JP2809426B2 - A method for detecting spring water in rock - Google Patents

A method for detecting spring water in rock

Info

Publication number
JP2809426B2
JP2809426B2 JP1116056A JP11605689A JP2809426B2 JP 2809426 B2 JP2809426 B2 JP 2809426B2 JP 1116056 A JP1116056 A JP 1116056A JP 11605689 A JP11605689 A JP 11605689A JP 2809426 B2 JP2809426 B2 JP 2809426B2
Authority
JP
Japan
Prior art keywords
receiver
rock
electromagnetic wave
transmitter
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1116056A
Other languages
Japanese (ja)
Other versions
JPH02296184A (en
Inventor
司 橋本
利博 奥村
知海 山田
幸司 多田
忠 樋口
徹 谷口
雅弘 中川
洋一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Koden Electronics Co Ltd
Original Assignee
Toda Corp
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp, Koden Electronics Co Ltd filed Critical Toda Corp
Priority to JP1116056A priority Critical patent/JP2809426B2/en
Publication of JPH02296184A publication Critical patent/JPH02296184A/en
Application granted granted Critical
Publication of JP2809426B2 publication Critical patent/JP2809426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は山岳トンネル等の岩盤を掘削する際にその岩
盤内の亀裂又は節理面に存在する湧水を探知する方法で
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for detecting a crack or a spring existing in a joint surface in a rock mass when excavating a rock mass such as a mountain tunnel.

(従来の技術) 従来、トンネルを掘削するときは多少の湧水があるこ
とを予想し、これを排除するために下水を設け、勾配を
両坑門に向かって自然流下しうるように設計する。しか
しこの湧水が地下水、またはトンネルの上部の川、湖水
などが原因の場合はこの下水では排除しきれないばかり
か、非常な高圧を伴う場合もある。
(Prior art) Conventionally, when excavating a tunnel, it is expected that there will be some spring water. In order to eliminate this, sewage will be provided and the slope will be designed to flow naturally toward both gates. . However, if this spring is caused by groundwater or rivers and lakes above the tunnel, the sewage can not only be eliminated, but may also involve very high pressure.

このような湧水があると地質が緩み、土砂を流し、ま
たは粘土化して膨張する等掘削上最悪の状態となり掘削
することが出来ない場合もある。さらに坑内は水びたし
となり、大事故を引き起こす危険性が大きかった。
When such springs are present, the geology is loosened, the earth and sand are washed away, or the clay is swelled and expanded. In addition, the underground was flooded, and the danger of causing a major accident was great.

そこで従来はこのような危険を避けるため、多量の湧
水が予想される場合は、先行ボーリング等で探知しなが
ら掘削していくのが現状であった。
Therefore, conventionally, in order to avoid such a danger, in the case where a large amount of spring water is expected, excavation is performed while detecting by advance boring or the like.

(発明が解決しようとする課題) しかしながら、上記のような先行ボーリング等による
探知方法は多大な工期及び工費を必要とするので効率的
な掘削をすることが出来ないという問題点があった。
(Problems to be Solved by the Invention) However, the above-described detection method using advance boring or the like requires a large construction period and construction cost, and thus has a problem that efficient excavation cannot be performed.

本発明は、上記のような問題点に鑑みてなされたもの
であり、その目的はトンネル掘削時において、そのトン
ネル切羽前方にある亀裂部や節理面における湧水の探知
を迅速かつ効率的に行うとともに、トンネル切羽から亀
裂部又は節理面における湧水位置までの距離を正確に計
測する方法を提供することである。
The present invention has been made in view of the above-described problems, and a purpose of the present invention is to quickly and efficiently detect a spring water at a crack or a joint surface in front of a tunnel face during tunnel excavation. It is another object of the present invention to provide a method for accurately measuring the distance from a tunnel face to a spring position at a crack or joint.

(課題を解決するための手段) 以上の課題を達成するための本発明の手段は、電磁波
を発信する発信器と、それを受信する受信器とを掘削中
のトンネル切羽面に設置し、該発信器と受信器とを回転
または平行移動させながら電磁波を発信させるととも
に、該電磁波が岩盤内の亀裂部及び節理面における湧水
で反射されて受信器で受信されるまでの伝播時間と、前
記発信器から発射された電磁波が切羽の表面近くを伝播
して受信器に伝播される電磁波を表面伝播波としてとら
え、該表面伝播波の伝播時間から算出されたトンネル切
羽前方における岩盤の比誘電率とにより岩盤内における
トンネル切羽から湧水位置までの距離を探知することを
特徴とする岩盤内における湧水の探知方法に存する。
(Means for Solving the Problems) According to a means of the present invention for achieving the above objects, a transmitter for transmitting an electromagnetic wave and a receiver for receiving the electromagnetic wave are installed on a tunnel face during excavation. While transmitting or transmitting the electromagnetic wave while rotating or translating the transmitter and the receiver, the propagation time until the electromagnetic wave is reflected by the spring water in the cracks and joints in the rock and received by the receiver, The electromagnetic wave emitted from the transmitter propagates near the surface of the face and the electromagnetic wave propagated to the receiver is regarded as the surface propagation wave, and the relative permittivity of the rock in front of the tunnel face calculated from the propagation time of the surface propagation wave Thus, the present invention is directed to a method for detecting spring water in a rock mass, which comprises detecting a distance from a tunnel face to a spring position in the rock mass.

(作用) 而して上記のような構成によると、発信器から発信さ
れた電磁波はトンネル切羽前方の亀裂部又は節理面にお
ける湧水で反射し、その反射波が受信器で受信されると
ともに、切羽の表面近くを伝播した電磁波が表面伝播波
として受信器に受信される。
(Operation) According to the above configuration, the electromagnetic wave transmitted from the transmitter is reflected by the spring water at the crack or joint at the front of the tunnel face, and the reflected wave is received by the receiver. Electromagnetic waves that have propagated near the surface of the face are received by the receiver as surface-propagating waves.

そしてこれら電磁波が岩盤内の亀裂部又は節理面にお
ける湧水で反射されて受信器で受信されるまでの伝播時
間と、表面伝播波の伝播時間から算出されたトンネル切
羽前方における岩盤の比誘電率とによりトンネル切羽か
ら湧水までの距離を正確に探知計測することができる。
The propagation time from when these electromagnetic waves are reflected by the spring water at the cracks or joints in the rock and received by the receiver, and the relative permittivity of the rock in front of the tunnel face calculated from the propagation time of the surface-propagating waves Thus, the distance from the tunnel face to the spring can be accurately detected and measured.

(実施例) 以下本発明の岩盤内の亀裂部又は節理面における湧水
の探知方法の一実施例を図面に基づいて説明する。
(Embodiment) Hereinafter, an embodiment of a method for detecting a spring water at a crack or a joint surface in rock according to the present invention will be described with reference to the drawings.

岩盤内における亀裂部または節理面等には水が存在す
る場合が多く、岩盤の比誘電率と水の比誘電率とでは大
きな差があり、この相違により電磁波を反射しやすい状
況にある。
Water often exists at cracks or joint surfaces in the rock, and there is a large difference between the relative permittivity of the rock and the relative permittivity of water, and this difference tends to reflect electromagnetic waves.

そこで本発明は、発信器から発信させた電磁波を亀裂
部又は節理面で反射させ、その反射波が受信器に受信さ
れるまでの時間と、岩盤の比誘電率の値とによりシール
ド掘削機から亀裂部又は節理面における湧水までの距離
を正確に測定しその存在を探知しようとするものであ
る。
Therefore, the present invention reflects the electromagnetic wave transmitted from the transmitter at the crack or joint surface, the time until the reflected wave is received by the receiver, and the value of the relative permittivity of the rock, from the shield excavator It is intended to accurately measure the distance to a spring at a crack or joint and detect its presence.

図中Aはトンネル横抗の先端部を示す。 In the figure, A indicates the tip of the tunnel lateral resistance.

Bは送信アンテナを装着したケースaを先端部に保持
し、切羽面でアンテナの移動を行うための例えば油圧式
の機械である。
B is a hydraulic machine, for example, for holding the case a to which the transmitting antenna is mounted at the tip and moving the antenna on the face.

ケースaには発信器1と受信器2が取り付けられ、こ
れら発信器1及び受信器2を制御する制御器3に連結さ
れ、、該制御器3は、発信器1からの信号を表示する表
示器4に連結されている。
A transmitter 1 and a receiver 2 are attached to the case a and are connected to a controller 3 for controlling the transmitter 1 and the receiver 2. The controller 3 displays a signal from the transmitter 1. Connected to the vessel 4.

発信器1はパルス幅が例えば1nsec程度のごく狭いパ
ルス状の電力を発生するパルサ5と、このパルサ5から
出力されるパルス状の電力により、パルス状の電磁波を
発信するダイポールアンテナ6aと、ダイポールアンテナ
6aにパルス状の電力を与えるバラン5aと、ダイポールア
ンテナ6aの背面側をシールドし、電磁波がダイポールア
ンテナ6aの背面側に漏れないようにシールドするシール
ドカバー7aとによって構成されている。
The transmitter 1 includes a pulser 5 that generates a pulse-like power having a very narrow pulse width of, for example, about 1 nsec, a dipole antenna 6a that transmits a pulse-like electromagnetic wave by the pulse-like power output from the pulser 5, and a dipole. antenna
It comprises a balun 5a that supplies pulsed power to 6a, and a shield cover 7a that shields the back side of the dipole antenna 6a and shields electromagnetic waves from leaking to the back side of the dipole antenna 6a.

受信器2は前記と同様にダイポールアンテナ6aと、バ
ラン5aと、シールドカバー7aと、高周波増幅器8と、該
高周波増幅器8の利得を制御する利得制御回路9によっ
て構成されている。また発信器1と受信器2とには信号
の授受を行い表示器4にその受信信号を送り込む制御器
3が連結されている。
The receiver 2 includes a dipole antenna 6a, a balun 5a, a shield cover 7a, a high-frequency amplifier 8, and a gain control circuit 9 for controlling the gain of the high-frequency amplifier 8, as described above. The transmitter 1 and the receiver 2 are connected to a controller 3 which sends and receives signals and sends the received signals to the display 4.

発信器1のダイポールアンテナ6aの背面に取り付けた
シールドカバー7aはダイポールアンテナ6aから発信され
た電磁波が前方にだけ発信され、背面側に漏れないよう
にシールドし、空気中を伝わって受信器2に電磁波が伝
播しないようにすることを目的としてもうけられるため
材質はより高いシールド硬化が得られるフェライトが用
いられる。
The shield cover 7a attached to the back of the dipole antenna 6a of the transmitter 1 shields the electromagnetic wave transmitted from the dipole antenna 6a so that it is transmitted only to the front and does not leak to the back side, and travels in the air to the receiver 2. Ferrite is used for the purpose of preventing electromagnetic waves from propagating, so that ferrite, which can achieve higher shield hardening, is used.

また受信器2側のダイポールアンテナ6aにもシールド
カバー7aを被覆している。
The dipole antenna 6a on the receiver 2 side is also covered with a shield cover 7a.

このシールドカバー7aはダイポールアンテナ6aが発信
器1から発信した電磁波だけを受信するようにダイポー
ルアンテナ6aの背面側をシールドすることが目的とさ
れ、発信器1と同様にフェライト製のシールドカバー7a
が用いられる。
The purpose of this shield cover 7a is to shield the back side of the dipole antenna 6a so that the dipole antenna 6a receives only the electromagnetic wave transmitted from the transmitter 1, and like the transmitter 1, a shield cover 7a made of ferrite.
Is used.

受信器2に設けられた高周波増幅器8は利得制御回路
9によって電磁波の発信周期と同期して利得が制御され
る。
The gain of the high-frequency amplifier 8 provided in the receiver 2 is controlled by the gain control circuit 9 in synchronization with the transmission period of the electromagnetic wave.

高周波増幅器8で増幅した受信信号は制御器3を通じ
て表示器4に受けられて表示されるものである。
The received signal amplified by the high frequency amplifier 8 is received by the display 4 through the controller 3 and displayed.

次に、該装置を使用して岩盤内の亀裂部あるいは節理
面における湧水nの探知方法について説明する。
Next, a method of detecting the spring water n at a crack or a joint surface in a bedrock using the device will be described.

まず初めに、岩盤を掘削しズリを搬出した後に発信器
1からパルス状の電磁波を所定の間隔で切羽前方へ発信
させるとともに、受信器2を作動させて上記電磁波のう
ち亀裂部又は節理面における湧水nで反射した反射波
と、切羽前方における岩盤mの表面近くを伝播した表面
伝播波とを受信できるように、高周波増幅器8に利得を
もたせるように制御する。そして上記反射波の伝播時間
と、岩盤mの表面伝播波から算出した比誘電率とにより
亀裂部あるいは節理面における湧水nまでの距離(L)
を、下記の簡易式で計測することができる。
First, after excavating the rock and removing the shears, the transmitter 1 transmits a pulse-like electromagnetic wave to the front of the face at a predetermined interval, and the receiver 2 is operated to operate the electromagnetic wave in the crack or joint surface. The high-frequency amplifier 8 is controlled so as to have a gain so that the reflected wave reflected by the spring water n and the surface-propagated wave propagated near the surface of the rock m in front of the face can be received. Then, the distance (L) from the propagation time of the reflected wave and the relative permittivity calculated from the surface propagation wave of the rock mass m to the spring n at the crack or joint surface.
Can be measured by the following simple formula.

上記tは反射波の往復、即ち発信器1から発信された
電磁波が湧水nで反射されて受信器2により受信される
までの伝播時間であり、これは反射波の波型により読み
とることができる。
The above t is the round trip of the reflected wave, that is, the propagation time from when the electromagnetic wave transmitted from the transmitter 1 is reflected by the spring water n until it is received by the receiver 2, which can be read by the waveform of the reflected wave. it can.

またεは比誘電率であり、これは表面伝播波の伝播時
間が計測できることによって算出することができる。つ
まり表面伝播波の伝播距離は発信アンテナと受信アンテ
ナの間隔で与えられるから、この伝播距離を伝播時間に
よつて割ることにより表面伝播波の伝播速度を求めるこ
とができる。
Ε is the relative dielectric constant, which can be calculated by measuring the propagation time of the surface propagation wave. That is, since the propagation distance of the surface propagation wave is given by the distance between the transmitting antenna and the receiving antenna, the propagation speed of the surface propagation wave can be obtained by dividing the propagation distance by the propagation time.

表面伝播波の伝播速度がVd1として求められたとする
と、岩盤mの比誘電率は下記の式により求めることがで
きる。
When the propagation velocity of the surface propagation wave is to have been determined as Vd 1, the relative dielectric constant of the rock m can be obtained by the following equation.

〔但し、V0は空気中の電磁波伝達速度である〕 また前記式−1におけるcは光速である。 [However, V 0 is the speed of electromagnetic wave transmission in the air] Further, c in the above-described formula-1 is the speed of light.

(発明の効果) 本発明は以上の様な構成にしたことにより下記の効果
を有する。
(Effects of the Invention) The present invention has the following effects due to the above configuration.

岩盤内の亀裂部又は節理面における湧水の探知を迅
速かつ効率的に行うとともに、亀裂部や節理面における
湧水までの距離を正確に計測することができる。
It is possible to quickly and efficiently detect a spring at a crack or a joint surface in a bedrock and accurately measure a distance to a spring at a crack or a joint surface.

岩盤内の亀裂部や節理面における湧水の探知を迅速
かつ効率的に行うともに、亀裂部又は節理面における湧
水までの距離を正確に計測することができるので、シー
ルド掘削機による掘削を安全でかつ効率良く行うことが
できるとともに、工期の短縮及び工期の低廉を図ること
ができる。
It is possible to quickly and efficiently detect the spring water at cracks and joints in the bedrock, and accurately measure the distance to the spring at the cracks and joints. It is possible to efficiently and efficiently perform the operation, and to shorten the operation period and reduce the operation period.

【図面の簡単な説明】[Brief description of the drawings]

第1図はトンネル切羽での使用状態断面図、第2図はア
ンテナのブロック図である。 A:トンネル、1:発信器 2:受信器、3:制御器 4:表示器、m:岩盤 n:湧水
FIG. 1 is a sectional view of a use state in a tunnel face, and FIG. 2 is a block diagram of an antenna. A: Tunnel, 1: Transmitter 2: Receiver, 3: Controller 4: Indicator, m: Rock n: Spring water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 忠 茨城県北相馬郡藤代町宮和田531―1― 507 (72)発明者 谷口 徹 東京都大田区南蒲田1―1―20 (72)発明者 中川 雅弘 埼玉県川口市芝西1―13―6 (72)発明者 太田 洋一 東京都東村山市多摩湖町1―29―12 (56)参考文献 特開 平2−28586(JP,A) 特開 平1−282490(JP,A) 特開 平2−196960(JP,A) 特開 昭60−157065(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01V 3/12 G01S 13/88 E21D 9/06──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Higuchi 531-1-507 Miyawada, Fujishiro-machi, Kitasoma-gun, Ibaraki Pref. (72) Inventor Toru Taniguchi 1-1-20 Minami Kamata, Ota-ku, Tokyo (72) Invention Person Masahiro Nakagawa 1-1-6-6 Shibanishi, Kawaguchi City, Saitama Prefecture (72) Inventor Yoichi Ota 1-29-12, Tamako-cho, Higashimurayama-shi, Tokyo (56) References JP-A-2-28586 (JP, A) JP-A-1-282490 (JP, A) JP-A-2-196960 (JP, A) JP-A-60-157065 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01V 3 / 12 G01S 13/88 E21D 9/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電磁波を発信する発信器と、それを受信す
る受信器とを掘削中のトンネル切羽面に設置し、該発信
器と受信器とを回転または平行移動させながら電磁波を
発信させるとともに、該電磁波が岩盤内の亀裂部や節理
面における湧水で反射されて受信器で受信されるまでの
伝播時間と、前記発信器から発射された電磁波が切羽の
表面近くを伝播して受信器に伝播される電磁波を表面伝
播波としてとらえ、該表面伝播波の伝播時間から算出さ
れたトンネル切羽前方における岩盤の比誘電率とにより
岩盤内におけるトンネル切羽から湧水位置までの距離を
探知することを特徴とする岩盤内における湧水の探知方
法。
A transmitter for transmitting an electromagnetic wave and a receiver for receiving the electromagnetic wave are installed on a face of a tunnel under excavation, and the transmitter and the receiver emit an electromagnetic wave while rotating or translating the receiver. The propagation time until the electromagnetic wave is reflected by the spring water in the cracks and joints in the rock and received by the receiver, and the electromagnetic wave emitted from the transmitter propagates near the face of the face and the receiver To detect the distance from the tunnel face to the spring position in the rock based on the relative permittivity of the rock in front of the tunnel face calculated from the propagation time of the surface-propagated wave A method for detecting spring water in a bedrock characterized by the following.
JP1116056A 1989-05-11 1989-05-11 A method for detecting spring water in rock Expired - Lifetime JP2809426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116056A JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116056A JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Publications (2)

Publication Number Publication Date
JPH02296184A JPH02296184A (en) 1990-12-06
JP2809426B2 true JP2809426B2 (en) 1998-10-08

Family

ID=14677612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116056A Expired - Lifetime JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Country Status (1)

Country Link
JP (1) JP2809426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271946B2 (en) * 2010-03-24 2013-08-21 大成建設株式会社 Tunnel face front exploration device
JP5501818B2 (en) * 2010-03-24 2014-05-28 大成建設株式会社 Tunnel face front exploration device
JP6992597B2 (en) * 2018-02-28 2022-01-13 富士通株式会社 Running water position detection device, running water position detection method and running water position detection program

Also Published As

Publication number Publication date
JPH02296184A (en) 1990-12-06

Similar Documents

Publication Publication Date Title
CN108798690B (en) Combined TBM for realizing geological detection and geological detection tunneling method
CN109613616B (en) Geological comprehensive three-dimensional detection method for shallow karst tunnel
JPH0157237B2 (en)
WO2012159546A1 (en) Tunnel water inrush advance prediction device using nuclear magnetic resonance difference and method
CN103255785A (en) Technology for performing foundation pile quality detection and geology survey by adopting single tube longitudinal wave method
Karlovsek et al. Investigation of voids and cavities in bored tunnels using GPR
Hudson et al. P-wave velocity measurements in a machine-bored, chalk tunnel
Venkateswarlu et al. Geotechnical applications of ground penetrating radar (GPR)
CN111273340A (en) Method for forecasting geology of tunnel along with mining in advance
JP2809426B2 (en) A method for detecting spring water in rock
US3205941A (en) Techniques useful in determining fractures or density discontinuities in formations
JP3400746B2 (en) Exploration method in front of tunnel face
New et al. The transmission of compressional waves in jointed rock
CN111077565A (en) Geological detection device
US3412321A (en) Oil-water contact location with frequency modulated electromagnetic energy
JPH0228586A (en) Front and sideward monitoring device by shield drilling method
Siggins et al. Laboratory simulation of high-frequency GPR responses of damaged tunnel liners
JP3272261B2 (en) Hole bending measurement method during drilling
CN217538677U (en) Improved hole middle-low frequency wave speed instrument
JP2857781B2 (en) Road surface cutter
Apel et al. Using ground penetrating radar (GPR) in analyzing structural composition of mine roof
Thill Acoustic cross-borehole apparatus for determining in situ elastic properties and structural integrity of rock masses
CN211426814U (en) Along with adopting tunnel geology advance forecast system
JP3317662B2 (en) Excavated soil volume measurement system and method in shield method and excavation control system and method using these
KR200188711Y1 (en) Antenna structure of detection apparatus for the survey of buried structures by used gpr system