JP2933635B2 - Multilayer ceramic capacitors - Google Patents

Multilayer ceramic capacitors

Info

Publication number
JP2933635B2
JP2933635B2 JP1062477A JP6247789A JP2933635B2 JP 2933635 B2 JP2933635 B2 JP 2933635B2 JP 1062477 A JP1062477 A JP 1062477A JP 6247789 A JP6247789 A JP 6247789A JP 2933635 B2 JP2933635 B2 JP 2933635B2
Authority
JP
Japan
Prior art keywords
dielectric
multilayer ceramic
weight
dielectric layer
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1062477A
Other languages
Japanese (ja)
Other versions
JPH02242525A (en
Inventor
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13201308&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2933635(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062477A priority Critical patent/JP2933635B2/en
Publication of JPH02242525A publication Critical patent/JPH02242525A/en
Application granted granted Critical
Publication of JP2933635B2 publication Critical patent/JP2933635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパラジウムを含む内部電極を有する積層セラ
ミックコンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having an internal electrode containing palladium.

従来の技術 例えば0.11BaO−0.68TiO2−0.21Nd2O3等のBaO−TiO2
−Nd2O3系の誘電体材料を使用して誘電体層を形成し、
パラジウムを内部電極とした積層セラミックコンデンサ
であった。
Description of the Related Art For example 0.11BaO-0.68TiO 2 -0.21Nd 2 BaO- TiO 2 of O 3,
Forming a dielectric layer using -Nd 2 O 3 based dielectric material,
It was a multilayer ceramic capacitor using palladium as an internal electrode.

発明が解決しようとする課題 上記構造の積層セラミックコンデンサにおいては、内
部電極のデラミネーションの発生を防止するために、内
部電極を薄くする。しかしながら、Ba/Ti比の小さいも
のなど一般的にTiO2を多く含む誘電体層は焼成する際、
誘電体層中に含まれる有機バインダーなどにより、TiO2
が還元される。そして還元により生じたTiが内部電極の
Pbと化合物を作るためか、内部電極が体積膨張し、その
結果内部電極は一見玉状のようになり、内部電極切れを
起こし、誘電体層とPdを含む内部電極との界面の密着性
が低下する。その結果、静電容量とQ値が低下し、その
バラツキが大きくなるという問題点を有していた。
Problems to be Solved by the Invention In the multilayer ceramic capacitor having the above structure, the internal electrodes are made thin in order to prevent the occurrence of delamination of the internal electrodes. However, when the dielectric layer containing a large amount of TiO 2 such as a material having a small Ba / Ti ratio is generally fired,
The organic binder contained in the dielectric layer allows TiO 2
Is reduced. And the Ti generated by the reduction is
Probably due to the formation of a compound with Pb, the internal electrode expands in volume, and as a result, the internal electrode looks like a bead, causing the internal electrode to break, and the adhesion at the interface between the dielectric layer and the internal electrode containing Pd is reduced. descend. As a result, there has been a problem that the capacitance and the Q value decrease and the variation increases.

そこで本発明の積層セラミックコンデンサは、内部電
極切れを抑制することにより、静電容量とQ値が大き
く、そのバラツキが小さい積層セラミックコンデンサを
提供することを目的とするものである。
Therefore, an object of the multilayer ceramic capacitor of the present invention is to provide a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation by suppressing disconnection of internal electrodes.

課題を解決するための手段 この目的を達成するために、本発明の積層セラミック
コンデンサは、誘電体層と内部電極とを交互に積層した
積層体と、この積層体の前記内部電極の露出した端面に
設けた外部電極とを備え、前記誘電体層は、一般式xBaO
−yTiO2−zRe2O3(ただし、x+y+z=1.00、Re2O
3は、La2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なく
とも1種以上の希土類元素の酸化物。)と表した時、x,
y,zが以下の表に示す各点a,b,c,d,e,fで囲まれるモル比
の範囲からなる主成分100重量部に対し、副成分としてN
d2O5を0.3〜8.0重量部含有したものであり、前記内部電
極はパラジウムを含有することを特徴とするものであ
る。
Means for Solving the Problems In order to achieve this object, a multilayer ceramic capacitor according to the present invention includes a laminated body in which dielectric layers and internal electrodes are alternately laminated, and an exposed end face of the internal electrode of the laminated body. And an external electrode provided in the dielectric layer, wherein the dielectric layer has a general formula xBaO
−yTiO 2 −zRe 2 O 3 (where x + y + z = 1.00, Re 2 O
3 is an oxide of at least one or more rare earth elements selected from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X,
y, z is 100 parts by weight of the main component consisting of a range of molar ratios surrounded by points a, b, c, d, e, f shown in the following table,
The d 2 O 5 is obtained by containing 0.3 to 8.0 parts by weight, the internal electrode is characterized in that it contains palladium.

作用 この構成によると、誘電体層中の4価のTiの一部を5
価のNbで置換することによりTiO2が還元されるのを抑制
し、TiとPdとの化合物の生成を防止する。その結果、誘
電体層と内部電極の界面の密着性が向上するため、静電
容量とQ値が大きく、そのバラツキが小さい積層セラミ
ックコンデンサとなる。
Action According to this configuration, a part of the tetravalent Ti in the dielectric layer is reduced to 5%.
Substitution with valence Nb suppresses the reduction of TiO 2 and prevents the formation of a compound of Ti and Pd. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation is obtained.

また従来の誘電体層は焼成により還元されたTiO2が冷
却過程である程度再酸化されるが、誘電体層の内部、及
び各結晶粒子の内側は再酸化されにくく酸化欠乏状態の
まま残る。従って酸素原子の持つ有効電荷+2eをチタン
原子上の3d電子で中和することにより、各酸素空孔につ
いて2個のTi3+が形成され、Ti3+を介した電子ホッピン
グによって、誘電体層の絶縁抵抗、絶縁破壊強度を劣化
させる。そこで本発明は誘電体層中の4価のTiの一部を
5価Nbで置換することにより生じた陽イオン空孔で、焼
成時の酸素欠陥によるe-を補償する。その結果絶縁抵
抗、絶縁破壊強度が従来よりも向上した積層セラミック
コンデンサを得ることができる。
Further, in the conventional dielectric layer, TiO 2 reduced by firing is reoxidized to some extent in the cooling process, but the inside of the dielectric layer and the inside of each crystal grain are hardly reoxidized and remain in an oxygen-deficient state. Therefore, by neutralizing the effective charge + 2e of the oxygen atom with 3d electrons on the titanium atom, two Ti 3+ are formed for each oxygen vacancy, and electron hopping via the Ti 3+ causes the dielectric layer Degrades insulation resistance and dielectric breakdown strength. The present invention is a cation vacancy caused by replacing a part of tetravalent Ti in the dielectric layer with pentavalent Nb, e due to oxygen defects during sintering - to compensate for. As a result, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with conventional ones.

実施例 以下に、本発明を具体的実施例により説明する。EXAMPLES Hereinafter, the present invention will be described with reference to specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3およびNb2O5粉末を下記の第1表
に示す組成比になるように秤量し、めのうボールを備え
たゴム内張りのボールミルに純水とともに入れ、湿式混
合後、脱水乾燥した。この乾燥粉末を高アルミナ質のル
ツボに入れ、空気中で1100℃にて2時間仮焼した。この
仮着粉末をめのうボールを備えたゴム内張りのボールミ
ルに純水とともに入れ、湿式粉砕後、脱水乾燥した。こ
の粉砕粉末に、有機バインダーを加え、均質とした後、
32メッシュのふるいを通して整粒し、金型と油圧プレス
を用いて成形圧力1ton/cm2で、直径15mm、厚み0.4mmに
成形した。次いで成形円板をジルコニア粉末を敷いたア
ルミナ質のサヤに入れ、空気中にて下記の第1表に示す
組成比の誘電体磁器を得た。このようにして得られた誘
電体磁器円板は、厚みと直径を測定し、誘電率、良好度
Q、静電容量温度係数測定用試料は、誘電体磁器円板の
両面全体に銀電極を焼き付け、絶縁抵抗、絶縁破壊強度
測定用試料は、誘電体磁器円板の外周より内側に1mmの
幅で銀電極のない部分を設け、銀電極を焼き付けた。そ
して誘電率、良好度Q、静電容量温度係数はYHP社製デ
イジタルLCRメールのモデル4275Aを使用し、測定温度20
℃、測定電圧1.0Vrms、測定周波数1MHzでの測定より求
めた。なお、静電容量温度係数は、20℃と85℃の静電容
量を用いて、次式により求めた。
(Example 1) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3, and Nb 2 O 5 powders are weighed so as to have the composition ratios shown in Table 1 below, and purified in a rubber-lined ball mill equipped with an agate ball. It was put together with water, wet-mixed, and dehydrated and dried. The dried powder was placed in a high alumina crucible and calcined in air at 1100 ° C. for 2 hours. The temporary powder was put together with pure water into a rubber-lined ball mill equipped with an agate ball, wet pulverized, and then dehydrated and dried. After adding an organic binder to this pulverized powder to make it homogeneous,
The granules were sieved through a 32 mesh sieve and formed into a diameter of 15 mm and a thickness of 0.4 mm using a mold and a hydraulic press at a forming pressure of 1 ton / cm 2 . Next, the molded disk was placed in an alumina sheath covered with zirconia powder, and a dielectric ceramic having a composition ratio shown in Table 1 below was obtained in air. The dielectric porcelain disk thus obtained was measured for thickness and diameter, and the dielectric constant, goodness Q and capacitance temperature coefficient measurement sample were provided with silver electrodes on both surfaces of the dielectric porcelain disk. For the sample for measurement of baking, insulation resistance, and dielectric strength, a portion having no silver electrode with a width of 1 mm was provided inside the outer periphery of the dielectric porcelain disk, and the silver electrode was baked. The dielectric constant, the degree of goodness Q, and the temperature coefficient of capacitance were measured using a digital LCR mail model 4275A manufactured by YHP.
° C, a measurement voltage of 1.0 Vrms, and a measurement frequency of 1 MHz. The capacitance temperature coefficient was obtained by the following equation using the capacitances at 20 ° C. and 85 ° C.

TC=(C−C0)/C0×1/65×106 TC:静電容量温度係数(ppm/℃) C0:20℃での静電容量(pF) C :85度での静電容量(pF) また、誘電率は次式より求めた。 TC = (C-C 0) / C 0 × 1/65 × 10 6 TC: temperature coefficient of capacitance (ppm / ℃) C 0: capacitance at 20 ℃ (pF) C: static at 85 ° Capacitance (pF) The dielectric constant was determined by the following equation.

K=143.8×C0×t/D2 K :誘電率 C0:20℃での静電容量(pF) D :誘電体磁器の直径(mm) t :誘電体磁器の厚み(mm) さらに、絶縁抵抗は、YHP社製HRメータのモデル4329A
を使用し、測定電圧50V.D.C.,測定時間1分間による測
定により求めた。
K = 143.8 × C 0 × t / D 2 K: dielectric constant C 0 : capacitance at 20 ° C (pF) D: diameter of dielectric ceramic (mm) t: thickness of dielectric ceramic (mm) Insulation resistance is YHP HR meter model 4329A
The measurement was carried out using a measuring voltage of 50 V DC and a measuring time of 1 minute.

そして、絶縁破裂強度は、菊水電子工業(株)製高電
圧電源PHS35K−3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50V/secにより求めた絶縁破壊電圧を
誘電体厚みで除算し、1mm当たりの絶縁破壊強度とし
た。また、結晶粒径は、倍率400での光学顕微鏡観察に
より求めた。
The dielectric rupture strength was measured by using a high voltage power supply PHS35K-3 manufactured by Kikusui Electronics Co., Ltd., placing the sample in silicon oil, and dividing the dielectric breakdown voltage obtained at a step-up speed of 50 V / sec by the dielectric thickness. And the dielectric breakdown strength per 1 mm. Further, the crystal grain size was determined by observation with an optical microscope at a magnification of 400.

試験条件及び結果を第1表に併せて示す。 The test conditions and results are shown in Table 1.

ここで第1図は誘電体層の主成分の組成範囲を示す三
元図であり、主成分の組成範囲を限定した理由を第1図
に参照しながら説明する。すなわち、A領域では焼結が
著しく困難である。また、B領域では良好度Qが低下
し、実用的でなくなる。さらに、C,D領域では静電容量
温度係数がマイナス側に大きくなりすぎて実用的でなく
なる。そして、E領域では静電容量温度係数がプラス方
向に移行するが、誘電率が小さく実用的でなくなる。
Here, FIG. 1 is a ternary diagram showing the composition range of the main component of the dielectric layer, and the reason for limiting the composition range of the main component will be described with reference to FIG. That is, sintering is extremely difficult in the region A. Further, in the region B, the degree of goodness Q is reduced, and is not practical. Furthermore, in the C and D regions, the temperature coefficient of capacitance becomes too large on the minus side, which is not practical. Then, in the E region, the capacitance temperature coefficient shifts in the positive direction, but the dielectric constant is too small to be practical.

また、Re2O3をLa2O3,Pr2O11/3,Nd2O3,Sm2O3から選ぶ
ことによりLa2O3,Pr2O11/3,Nd2O3,Sm2O3の順で誘電率を
大きく下げることなく、静電容量温度係数をプラス方向
に移行することが可能であり、La2O3,Pr2O11/3,Nd2O3,S
m2O3の1種あるいは組み合わせにより静電容量温度係数
の調整が可能である。
Also, by selecting Re 2 O 3 from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm 2 O 3, La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm It is possible to shift the temperature coefficient of capacitance in the positive direction without significantly lowering the dielectric constant in the order of 2 O 3 , La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , S
The capacitance temperature coefficient can be adjusted by one or a combination of m 2 O 3 .

(実施例2) 出発原料には化学的に高純度のBaCO3,TiO2,La2O3,Pr6
O11,Nd2O3,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3およびSiO3粉末
を下記の第2表に示す組成比になるように秤量し、それ
以降は実施例1の場合と同様に処理して第2表に示す組
成比の誘電体磁器を得た。
(Example 2) As starting materials, chemically pure BaCO 3 , TiO 2 , La 2 O 3 , Pr 6
O 11 , Nd 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO 3 powder were weighed so as to have the composition ratio shown in Table 2 below, and thereafter Was processed in the same manner as in Example 1 to obtain a dielectric ceramic having a composition ratio shown in Table 2.

これらの試料の試験方法は、実施例1と同様であり、
試験条件及び結果を第2表に併せて示す。
The test method for these samples is the same as in Example 1,
The test conditions and results are shown in Table 2.

このようにマンガン、亜鉛、鉄及びケイ素の酸化物か
ら選ばれる少なくとも1種類以上をそれぞれMnO2,ZnO,F
e2O3及びSiO2に換算して0.05〜1.00重量部添加すること
により、誘電体磁器の焼結性を向上させることができ
る。その添加量が0.05重量部未満では添加効果がなく、
一方1.00重量部を越えると誘電率が低下し実用的でなく
なる。
As described above, at least one or more kinds selected from manganese, zinc, iron and silicon oxides are respectively MnO 2 , ZnO, F
By adding 0.05 to 1.00 parts by weight in terms of e 2 O 3 and SiO 2 , the sinterability of the dielectric ceramic can be improved. If the addition amount is less than 0.05 parts by weight, there is no addition effect,
On the other hand, if it exceeds 1.00 parts by weight, the dielectric constant is lowered and it is not practical.

(実施例3) 出発原料には化学的に高純度のBaCO3,TiO2,La2O3,Pr6
O11,Nd2O3,Sm2O3およびNb2O5を粉末を使用し、主成分0.
11BaO−0.68TiO2−0.21Nd2O3に対し、Nb2O5を0,0.1,0.
3,0.5,1.0,5.0,8.0,10.0wt%含有した仮焼粉を実施例1
と同様の方法で作製する。ただし、Nb2O5の含有量が0,
0.1,10.0wt%は本発明の範囲外であり、0.3,0.5,1.0,5.
0,8.0wt%は本発明の範囲内である。
Example 3 As starting materials, chemically pure BaCO 3 , TiO 2 , La 2 O 3 , and Pr 6 were used.
O 11 , Nd 2 O 3 , Sm 2 O 3 and Nb 2 O 5 are used as powders, and the main components are 0.
To 11BaO-0.68TiO 2 -0.21Nd 2 O 3 , the Nb 2 O 5 0,0.1,0.
Example 1 A calcined powder containing 3,0.5,1.0,5.0,8.0,10.0 wt%
It is manufactured by the same method as described above. However, the content of Nb 2 O 5 is 0,
0.1, 10.0 wt% is outside the scope of the present invention, and 0.3, 0.5, 1.0, 5.
0,8.0 wt% is within the scope of the present invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤、分散
剤、有機溶剤を加え、アルミナボールを備えたポリエチ
レン製ポットで混合し、スラリーを作製した。混合後、
300メッシュのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエス
テルフィルム上にシートを成形した。
An organic binder, a plasticizer, a dispersant, and an organic solvent were added to the calcined and pulverized powder, and mixed with a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing
Filtration was performed using a 300 mesh nylon cloth. The slurry after filtration was formed into a sheet on a polyester film that had been subjected to a mold release treatment by a doctor blade so that the dielectric thickness after sintering was 12 μm.

次に、ポリエステルフィルムから剥がしたシート10枚
を支持台の上に積層した。この上に、昭栄化学(株)製
内部電極パラジウムペーストML−3724を焼結後の内部電
極厚みが2μmとなるようにスクリーン印刷し、乾燥し
た。この上にポリエステリフィルムから剥がしたシート
1枚を積層した。この上に、焼結後の内部電極重なり寸
法が1.2mm×0.7mmとなるように印刷位置をずらして内部
電極パラジウムペーストを印刷し、乾燥後、ポリエステ
ルフィルムから剥がしたシート1枚を積層した。これら
の操作を、誘電体層数が19となるまで切り返した。この
上に、ポリエステルフィルムから剥がしたシート10枚を
積層した。この積層体を焼結後、内部電極重なり寸法が
約1.2mm×約0.7mm、誘電体厚みが約2μm、誘電体層数
が19の積層構造を持つ積層セラミックコンデンサとなる
ように切断した。この切断した試料は、ジルコニア粉末
を敷いたアルミナ質のサヤに入れ、空気中にて室温から
350℃までを5℃/hrで昇温し、350℃より100℃/hrで昇
温し、1270℃で2時間焼成後、100℃/hrで室温まで降温
した。次いで、焼成後の試料は、耐水サンドペーパーを
内側に貼ったポリエチレンポットに純水と共に入れ、ポ
リエチレンポットを回転させ焼成後の試料面を研磨し、
外部電極と接合する内部電極部分を充分露出させた。こ
の試料はポリエチレンポットより取り出し乾燥後、内部
電極露出部分に銀の外部電極を焼き付け、内部電極を導
通させ、積層セラミックコンデンサを作製した。
Next, ten sheets peeled from the polyester film were laminated on a support. On this, an internal electrode palladium paste ML-3724 manufactured by Shoei Chemical Co., Ltd. was screen-printed such that the internal electrode thickness after sintering became 2 μm, and dried. On this, one sheet peeled off from the polyester film was laminated. On this, the printing position was shifted so that the internal electrode overlapping dimension after sintering was 1.2 mm × 0.7 mm, the internal electrode palladium paste was printed, and after drying, one sheet peeled off from the polyester film was laminated. These operations were repeated until the number of dielectric layers reached 19. On this, 10 sheets peeled from the polyester film were laminated. After sintering, the laminated body was cut into a laminated ceramic capacitor having a laminated structure having an internal electrode overlap dimension of about 1.2 mm × about 0.7 mm, a dielectric thickness of about 2 μm, and 19 dielectric layers. The cut sample is placed in an alumina sheath covered with zirconia powder and allowed to reach room temperature in air.
The temperature was raised to 350 ° C. at 5 ° C./hr, the temperature was raised from 350 ° C. at 100 ° C./hr, calcined at 1270 ° C. for 2 hours, and then cooled to room temperature at 100 ° C./hr. Next, the fired sample is put together with pure water in a polyethylene pot with a waterproof sandpaper stuck on the inside, the polyethylene pot is rotated, and the fired sample surface is polished,
The internal electrode portion to be joined to the external electrode was sufficiently exposed. The sample was taken out of the polyethylene pot and dried, and then a silver external electrode was baked on the exposed portion of the internal electrode to make the internal electrode conductive, thereby producing a multilayer ceramic capacitor.

これらの試料の静電容量、良好Q、静電容量温度係
数、絶縁抵抗、絶縁破壊強度は実施例1と同様の条件で
測定により求めた。また、積層構造の確認は、積層セラ
ミックコンデンサの長さ方向および幅方向の約1/2を研
磨断面を、内部電極の重なり寸法は倍率100、誘電体厚
みと内部電極厚みは倍率400での光学顕微鏡観察により
求めた。
The capacitance, good Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength of these samples were obtained by measurement under the same conditions as in Example 1. In addition, the confirmation of the laminated structure was performed by polishing about 断面 of the length and width directions of the multilayer ceramic capacitor in a polished cross section, the overlap size of the internal electrodes was 100, and the dielectric thickness and internal electrode thickness were 400 magnifications. It was determined by microscopic observation.

この測定結果を第2図に示す。この第2図を用いて誘
電体層中の副成分Nb2O5の含有範囲を限定した理由をグ
ラフで説明する。第2図に示すようにNb2O5を含有する
ことにより、絶縁抵抗、絶縁破壊強度が向上し、また静
電容量と良好度Qを高め、静電容量と良好度Qのバラツ
キを小さくする効果を有する。そして、Nb2O5の含有に
より、絶縁抵抗、絶縁破壊強度は向上するが、Nb2O5
含有量が主成分100重量部に対し、0.3重量部未満はそれ
ほど絶縁破壊強度が大きくなく、静電容量と良好度Qが
低く、また静電容量と良好度Qのバラツキが大きいた
め、本発明の範囲から除外した。一方、Nb2O5の含有量
が主成分100重量部に対し、8.0重量部を越えると良好度
Q、絶縁抵抗が低下し、容量温度係数がマイナス側に大
きくなり、さらに静電量の温度変化の直線性が失われ実
用的でなくなる。
FIG. 2 shows the measurement results. Referring to FIG. 2, the reason why the content range of the subcomponent Nb 2 O 5 in the dielectric layer is limited will be described with a graph. As shown in FIG. 2, by containing Nb 2 O 5 , the insulation resistance and the dielectric breakdown strength are improved, the capacitance and the goodness Q are increased, and the variation between the capacitance and the goodness Q is reduced. Has an effect. And, by the inclusion of Nb 2 O 5 , the insulation resistance and the dielectric breakdown strength are improved, but the Nb 2 O 5 content is less than 0.3 parts by weight with respect to 100 parts by weight of the main component, the dielectric breakdown strength is not so large, Since the capacitance and the degree of goodness Q were low and the variation between the capacitance and the degree of goodness Q was large, they were excluded from the scope of the present invention. On the other hand, if the content of Nb 2 O 5 exceeds 8.0 parts by weight with respect to 100 parts by weight of the main component, the degree of goodness Q, insulation resistance decreases, the temperature coefficient of capacitance increases on the minus side, and the temperature change of the electrostatic quantity further occurs. Linearity is lost and is not practical.

なお、実施例における誘電体磁器及び積層セラミック
コンデンサの作製方法では、BaCO3,TiO2,La2O3,Pr6O11,
Nd2O3,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3およびSiO2を使用し
たが、この方法に限定されるものではなく、所望の組成
比になるようにBaTiO3などの化合物、あるいは炭酸塩、
水酸化物など空気中での加熱により、BaO,TiO2,La2O3,P
r6O11,Nd2O3,Sm2O3,Nb2O5,MnO2,ZnO,Fe2O3およびSiO2
なる化合物を使用しても実施例と同程度の特性を得るこ
とができる。
Incidentally, in the method of manufacturing dielectric ceramics and multilayer ceramic capacitors in the examples, BaCO 3 , TiO 2 , La 2 O 3 , Pr 6 O 11 ,
Nd 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and SiO 2 were used, but it is not limited to this method, so that a desired composition ratio is obtained. Compounds such as BaTiO 3 or carbonates,
BaO, TiO 2 , La 2 O 3 , P
r 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , MnO 2 , ZnO, Fe 2 O 3 and even using a compound that becomes SiO 2 , the same characteristics as in the example can be obtained Can be.

また、主成分をあらかじめ仮焼し、副成分を添加して
も実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponent is added, the same characteristics as those of the embodiment can be obtained.

さらに誘電体磁器用として一般に使用される工業用原
料の酸化チタン、例えばチタン工業(株)製酸化チタン
KA−10、古河工業(株)製酸化チタンFA−55Wには、最
大0.45重量%のNb2O5が含まれるが、これらの酸化チタ
ンを使用して誘電体磁器を作製したも主成分100重量部
に対して、Nb2O5の含有量は最大で0.23重量部であり、
この発明の範囲外であるが、工業用原料の酸化チタン中
のNb2O5量を考慮し、不足分のNb2O5を含有させることに
より、実施例と同程度の特性を得ることができる。
Furthermore, titanium oxide, which is an industrial raw material generally used for dielectric porcelain, such as titanium oxide manufactured by Titanium Industry Co., Ltd.
KA-10, the Furukawa Kogyo Co. titanium oxide FA-55W, including but Nb 2 O 5 up to 0.45 wt%, even main component 100 to produce a dielectric ceramic using these titanium oxide With respect to parts by weight, the content of Nb 2 O 5 is at most 0.23 parts by weight,
Although it is outside the scope of the present invention, considering the amount of Nb 2 O 5 in titanium oxide as an industrial raw material, it is possible to obtain the same level of characteristics as those of the examples by including the insufficient Nb 2 O 5. it can.

発明の効果 以上、本発明によると、誘電体層中の4価のTiの一部
を5価のNbで置換することにより生じた陽イオン空孔
で、焼成時の酸素欠陥によるe-を補償し、TiO2が還元さ
れるのを抑制するため、TiとPdとの化合物の生成を防止
できる。その結果、誘電体層と内部電極の界面の密着性
が向上するため、静電容量とQ値が大きく、そのバラツ
キが小さい積層セラミックコンデンサを得ることができ
る。
Effect of the Invention above, according to the present invention, cation vacancies generated by replacing a part of tetravalent Ti in the dielectric layer with pentavalent Nb, e due to oxygen defect during firing - compensating for However, since the reduction of TiO 2 is suppressed, the formation of a compound of Ti and Pd can be prevented. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation can be obtained.

また従来の誘電体層は焼成時に還元されたTiO2が冷却
過程である程度再酸化されるが、誘電体層の内部、及び
各結晶粒子の内側は再酸化されにくく酸素欠乏状態のま
ま残る。この酸素欠乏が電気伝導に寄与し、誘電体層の
絶縁抵抗、絶縁破壊強度を劣化させる。本発明の誘電体
層は、4価のTiの一部を5価のNbで置換することに生じ
た陽イオン空孔で、焼成時の酸素欠陥によるe-を補償す
る。従って絶縁抵抗、絶縁破壊強度が従来よりも向上し
た積層セラミックコンデンサを得ることができる。
Further, in the conventional dielectric layer, TiO 2 reduced during firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal particle are hardly reoxidized and remain in an oxygen-deficient state. This oxygen deficiency contributes to electric conduction and degrades the insulation resistance and dielectric breakdown strength of the dielectric layer. The dielectric layer of the present invention is a cation vacancy generated by substituting a part of tetravalent Ti with pentavalent Nb, and compensates for e due to oxygen deficiency during firing. Therefore, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる誘電体層を主成分の組成物の組
成範囲を説明する三元図、第2図は本発明に係る誘電体
層の主成分0.11BaO−0.63TiO2−0.21Nd2O3に対する副成
分Nb2O5の含有効果を、誘電体厚み;12μm、内部電極重
なり寸法:1.2mm×0.7mm、誘電体層数:19の積層構造をも
つ積層セラミックコンデンサの電気特性で示すグラフで
ある。
FIG. 1 is a ternary diagram for explaining the composition range of a composition containing a dielectric layer according to the present invention as a main component, and FIG. 2 is a ternary diagram illustrating a main component of the dielectric layer according to the present invention, 0.11BaO-0.63TiO 2 -0.21Nd. The effect of the subcomponent Nb 2 O 5 on 2 O 3 was evaluated by the electrical characteristics of a multilayer ceramic capacitor having a laminated structure with a dielectric thickness of 12 μm, an internal electrode overlap size of 1.2 mm × 0.7 mm, and a dielectric layer number of 19. It is a graph shown.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−56361(JP,A) 特開 昭62−17069(JP,A) 特開 昭57−90808(JP,A) 特開 昭61−291457(JP,A) 特開 昭59−154703(JP,A) 特開 昭63−246810(JP,A) 「工業材料」1985年4月号(第33巻、 第4号)P.39〜48 「ニューケラス3 積層セラミックコ ンデンサ」1988年9月26日(株)学献社 発行、P.19〜25 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-56361 (JP, A) JP-A-62-17069 (JP, A) JP-A-57-90808 (JP, A) JP-A-291457 (JP, A) JP-A-59-154703 (JP, A) JP-A-63-246810 (JP, A) "Industrial materials" April 1985 (Vol. 33, No. 4) 39-48 “New Keras 3 Multilayer Ceramic Capacitor” Published by Gakudensha Co., Ltd. on September 26, 1988, p. 19-25

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体層と内部電極とを交互に積層した積
層体と、この積層体の前記内部電極の露出した端面に設
けた外部電極とを備え、前記誘電体層は、一般式xBaO−
yTiO2−zRe2O3(ただし、x+y+z=1.00、Re2O3は、
La2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なくとも一
種類以上の希土類元素の酸化物。)と表した時、x,y,z
が以下の表に示す各点a,b,c,d,e,fで囲まれるモル比の
範囲からなる主成分100重量部に対し、副成分としてNb2
O5を0.3〜8.0重量部含有したものであり、前記内部電極
は、パラジウムを含有することを特徴とする積層セラミ
ックコンデンサ。
1. A laminate comprising alternately laminated dielectric layers and internal electrodes, and an external electrode provided on an exposed end face of the internal electrode of the laminate, wherein the dielectric layer has a general formula xBaO −
yTiO 2 -zRe 2 O 3 (However, x + y + z = 1.00, Re 2 O 3 is
An oxide of at least one or more rare earth elements selected from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X, y, z
Is 100% by weight of the main component consisting of a range of molar ratios surrounded by points a, b, c, d, e, and f shown in the following table, and Nb 2
O 5 and is obtained by containing 0.3 to 8.0 parts by weight, the internal electrodes, multilayer ceramic capacitor is characterized by containing palladium.
【請求項2】誘電体層の主成分と副成分を合わせたもの
100重量部に対して、さらにマンガン、亜鉛、鉄、及び
ケイ素の酸化物の中から選ばれる少なくとも一種類以上
をそれぞれMnO2,ZnO,Fe2O3及びSiO2に換算して0.05〜1.
00重量部含有させたことを特徴とする特許請求の範囲第
1項に記載の積層セラミックコンデンサ。
2. A combination of a main component and a sub-component of a dielectric layer.
Per 100 parts by weight, more manganese, zinc, iron, and at least one or more, respectively MnO 2, ZnO selected from the oxides of silicon, in terms of Fe 2 O 3 and SiO 2 0.05 to 1.
2. The multilayer ceramic capacitor according to claim 1, wherein said multilayer ceramic capacitor is contained by 00 parts by weight.
JP1062477A 1989-03-15 1989-03-15 Multilayer ceramic capacitors Expired - Lifetime JP2933635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062477A JP2933635B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062477A JP2933635B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02242525A JPH02242525A (en) 1990-09-26
JP2933635B2 true JP2933635B2 (en) 1999-08-16

Family

ID=13201308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062477A Expired - Lifetime JP2933635B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2933635B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790808A (en) * 1980-11-28 1982-06-05 Fujitsu Ltd Porcelain composition having high permittivity
JPS61291457A (en) * 1985-06-14 1986-12-22 タム・セラミックス・インコーポレイテッド Dielectric composition
JPS6217069A (en) * 1985-07-15 1987-01-26 三菱電機株式会社 Dielectric ceramic material
JPS6256361A (en) * 1985-09-05 1987-03-12 富士チタン工業株式会社 Dielectric ceramic composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「ニューケラス3 積層セラミックコンデンサ」1988年9月26日(株)学献社発行、P.19〜25
「工業材料」1985年4月号(第33巻、第4号)P.39〜48

Also Published As

Publication number Publication date
JPH02242525A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JP2003040671A (en) Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP2899302B2 (en) Multilayer ceramic capacitors
JP2899303B2 (en) Multilayer ceramic capacitors
JP2938468B2 (en) Multilayer ceramic capacitors
JP2933635B2 (en) Multilayer ceramic capacitors
JP2917505B2 (en) Multilayer ceramic capacitors
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP2933634B2 (en) Multilayer ceramic capacitors
JP2907437B2 (en) Multilayer ceramic capacitors
JP2847767B2 (en) Multilayer ceramic capacitors
JP2928260B2 (en) Multilayer ceramic capacitors
JP2928259B2 (en) Multilayer ceramic capacitors
JP2928258B2 (en) Multilayer ceramic capacitors
JP2847766B2 (en) Multilayer ceramic capacitors
JP2847765B2 (en) Multilayer ceramic capacitors
JP2684754B2 (en) Dielectric porcelain composition
JP2936661B2 (en) Dielectric porcelain composition
JPH0912364A (en) Dielectric porcelain composition
JP3319704B2 (en) Dielectric porcelain composition and porcelain capacitor
KR20080061303A (en) Dielectric ceramic composition, multilayer ceramic condenser and dielectric ceramic composition fabrication method
JP2917454B2 (en) Dielectric porcelain composition
JP2921048B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

EXPY Cancellation because of completion of term