JPH02296184A - Detection of spring water within subsoil - Google Patents

Detection of spring water within subsoil

Info

Publication number
JPH02296184A
JPH02296184A JP1116056A JP11605689A JPH02296184A JP H02296184 A JPH02296184 A JP H02296184A JP 1116056 A JP1116056 A JP 1116056A JP 11605689 A JP11605689 A JP 11605689A JP H02296184 A JPH02296184 A JP H02296184A
Authority
JP
Japan
Prior art keywords
spring water
subsoil
face
wave
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1116056A
Other languages
Japanese (ja)
Other versions
JP2809426B2 (en
Inventor
Tsukasa Hashimoto
司 橋本
Toshihiro Okumura
利博 奥村
Tomomi Yamada
山田 知海
Koji Tada
幸司 多田
Tadashi Higuchi
忠 樋口
Toru Taniguchi
徹 谷口
Masahiro Nakagawa
雅弘 中川
Yoichi Ota
洋一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Koden Electronics Co Ltd
Original Assignee
Toda Corp
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp, Koden Electronics Co Ltd filed Critical Toda Corp
Priority to JP1116056A priority Critical patent/JP2809426B2/en
Publication of JPH02296184A publication Critical patent/JPH02296184A/en
Application granted granted Critical
Publication of JP2809426B2 publication Critical patent/JP2809426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To detect and measure a distance to spring water from a face by determining a specific dielectric constant of a subsoil in front of the face as calculated from a propagation time of an electromagnetic wave reflected from spring water within the subsoil and a propagation time of a surface propagating wave. CONSTITUTION:A high frequency amplifier 8 is controlled to have a gain so that a pulse-like electromagnetic wave is transmitted ahead of a face at a specified interval from a transmitter 1 while a receiver 2 can be operated to receive reflected wave from a spring water (n) at a cracked part or a joint face and a surface propagating wave propagated near the surface of the subsoil (m) ahead of the face among electro magnetic waves after a subsoil is excavated and muck is carried out. A distance is measured to the spring water (n) at the cracked part or the joint face by a specified simple formula according to the propagation time of the reflected wave and a specific dielectric constant calculated from the surface propagating wave of the subsoil (m). Thus, the spring water at the cracked surface or the joint face within the subsoil can be detected qucikly and effectively while the distance to the spring water can be measured thereby achieving safe excavating work and an effect for shortening work term and lowering expense.

Description

【発明の詳細な説明】 (産業上の利用公費) 本発明は山岳トンネル等の岩盤を掘削する際にその岩盤
内の亀裂又は節理面に存在する湧水を探知する方法であ
る。
DETAILED DESCRIPTION OF THE INVENTION (Public funds for industrial use) The present invention is a method for detecting spring water existing in cracks or joints in rock when excavating rock such as mountain tunnels.

(従来の技術) 従来、トンネルを掘削するときは多少の湧水があること
を予想し、これを排除するために下水を設け、勾配を両
坑門に向かって自然流下しうるように設計する。しかし
この湧水が地下水、またはトンネルの上部の川、湖水な
どが原因の場合はこの下水では排除しきれないばかりか
、非常な高圧を伴う場合もある。
(Conventional technology) Conventionally, when excavating a tunnel, it was anticipated that there would be some spring water, and in order to eliminate this water, sewerage was provided and the slope was designed to allow natural flow down toward both gates. . However, if this spring water is caused by groundwater, rivers or lake water at the top of the tunnel, it may not be possible to remove it with this sewage, and it may also be accompanied by extremely high pressure.

このような湧水があると地質が緩み、土砂を流し、また
は粘土化して膨張する等掘削上最悪の状態となり掘削す
ることが出来ない場合もある。さらに坑内は水びたしと
なり、大事故を引き起こす危険性が大きかった。
When such spring water is present, the geological formations loosen, causing soil to wash away, or turning into clay and expanding, creating the worst conditions for excavation, and sometimes making it impossible to excavate. Additionally, the mine was flooded with water, posing a high risk of causing a major accident.

そこで従来はこのような危険を避けるため、多量の湧水
が予想される場合は、先行ポーリング等で探知しながら
掘削しているのが現状であった。
In order to avoid this kind of danger, conventionally, when a large amount of spring water is expected, the current practice is to use advance polling to detect it while excavating.

(発明が解決しようとする課題) しかしながら、上記のような先行ポーリング等による探
知方法は多大な工期及び工費を必要とするので効率的な
掘削をすることが出来ないという問題点があった。
(Problems to be Solved by the Invention) However, the above-mentioned detection method using advance polling or the like requires a large amount of construction time and cost, so there is a problem in that efficient excavation cannot be carried out.

本発明は、上記のような問題点に鑑みてなされたもので
あり、その目的はトンネル掘削時において、そのトンネ
ル切羽前方にある亀裂部や節理面における湧水の探知を
迅速かつ効率的に行うとともに、トンネル切羽から亀裂
部又は節理面における湧水位置までの距離を正確に計測
する方法を提供することである。
The present invention has been made in view of the above-mentioned problems, and its purpose is to quickly and efficiently detect spring water in cracks and joint surfaces in front of the tunnel face during tunnel excavation. Another object of the present invention is to provide a method for accurately measuring the distance from a tunnel face to a spring water position in a crack or joint surface.

(課題を達成するための手段) 以上の課題を達成するための本発明の手段は、電磁波を
発信する発信器と、それを受信する受信器とを掘削中の
トンネル切羽面に設置し、該発信器と受信器とを回転ま
たは平行移動させながら電磁波を発信させるとともに、
該電磁波が岩盤内の亀裂部及び節理面における湧水で反
射されて受信器で受信される腋での伝播時間と、前記発
信器から発射された電磁波が切羽の表面近くを伝播して
受信器に伝播される電磁波を表面伝播波としてとらえ、
該表面伝播波の伝播時間から算出されたトンネル切羽前
方における岩盤の比誘電率とにより岩盤内におけるトン
ネル切羽から湧水位置までの距離を探知することを特徴
とする岩盤内における湧水の探知方法に存する。
(Means for Achieving the Object) The means of the present invention for achieving the above object is to install a transmitter that emits electromagnetic waves and a receiver that receives the electromagnetic waves on the face of a tunnel being excavated. In addition to transmitting electromagnetic waves while rotating or moving the transmitter and receiver in parallel,
The propagation time in the armpit where the electromagnetic wave is reflected by spring water on cracks and joint surfaces in the bedrock and received by the receiver, and the electromagnetic wave emitted from the transmitter propagates near the surface of the face and is received by the receiver. The electromagnetic waves propagated by the surface are regarded as surface propagating waves,
A method for detecting spring water in a bedrock, comprising detecting a distance from a tunnel face to a location of the spring water in the bedrock based on the dielectric constant of the rock in front of the tunnel face calculated from the propagation time of the surface propagation wave. exists in

(作用) 而して上記のような構成によると、発信器から発信され
た電磁波はトンネル切羽前方の亀裂部又は節理面におけ
る湧水で反射し、その反射波が受信器で受信されるとと
もに、切羽の表面近くを伝播した電磁波が表面伝播波と
して受信器に受信される。
(Function) According to the above configuration, the electromagnetic waves emitted from the transmitter are reflected by spring water in the cracks or joint surfaces in front of the tunnel face, and the reflected waves are received by the receiver, and The electromagnetic waves propagating near the surface of the face are received by the receiver as surface propagating waves.

そしてこれら電磁波が岩盤内の亀裂部又は節理面におけ
る湧水で反射されて受信器で受信されるまでの伝播時間
と、表面伝播波の伝播時間から算出されたトンネル切羽
前方における岩盤の比誘電率とによりトンネル切羽から
湧水までの距離を正確に探知計測することができる。
Then, the relative dielectric constant of the rock in front of the tunnel face is calculated from the propagation time for these electromagnetic waves to be reflected by spring water in the cracks or joints in the rock and received by the receiver, and the propagation time of the surface propagating waves. This makes it possible to accurately detect and measure the distance from the tunnel face to the spring water.

(実施例) 以下本発明の岩盤内の亀裂部又は節理面における湧水の
探知方法の一実施例を図面に基づいて説明する。
(Embodiment) An embodiment of the method for detecting spring water in cracks or joint surfaces in rock according to the present invention will be described below with reference to the drawings.

岩盤内における亀裂部または節理面等には水が存在する
場合が多く、岩盤の比誘電率と水の比誘電率とでは大き
な差があり、この相違により電磁波を反射しやすい状況
にある。
Water is often present in cracks or joint surfaces within the rock, and there is a large difference between the dielectric constant of the rock and the dielectric constant of water, and this difference makes it easy to reflect electromagnetic waves.

そこで本発明は、発信器から発信させた電磁波を亀裂部
又は節理面で反射させ、その反射波が受信器に受信され
るまでの時間と、岩盤の比誘電率の値とによりシールド
掘削機から亀裂部又は節理面における湧水までの距離を
正確に測定しその存在を探知しようとするものである。
Therefore, the present invention reflects the electromagnetic waves emitted from the transmitter at cracks or joint surfaces, and determines the time it takes for the reflected waves to be received by the receiver and the value of the dielectric constant of the rock. The purpose is to accurately measure the distance to spring water in cracks or joint surfaces and detect its presence.

図中Aはトンネル横抗の先端部を示す。In the figure, A indicates the tip of the tunnel transverse shaft.

Bは送信アンテナを装着したケースaを先端部に保持し
、切羽面でアンテナの移動を行うための例えば油圧式の
機械である。
B is, for example, a hydraulic machine that holds the case a equipped with the transmitting antenna at its tip and moves the antenna on the face.

ケースaには発信器1と受信器2が取り付けられ、これ
ら発信器1及び受信器2を制御する制御器3に連結され
、該制御器3は、発信器1がらの信号を表示する表示器
4に連結されている。
A transmitter 1 and a receiver 2 are attached to the case a, and are connected to a controller 3 that controls the transmitter 1 and receiver 2, and the controller 3 has a display that displays signals from the transmitter 1. It is connected to 4.

発信器1はパルス幅が例えば1 n5ec程度のごく狭
いパルス状の電力を発生するパルサ5と、このパルサ5
から出力されるパルス状の電力により、パルス状の電磁
波を発信するダイポールアンテナ6aと、ダイポールア
ンテナ6aにパルス状の電力を与えるバラン5aと、ダ
イポールアンテナ6aの背面側をシールドし、電磁波が
ダイポールアンテナ6aの背面側に漏れないようにシー
ルドするシールドカバー7aとによって構成されている
The oscillator 1 includes a pulser 5 that generates very narrow pulsed power with a pulse width of, for example, about 1 n5ec, and this pulser 5.
A dipole antenna 6a that emits pulsed electromagnetic waves using pulsed power output from the dipole antenna 6a, a balun 5a that provides pulsed power to the dipole antenna 6a, and a balun 5a that shields the back side of the dipole antenna 6a so that the electromagnetic waves are transmitted to the dipole antenna. 6a and a shield cover 7a that shields the back side of the cover 6a to prevent leakage.

受信器2は前記と同様にダイポールアンテナ6aと、バ
ラン5aと、シールドカバー7aと、高周波増幅器8と
、該高周波増幅器8の利得を制御する利得制御回路9に
よって構成されている。
The receiver 2 is composed of a dipole antenna 6a, a balun 5a, a shield cover 7a, a high frequency amplifier 8, and a gain control circuit 9 for controlling the gain of the high frequency amplifier 8, as described above.

また発信器1と受信器2とには信号の授受を行い表示器
4にその受信信号を送り込む制御器3が連結されている
Further, a controller 3 is connected to the transmitter 1 and the receiver 2 to send and receive signals and send the received signal to the display 4.

発信器1のダイポールアンテナ6aの背面に取り付けた
シールドカバー7aはダイポールアンテナ6aから発信
された電磁波が前方にだけ発信され、背面側に漏れない
ようにシールドし、空気中を伝わって受信器2に電磁波
が伝播しないようにすることを目的としてもうけられる
ため材質はより高いシールド硬化が得られるフェライト
が用いられる。
The shield cover 7a attached to the back of the dipole antenna 6a of the transmitter 1 shields the electromagnetic waves emitted from the dipole antenna 6a so that they are transmitted only forward and do not leak to the back side, and are transmitted through the air to the receiver 2. Since the purpose is to prevent electromagnetic waves from propagating, the material used is ferrite, which has a higher shielding hardness.

また受信器2側のダイポールアンテナ6aにもシールド
カバー7aを被覆している。
Further, the dipole antenna 6a on the receiver 2 side is also covered with a shield cover 7a.

このシールドカバー7aはダイポールアンテナ6aが発
信器1から発信した電磁波だけを受信するようにダイポ
ールアンテナ6aの背面側をシールドすることが目的と
され、発信器1と同様にフェライト製のシールドカバー
7aが用いられる。
The purpose of this shield cover 7a is to shield the back side of the dipole antenna 6a so that the dipole antenna 6a receives only the electromagnetic waves transmitted from the transmitter 1. Like the transmitter 1, the shield cover 7a is made of ferrite. used.

受信器2に設けられた高周波増幅器8は利得制御回路9
によって電磁波の発信周期と同期して利得が制御される
The high frequency amplifier 8 provided in the receiver 2 is a gain control circuit 9
The gain is controlled in synchronization with the transmission cycle of the electromagnetic waves.

高周波増幅器8で増幅した受信信号は制御器3を通じて
表示器4に受けられて表示されるものである。
The received signal amplified by the high frequency amplifier 8 is received by the display 4 via the controller 3 and displayed.

次に、該装置を使用して岩盤内の亀裂部あるいは節理面
における湧水nの探知方法について説明する。
Next, a method of detecting spring water n in cracks or joint surfaces in rock using this device will be explained.

まず初めに、岩盤を掘削しズリを搬出した後に発信器1
からパルス状の電磁波を所定の間隔で切羽前方へ発信さ
せるとともに、受信器2を作動させて上記電磁波のうち
亀裂部又は節理面における湧水nで反射した反射波と、
切羽前方における岩盤mの表面近くを伝播した表面伝播
波とを受信できるように、高周波増幅器8に利得をもた
せるように制御する。そして上記反射波の伝播時間と、
岩amの表面伝播波から算出した比誘電率とにより亀裂
部あるいは節理面における湧水nまでの距M(L)を、
下記の簡易式で計測することができる。
First of all, after excavating the bedrock and removing the debris, transmitter 1
A pulsed electromagnetic wave is transmitted to the front of the face at a predetermined interval, and the receiver 2 is activated to collect the reflected wave reflected by the spring water n at the crack or joint surface of the electromagnetic wave.
The high frequency amplifier 8 is controlled to have a gain so that it can receive surface propagating waves propagated near the surface of the rock m in front of the face. And the propagation time of the above reflected wave,
The distance M (L) to the spring water n at the crack or joint surface is calculated from the relative dielectric constant calculated from the surface propagation waves of the rock am,
It can be measured using the simple formula below.

上記tは反射波の往復、即ち発信器1から発信された電
磁波が湧水nで反射されて受信器2により受信されるま
での伝播時間であり、これは反射波の波型により読みと
ることができる。
The above t is the round trip of the reflected wave, that is, the propagation time for the electromagnetic wave emitted from the transmitter 1 to be reflected by the spring water n and received by the receiver 2, and this can be read from the waveform of the reflected wave. can.

またεは比誘電率であり、これは表面伝播波の伝播時間
が計測できることによって算出することができる。つま
り表面伝播波の伝播距離は発信アンテナと受信アンテナ
の間隔で与えられるから、この伝播距離を伝播時間によ
って割ることにより表面伝播波の伝播速度を求めること
ができる。
Further, ε is the dielectric constant, which can be calculated by measuring the propagation time of surface propagation waves. In other words, since the propagation distance of a surface propagation wave is given by the distance between the transmitting antenna and the receiving antenna, the propagation speed of the surface propagation wave can be determined by dividing this propagation distance by the propagation time.

表面伝播波の伝播速度がVd、として求められたとする
と、岩盤mの比誘電率は下記の式により求めることがで
きる。
If the propagation velocity of the surface propagating wave is determined as Vd, the dielectric constant of the rock mass m can be determined by the following formula.

ることができる。can be done.

■ 岩盤内の亀裂部や節理面における湧水の探知を迅速
かつ効率的に行うとともに、亀裂部又は節理面における
湧水までの距離を正確に計測することができるので、シ
ールド掘削機による掘削を安全でかつ効率良く行うこと
ができるとともに、工期の短縮及び工費の紙庫を図るこ
とができる。
■ It is possible to quickly and efficiently detect spring water in cracks and joint surfaces in the bedrock, and to accurately measure the distance to the spring water in cracks or joint surfaces, making it possible to avoid excavation with a shield excavator. It can be carried out safely and efficiently, and it is also possible to shorten the construction period and reduce construction costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はトンネル切羽での使用状態断面図、第2図はア
ンテナのブロック図である。 〔但し、■oは空気中の電磁波伝達速度である〕また前
記式−1におけるCは光速である。 (発明の効果) 本発明は以上の様な構成にしたことにより下記の効果を
有する。 ■ 岩盤内の亀裂部又は節理面における湧水の探知を迅
速かつ効率的に行うとともに、亀裂部や節理面における
湧水までの距離を正確に計測すA:トンネル     
1:発信器 2:受信器      3:制御器 4:表示器      m:岩盤 n:湧水
FIG. 1 is a sectional view of the antenna in use at a tunnel face, and FIG. 2 is a block diagram of the antenna. [However, ■o is the electromagnetic wave transmission speed in the air.] Also, C in the above formula-1 is the speed of light. (Effects of the Invention) The present invention has the following effects by having the above configuration. ■ Quickly and efficiently detect spring water in cracks or joint surfaces in the bedrock, and accurately measure the distance to the spring water in the cracks or joint surfaces A: Tunnel
1: Transmitter 2: Receiver 3: Controller 4: Display m: Bedrock n: Spring water

Claims (1)

【特許請求の範囲】[Claims] 電磁波を発信する発信器と、それを受信する受信器とを
掘削中のトンネル切羽面に設置し、該発信器と受信器と
を回転または平行移動させながら電磁波を発信させると
ともに、該電磁波が岩盤内の亀裂部や節理面における湧
水で反射されて受信器で受信されるまでの伝播時間と、
前記発信器から発射された電磁波が切羽の表面近くを伝
播して受信器に伝播される電磁波を表面伝播波としてと
らえ、該表面伝播波の伝播時間から算出されたトンネル
切羽前方における岩盤の比誘電率とにより岩盤内におけ
るトンネル切羽から湧水位置までの距離を探知すること
を特徴とする岩盤内における湧水の探知方法。
A transmitter that emits electromagnetic waves and a receiver that receives the electromagnetic waves are installed on the face of a tunnel being excavated, and the transmitter and receiver are rotated or translated in parallel to emit electromagnetic waves. The propagation time from reflection by spring water on cracks and joint surfaces to reception by a receiver,
The electromagnetic wave emitted from the transmitter propagates near the surface of the tunnel face and is propagated to the receiver as a surface propagation wave, and the relative dielectricity of the rock in front of the tunnel face is calculated from the propagation time of the surface propagation wave. A method for detecting spring water in a bedrock, characterized by detecting a distance from a tunnel face to a spring water position in the bedrock based on the ratio.
JP1116056A 1989-05-11 1989-05-11 A method for detecting spring water in rock Expired - Lifetime JP2809426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116056A JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116056A JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Publications (2)

Publication Number Publication Date
JPH02296184A true JPH02296184A (en) 1990-12-06
JP2809426B2 JP2809426B2 (en) 1998-10-08

Family

ID=14677612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116056A Expired - Lifetime JP2809426B2 (en) 1989-05-11 1989-05-11 A method for detecting spring water in rock

Country Status (1)

Country Link
JP (1) JP2809426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202354A (en) * 2010-03-24 2011-10-13 Taisei Corp Tunnel working face forward probing device
JP2011202356A (en) * 2010-03-24 2011-10-13 Taisei Corp Tunnel working face forward probing device
JP2019148522A (en) * 2018-02-28 2019-09-05 富士通株式会社 Running water position detection device, running water position detection method, and running water position detection program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202354A (en) * 2010-03-24 2011-10-13 Taisei Corp Tunnel working face forward probing device
JP2011202356A (en) * 2010-03-24 2011-10-13 Taisei Corp Tunnel working face forward probing device
JP2019148522A (en) * 2018-02-28 2019-09-05 富士通株式会社 Running water position detection device, running water position detection method, and running water position detection program

Also Published As

Publication number Publication date
JP2809426B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
CN108798690B (en) Combined TBM for realizing geological detection and geological detection tunneling method
CN109613616B (en) Geological comprehensive three-dimensional detection method for shallow karst tunnel
Davis et al. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy 1
JPH0157237B2 (en)
WO2012159546A1 (en) Tunnel water inrush advance prediction device using nuclear magnetic resonance difference and method
JPH03260295A (en) Calculator of backfilling grouting quantity in shield method and calculation method thereof
JPH02296184A (en) Detection of spring water within subsoil
JP3400746B2 (en) Exploration method in front of tunnel face
JP2844816B2 (en) Inspection equipment for tunnel structures
JPH06230141A (en) Excavating equipment provided with underground probe
New et al. The transmission of compressional waves in jointed rock
JPH0228586A (en) Front and sideward monitoring device by shield drilling method
JPS62156496A (en) Falling-in detector for shielding excavator
Mowrey et al. A radar-based highwall rib-thickness monitoring system
JP2857781B2 (en) Road surface cutter
JP3317662B2 (en) Excavated soil volume measurement system and method in shield method and excavation control system and method using these
JPH01285843A (en) System for measuring underground seepage water
JPH0525994B2 (en)
JPH0552949A (en) Underground detecting radar system
JPH0349196Y2 (en)
JP2018040118A (en) Pit face natural ground investigation method and device
JPH0559882A (en) Working face sensing radar device for shield excavator
JPS61262673A (en) Method for searching underground embedded article
JPH0749426Y2 (en) Face Detection Radar Device in Shield Machine
JPH0826743B2 (en) Face collapse detector for shield machine