powder was put together with pure water in a rubber-lined ball mill equipped with agate balls, wet-mixed, and dehydrated and dried. An organic binder was added to the pulverized powder to make it homogenous.
The mixture was sized through a mesh sieve and formed into a diameter of 15 mm and a thickness of 0.4 mm using a mold and a hydraulic press at a forming pressure of 1 ton / cm 2 . Next, the molded disk was placed in an alumina sheath covered with zirconia powder, and a dielectric ceramic having a composition ratio shown in Table 1 below was obtained in air. The dielectric porcelain disk thus obtained was measured for thickness and diameter, and the dielectric constant, goodness Q and capacitance temperature coefficient measurement sample were provided with silver electrodes on both surfaces of the dielectric porcelain disk. For the sample for measurement of baking, insulation resistance, and dielectric strength, a portion having no silver electrode with a width of 1 mm was provided inside the outer periphery of the dielectric porcelain disk, and the silver electrode was baked. The dielectric constant, goodness Q and capacitance temperature coefficient were measured using a digital LCR meter model 4275A manufactured by YHP, at a measurement temperature of 20 ° C.
It was determined from measurement at a measurement voltage of 1.0 Vrms and a measurement frequency of 1 MHz. The capacitance temperature coefficient was obtained by the following equation using the capacitances at 20 ° C. and 85 ° C.

TC=(C−C0)/C0×1/65×106 TC:静電容量温度係数(ppm/℃) C0:20℃での静電容量(pF) C :85℃の静電容量(pF) また、誘電率は次式より求めた。TC = (C−C 0 ) / C 0 × 1/65 × 10 6 TC: Temperature coefficient of capacitance (ppm / ° C) C 0 : Capacitance at 20 ° C (pF) C: Electrostatic capacitance at 85 ° C Capacitance (pF) The dielectric constant was determined by the following equation.

K=143.8×C0×t(D2) K :誘電率 C0:20℃での静電容量(pF) D :誘電体磁器の直径(mm) t :誘電体磁器の厚み(mm) さらに、絶縁抵抗は、YHP社製HRメータのモデル4329A
を使用し、測定電圧50V.D.C.、測定時間1分間による測
定により求めた。
K = 143.8 × C 0 × t (D 2 ) K: Dielectric constant C 0 : Capacitance at 20 ° C. (pF) D: Diameter of dielectric ceramic (mm) t: Thickness of dielectric ceramic (mm) , Insulation resistance is YHP HR meter model 4329A
And a measurement voltage of 50 V DC for a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業(株)製高電
圧電源PHS35K−3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50/secにより求めた絶縁被壊電圧を誘
電体厚みで除算し、1mm当たりの絶縁破壊強度とした。
また、結晶粒径は、倍率400での光学顕微鏡観察により
求めた。
The dielectric breakdown strength was determined by using a high voltage power supply PHS35K-3 manufactured by Kikusui Electronics Co., Ltd., placing the sample in silicon oil, and measuring the dielectric breakdown voltage obtained at a step-up rate of 50 / sec by the dielectric thickness. The result was divided to obtain the dielectric breakdown strength per 1 mm.
Further, the crystal grain size was determined by observation with an optical microscope at a magnification of 400.

試験条件を第1表に併せて示し、試験結果を下記の第
2表に示す。
The test conditions are shown in Table 1, and the test results are shown in Table 2 below.

ここで第1図は誘電体層の主成分の組成範囲を示す三
元図であり、主成分の組成範囲を限定した理由を第1図
を参照しながら説明する。すなわち、A領域では焼結が
著しく困難である。また、B領域では良好度Qが低下
し、実用的でなくなる。さらに、C,D領域では静電容量
温度係数がマイナス側に大きくなりすぎて実用的でなく
なる。そして、E領域では静電容量温度係数がプラス方
向に移行するが、誘電率が小さく実用的でなくなる。ま
た、Re2O3をLa2O3,Pr2O11/3,Nd2O3,Sm2O3から選ぶこと
により、La2O3,Pr2O11/3,Nd2O3,Sm2O3の順で誘電率を大
きく下げることなく、静電容量温度係数をプラス方向に
移行することが可能であり、La2O3,Pr2O11/3,Nd2O3,Sm2
O3の一種あるいは組み合わせにより静電容量温度係数の
調整が可能である。
Here, FIG. 1 is a ternary diagram showing the composition range of the main component of the dielectric layer, and the reason for limiting the composition range of the main component will be described with reference to FIG. That is, sintering is extremely difficult in the region A. Further, in the region B, the degree of goodness Q is reduced, and is not practical. Furthermore, in the C and D regions, the temperature coefficient of capacitance becomes too large on the minus side, which is not practical. Then, in the E region, the capacitance temperature coefficient shifts in the positive direction, but the dielectric constant is too small to be practical. Also, by selecting Re 2 O 3 from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Without significantly lowering the dielectric constant in the order of Sm 2 O 3 , it is possible to shift the temperature coefficient of capacitance in the positive direction, La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm Two
The capacitance temperature coefficient can be adjusted by one or a combination of O 3 .

(実施例2) 出発原料には化学的に高純度のBaCo3,TiO2,La2O3,Pr6
O11,Nd2O5,Sm2O3,V2O5,MnO2,ZnO,Fe2O3およびSiO2粉末
を第3表に示す組成比になるように秤量し、それ以降は
実施例1の場合と同様に処理して下記の第3表に示す組
成比の誘電体磁器を得た。
(Example 2) Chemically high-purity BaCo 3 , TiO 2 , La 2 O 3 , Pr 6
O 11 , Nd 2 O 5 , Sm 2 O 3 , V 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO 2 powders were weighed so as to have the composition ratios shown in Table 3, and thereafter The same treatment as in Example 1 was performed to obtain a dielectric porcelain having a composition ratio shown in Table 3 below.

これらの試料の試験方法は、実施例1と同様であり、
試験条件を第3表に併せて示し、試験結果を下記の第4
表に示す。
The test method for these samples is the same as in Example 1,
The test conditions are shown in Table 3 and the test results are shown in Table 4 below.
It is shown in the table.

このようにマンガン、亜鉛、鉄及びケイ素の酸化物か
ら選ばれる少なくとも一種以上をそれぞれMnO2,ZnO,Fe2
O3及びSiO2に換算して0.05〜1.00重量部添加することに
より、誘電体磁器の焼結性を向上させることができる。
その添加量が0.05重量部未満では添加効果がなく、一方
1.00重量部を越えると誘電率が低下し実用的でなくな
る。
Thus, at least one selected from manganese, zinc, iron and oxides of silicon is MnO 2 , ZnO, Fe 2
By adding 0.05 to 1.00 parts by weight in terms of O 3 and SiO 2 , the sinterability of the dielectric ceramic can be improved.
If the addition amount is less than 0.05 parts by weight, there is no effect of addition, while
If it exceeds 1.00 parts by weight, the dielectric constant is lowered, and it is not practical.

(実施例3) 出発原料には化学的に高純度のBaCo3,TiO2,La2O3,Pr6
O11,Nd2O5,Sm2O3およびV2O5粉末を使用し、主成分0.11B
aO−0.68TiO2−0.21Nd2O3に対し、V2O5を0,0.001,0.00
5,0.010,0.100,1.000,2.000,3.000wt%含有した仮焼粉
を実施例1と同様の方法で作製する。ただし、V2O5の含
有量が0,0.001,3.000wt%は本発明の範囲外であり、0.0
05,0.010,0.100,1.000,2.000wt%は本発明の範囲内であ
る。
Example 3 As starting materials, chemically pure BaCo 3 , TiO 2 , La 2 O 3 , and Pr 6 were used.
Using O 11 , Nd 2 O 5 , Sm 2 O 3 and V 2 O 5 powder, 0.11B main component
aO−0.68TiO 2 −0.21Nd 2 O 3 , V 2 O 5 is 0,0.001,0.00
A calcined powder containing 5,0.010,0.100,1.000,2.000,3.000 wt% is prepared in the same manner as in Example 1. However, the content of V 2 O 5 of 0,0.001,3.000 wt% is outside the scope of the present invention,
05,0.010,0.100,1.000,2.000wt% is within the scope of the present invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤、分散
剤、有機溶剤を加え、アルミナボールを備えたポリエチ
レン製ポットで混合し、スラリーを作製した。混合後、
300メッシュのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエス
テルフィルム上にシートを成形した。
An organic binder, a plasticizer, a dispersant, and an organic solvent were added to the calcined and pulverized powder, and mixed with a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing
Filtration was performed using a 300 mesh nylon cloth. The slurry after filtration was formed into a sheet on a polyester film that had been subjected to a mold release treatment by a doctor blade so that the dielectric thickness after sintering was 12 μm.

次に、ポリエステルフィルムから剥がしたシート10枚
を支持台の上に積層した。この上に、昭栄化学(株)製
内部電極パラジウムペーストML−3724を焼結後の内部電
極厚みが2μmとなるようにスクリーン印刷し、乾燥し
た。この上にポリエステルフィルムから剥がしたシート
1枚を積層した。この上に、焼結後の内部電極重なり寸
法が1.2mm×0.7mmとなるように印刷位置をずらして内部
電極パラジウムペーストを印刷し、乾燥後、ポリエステ
ルフィルムから剥がしたシート1枚を積層した。これら
の操作を、誘電体層数が19となるまで繰り返した。この
上に、ポリエステルフィルムから剥がしたシート10枚を
積層した。この積層体を焼結後、内部電極重なり寸法が
1.2mm×0.7mm、誘電体厚みが12μm、誘電体層数が19の
積層構造を持つ積層セラミックコンデンサとなるように
切断した。この切断した試料は、ジルコニア粉末を敷い
たアルミナ質のヤサに入れ、空気中にて室温から350℃
まで5℃/hrで昇温し、350℃より100℃/hrで昇温し、12
70℃で2時間焼成後、100℃/hrで室温まで降温した。次
いで、焼成後の試料は、耐水サンドペーパーを内側に貼
ったポリエチレンポットに純水と共に入れ、ポリエチレ
ンポットを回転させ焼成後の試料面を研磨し、外部電極
と接合する内部電極部分を充分露出させた。この試料は
ポリエチレンポットより取り出し乾燥後、内部電極露出
部分に銀の外部電極を焼き付け、内部電極と導通させ、
積層セラミックコンデンサを作製した。
Next, ten sheets peeled from the polyester film were laminated on a support. On this, an internal electrode palladium paste ML-3724 manufactured by Shoei Chemical Co., Ltd. was screen-printed such that the internal electrode thickness after sintering became 2 μm, and dried. One sheet peeled from the polyester film was laminated thereon. On this, the printing position was shifted so that the internal electrode overlapping dimension after sintering was 1.2 mm × 0.7 mm, the internal electrode palladium paste was printed, and after drying, one sheet peeled off from the polyester film was laminated. These operations were repeated until the number of dielectric layers reached 19. On this, 10 sheets peeled from the polyester film were laminated. After sintering this laminate, the internal electrode overlap dimension
The multilayer ceramic capacitor was cut into a laminated ceramic capacitor having a laminated structure of 1.2 mm × 0.7 mm, a dielectric thickness of 12 μm, and 19 dielectric layers. The cut sample was placed in an alumina-like layer covered with zirconia powder, and was heated from room temperature to 350 ° C. in air.
Up to 5 ° C / hr up to 350 ° C and 100 ° C / hr
After firing at 70 ° C. for 2 hours, the temperature was lowered to room temperature at 100 ° C./hr. Next, the fired sample is put together with pure water into a polyethylene pot with a waterproof sandpaper stuck on the inside, and the polyethylene pot is rotated to polish the fired sample surface to sufficiently expose the internal electrode portion to be joined to the external electrode. Was. This sample was taken out of the polyethylene pot and dried, and then a silver external electrode was baked on the exposed portion of the internal electrode to make conduction with the internal electrode.
A multilayer ceramic capacitor was manufactured.

これらの試料の静電容量、良好度Q、静電容量温度係
数、絶縁抵抗、絶縁破壊強度は実施例1と同様の条件で
測定により求めた。また、積層構造の確認は、積層セラ
ミックコンデンサの長さ方向および幅方向の約1/2を研
磨断面を、内部電極の重なり寸法は倍率100、誘電体厚
みと内部電極厚みは倍率400での光学顕微鏡観察により
求めた。
The capacitance, goodness Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength of these samples were determined by measurement under the same conditions as in Example 1. In addition, the confirmation of the laminated structure was performed by polishing about 断面 of the length and width directions of the multilayer ceramic capacitor in a polished cross section, the overlap size of the internal electrodes was 100, and the dielectric thickness and internal electrode thickness were 400 magnifications. It was determined by microscopic observation.

この測定結果を第2図に示す。この第2図を用いて誘
電体層中の副成分V2O5の含有範囲を限定した理由をグラ
フで説明する。第2図に示すようにV2O5を含有すること
により、絶縁抵抗、絶縁破壊強度が向上し、また静電容
量と良好度Qを高め、静電容量と良好度Qのバラツキを
小さくする効果を有する。そして、V2O5の含有により、
絶縁抵抗、絶縁破壊強度は向上するが、V2O5の含有量が
主成分100重量部に対し、0.005重量部未満はそれほど絶
縁破壊強度が大きくなく、静電容量と良好度Qが低く、
また静電容量と良好度Qのバラツキが大きいため、本発
明の範囲から除外した。一方、V2O5の含有量が主成分に
対し、2.000重量部を越えると良好度Q、絶縁抵抗が低
下し、実用的でなくなる。
FIG. 2 shows the measurement results. The reason why the content range of the subcomponent V 2 O 5 in the dielectric layer is limited will be described with reference to FIG. 2 using a graph. As shown in FIG. 2, by containing V 2 O 5 , the insulation resistance and the dielectric breakdown strength are improved, the capacitance and the goodness Q are increased, and the variation between the capacitance and the goodness Q is reduced. Has an effect. And, due to the inclusion of V 2 O 5 ,
Although the insulation resistance and the dielectric breakdown strength are improved, the content of V 2 O 5 is less than 0.005 parts by weight with respect to 100 parts by weight of the main component.
In addition, since the variation between the capacitance and the goodness Q was large, it was excluded from the scope of the present invention. On the other hand, if the content of V 2 O 5 exceeds 2.000 parts by weight with respect to the main component, the degree of goodness Q and the insulation resistance are reduced, making it impractical.

なお、実施例における誘電体磁器及び積層セラミック
コンデンサの作製方法では、BaCo3,TiO2,La2O3,Pr6O11,
Nd2O3,Sm2O3,V2O5,MnO2,ZnO,Fe2O3およびSiO2を使用し
たが、この方法に限定されるものではなく、所望の組成
比になるようにBaTiO3などの化合物、あるいは炭酸塩、
水酸化物など空気中での加熱により、BaO,TiO2,La2O3,P
r6O11,Nd2O3,Sm2O3,V2O5,MnO2,ZnO,Fe2O3およびSiO2
なる化合物を使用しても実施例と同程度の特性を得るこ
とができる。
Incidentally, in the method of manufacturing dielectric ceramics and multilayer ceramic capacitors in the examples, BaCo 3 , TiO 2 , La 2 O 3 , Pr 6 O 11 ,
Nd 2 O 3 , Sm 2 O 3 , V 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO 2 were used, but it is not limited to this method, so that a desired composition ratio is obtained. Compounds such as BaTiO 3 or carbonates,
BaO, TiO 2 , La 2 O 3 , P
r 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , V 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and the same properties as in the example can be obtained by using compounds that become SiO 2 Can be.

また、主成分をあらかじめ仮焼し、副成分を添加して
も実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponent is added, the same characteristics as those of the embodiment can be obtained.

発明の効果 以上本発明によると、誘電体層中の4価のTiの一部を
5価のVで置換することにより生じた陽イオン空孔で、
焼成時の酸素欠陥によるe-を補償し、TiO2が還元される
のを抑制するため、TiとPdとの化合物の生成を防止でき
る。その結果、誘電体層と内部電極の界面の密着性が向
上するため、静電容量とQ値が大きく、そのバラツキが
小さい積層セラミックコンデンサを得ることができる。
Effects of the Invention According to the present invention as described above, cation vacancies generated by replacing a part of tetravalent Ti in a dielectric layer with pentavalent V,
Since e due to oxygen deficiency during firing is compensated for and TiO 2 is suppressed from being reduced, the formation of a compound of Ti and Pd can be prevented. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation can be obtained.

また従来の誘電体層は焼成時に還元されたTiO2が冷却
過程である程度再酸化されるが、誘電体層の内部、及び
各結晶粒子の内側は再酸化されにくく酸素欠乏状態のま
ま残る。この酸素欠乏が電気伝導に寄与し、誘電体層の
絶縁抵抗、絶縁破壊強度を劣化させる。本発明の誘電体
層は、4価のTiの一部を5価のVで置換することにより
生じた陽イオン空孔で、焼成時の酸素欠陥によるe-を補
償する。従って絶縁抵抗、絶縁破壊強度が従来よりも向
上した積層セラミックコンデンサを得ることができる。
Further, in the conventional dielectric layer, TiO 2 reduced during firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal particle are hardly reoxidized and remain in an oxygen-deficient state. This oxygen deficiency contributes to electric conduction and degrades the insulation resistance and dielectric breakdown strength of the dielectric layer. The dielectric layer of the present invention compensates for e due to oxygen vacancies during firing, by cation vacancies generated by substituting a part of tetravalent Ti with pentavalent V. Therefore, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる誘電体層の主成分の組成物の組
成範囲を説明する三元図、第2図は本発明に係る誘電体
層の主成分0.11BaO−0.63TiO2−0.21Nd2O3に対する副成
分V2O3の含有効果を、誘電体厚み:12μm、内部電極重
なり寸法:1.2mm×0.7mm、誘電体層数:19の積層構造をも
つ積層セラミックコンデンサの電気特性で示すグラフで
ある。
FIG. 1 is a ternary diagram for explaining the composition range of the composition of the main component of the dielectric layer according to the present invention, and FIG. 2 is the ternary diagram of the main component of the dielectric layer according to the present invention, 0.11BaO-0.63TiO 2 -0.21Nd. the effect of containing subcomponent V 2 O 3 with respect to 2 O 3, a dielectric thickness: 12 [mu] m, the internal electrodes overlap dimension: 1.2 mm × 0.7 mm, the dielectric layer stars 19 electrical characteristics of the multilayer ceramic capacitor having a laminated structure of It is a graph shown.

フロントページの続き (56)参考文献 特開 昭62−83364(JP,A) 特開 昭49−59299(JP,A) 特開 昭62−56361(JP,A) 特開 昭63−298910(JP,A) 特開 昭63−292509(JP,A) 特開 昭62−17069(JP,A) 特開 昭59−154703(JP,A) 特開 昭63−246810(JP,A) 「工業材料」1985年4月号第33巻第4 号 P.39〜48 「ニューケラス3 積層セラミックコ ンデンサ」ニューケラス編集委員会編 1988年9月26日 (株)学献社発行 P.19〜25Continuation of front page (56) References JP-A-62-83364 (JP, A) JP-A-49-59299 (JP, A) JP-A-62-56361 (JP, A) JP-A-63-298910 (JP, A) JP-A-63-292509 (JP, A) JP-A-62-17069 (JP, A) JP-A-59-154703 (JP, A) JP-A-63-246810 (JP, A) April 1985, Vol. 33, No. 4, p. 39-48 “New Keras 3 Multilayer Ceramic Capacitor,” edited by the New Keras Editing Committee September 26, 1988 Published by Gakudensha Co., Ltd. 19-25

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体層と内部電極とを交互に積層した積
層体と、この積層体の前記内部電極の露出した端面に設
けた外部電極とを備え、前記誘電体層は、一般式xBaO−
yTiO2−zRe2O3(ただし、x+y+z=1.00、Re2O3は、
La2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なくとも一
種類以上の希土類元素の酸化物。)と表した時、x,y,z
が以下の表に示す各点a,b,c,d,e,fで囲まれるモル比の
範囲からなる主成分100重量部に対し、副成分としてV2O
5を0.005〜2.000重量部含有したものであり、前記内部
電極は、パラジウムを含有することを特徴とする積層セ
ラミックコンデンサ。
1. A laminate comprising alternately laminated dielectric layers and internal electrodes, and an external electrode provided on an exposed end face of the internal electrode of the laminate, wherein the dielectric layer has a general formula xBaO −
yTiO 2 -zRe 2 O 3 (However, x + y + z = 1.00, Re 2 O 3 is
An oxide of at least one or more rare earth elements selected from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X, y, z
Is 100 parts by weight of a main component consisting of a range of molar ratios surrounded by points a, b, c, d, e, and f shown in the following table, and V 2 O
5. A multilayer ceramic capacitor containing 0.005 to 2.000 parts by weight of 5 and wherein the internal electrode contains palladium.
【請求項2】誘電体層の主成分と副成分を合わせたもの
100重量部に対して、さらにマンガン、亜鉛、鉄、及び
ケイ素の酸化物の中から選ばれる少なくとも一種類以上
をそれぞれMnO2,ZnO,Fe2O3及びSiO2に換算して0.05〜1.
00重量部含有させたことを特徴とする特許請求の範囲第
1項に記載の積層セラミックコンデンサ。
2. A combination of a main component and a sub-component of a dielectric layer.
Per 100 parts by weight, more manganese, zinc, iron, and at least one or more, respectively MnO 2, ZnO selected from the oxides of silicon, in terms of Fe 2 O 3 and SiO 2 0.05 to 1.
2. The multilayer ceramic capacitor according to claim 1, wherein said multilayer ceramic capacitor is contained by 00 parts by weight.
JP1062408A 1989-03-15 1989-03-15 Multilayer ceramic capacitors Expired - Fee Related JP2899303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062408A JP2899303B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062408A JP2899303B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02242517A JPH02242517A (en) 1990-09-26
JP2899303B2 true JP2899303B2 (en) 1999-06-02

Family

ID=13199286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062408A Expired - Fee Related JP2899303B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2899303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284416B (en) * 1993-12-02 1997-09-17 Kyocera Corp Dielectric ceramic composition
JP2000143341A (en) * 1998-09-11 2000-05-23 Murata Mfg Co Ltd Dielectric ceramic composition and multilayer ceramic part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805214A (en) * 1972-08-22 1974-04-16 Amp Inc Resilient electrical contact
JPS6217069A (en) * 1985-07-15 1987-01-26 三菱電機株式会社 Dielectric ceramic material
JPS6256361A (en) * 1985-09-05 1987-03-12 富士チタン工業株式会社 Dielectric ceramic composition
JPH0712971B2 (en) * 1985-10-08 1995-02-15 宇部興産株式会社 Dielectric porcelain composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「ニューケラス3 積層セラミックコンデンサ」ニューケラス編集委員会編 1988年9月26日 (株)学献社発行 P.19〜25
「工業材料」1985年4月号第33巻第4号 P.39〜48

Also Published As

Publication number Publication date
JPH02242517A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
JP3568030B2 (en) Method for producing dielectric ceramic composition and method for producing electronic component containing dielectric layer
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6881433B2 (en) Dielectric compositions, dielectric elements, electronic components and laminated electronic components
KR20060059191A (en) Multi layer ceramic capacitor and method of manufacturing the same
EP1496030B1 (en) Nonreducing dielectric ceramic, its production method, and multilayer ceramic capacitor
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
JP2001351828A (en) Non-reducing dielectric ceramic and laminated ceramic capacitor using the same
WO2012053316A1 (en) Multilayer ceramic capacitor
JP2003040671A (en) Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JPH11255560A (en) Production of composition containing batio3 as main component and production of laminated ceramic capacitor
JP2899303B2 (en) Multilayer ceramic capacitors
JP2899302B2 (en) Multilayer ceramic capacitors
JP2938468B2 (en) Multilayer ceramic capacitors
JP2917505B2 (en) Multilayer ceramic capacitors
JP2907437B2 (en) Multilayer ceramic capacitors
JP2933635B2 (en) Multilayer ceramic capacitors
JP2847767B2 (en) Multilayer ceramic capacitors
JP2933634B2 (en) Multilayer ceramic capacitors
JP2928259B2 (en) Multilayer ceramic capacitors
JP2928258B2 (en) Multilayer ceramic capacitors
JP2928260B2 (en) Multilayer ceramic capacitors
JP2684754B2 (en) Dielectric porcelain composition
JP2847766B2 (en) Multilayer ceramic capacitors
JP2847765B2 (en) Multilayer ceramic capacitors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees