JP2734481B2 - Methanol reforming method - Google Patents

Methanol reforming method

Info

Publication number
JP2734481B2
JP2734481B2 JP2131260A JP13126090A JP2734481B2 JP 2734481 B2 JP2734481 B2 JP 2734481B2 JP 2131260 A JP2131260 A JP 2131260A JP 13126090 A JP13126090 A JP 13126090A JP 2734481 B2 JP2734481 B2 JP 2734481B2
Authority
JP
Japan
Prior art keywords
methanol
catalyst
reaction
reforming
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2131260A
Other languages
Japanese (ja)
Other versions
JPH0426503A (en
Inventor
卓也 森賀
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2131260A priority Critical patent/JP2734481B2/en
Publication of JPH0426503A publication Critical patent/JPH0426503A/en
Application granted granted Critical
Publication of JP2734481B2 publication Critical patent/JP2734481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノールの改質方法に関するもので、更に
詳しくは、メタノール又はメタノールと水の混合物から
水素含有ガスを改質して製造する方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reforming methanol, and more particularly to a method for reforming and producing a hydrogen-containing gas from methanol or a mixture of methanol and water. .

〔従来の技術〕[Conventional technology]

燃料の多様化が指向されて、原油以外の化石燃料から
合成され得るメタノールが注目されている。またメタノ
ールはナフサよりはるかに低温で水素含有ガスに分解さ
れるので、メタノール分解反応、水蒸気改質反応の熱源
として廃熱の利用が可能であるという優位性をもってい
る。
Due to the diversification of fuels, methanol that can be synthesized from fossil fuels other than crude oil has been receiving attention. Also, since methanol is decomposed into a hydrogen-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for the methanol decomposition reaction and the steam reforming reaction.

メタノール分解反応は次の(1),(2)式のとおり
である。
The methanol decomposition reaction is as shown in the following equations (1) and (2).

CH3OH→CO+2H2 ΔH25℃=21.7kcal/mol ・・・(1) CH3OH+nH2O→(2+n)H2+(1−n)CO+nCO2 ・・・(2) ここで0<n<1 メタノール水蒸気改質反応は次の(3)式のとおりで
ある。
CH 3 OH → CO + 2H 2 ΔH 25 ° C. = 21.7 kcal / mol (1) CH 3 OH + nH 2 O → (2 + n) H 2 + (1-n) CO + nCO 2 (2) where 0 <n < 1 The methanol steam reforming reaction is as shown in the following equation (3).

CH3OH+H2O→CO2+3H2 ΔH25℃=11.8kcal/mol ・・・(3) 従来のメタノールを改質する触媒としては、アルミナ
などの担体に白金などの白金属元素又は銅、ニッケル、
クロム、亜鉛などの卑金属元素及びその酸化物などを担
持した触媒が提案されている。又上述した金属担持法に
よる触媒とは別に沈殿法による調製法があり、この方法
で調製される触媒の代表例としては、亜鉛、クロムさら
には銅を含有してなるメタノールの改質触媒がある。
CH 3 OH + H 2 O → CO 2 + 3H 2 ΔH 25 ° C. = 11.8 kcal / mol (3) As a conventional catalyst for reforming methanol, a white metal element such as platinum or copper, nickel, or a carrier such as alumina is used.
Catalysts supporting base metal elements such as chromium and zinc and oxides thereof have been proposed. In addition to the above-described catalyst using a metal loading method, there is a preparation method using a precipitation method. A typical example of a catalyst prepared by this method is a methanol reforming catalyst containing zinc, chromium, and copper. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来、エンジン、ガスタービンなどの排ガスの顕熱を
熱源として利用し、メタノール又はメタノールと水の混
合物を原料として分解又は水蒸気改質反応を行なわせる
場合、排ガス温度は周知のごとく200℃から700℃程度ま
で変化するため、幅広い温度範囲にわたって内燃機関に
搭載できる程度の少量の触媒で改質でき、かつ例えば、
上記の700℃程度の高温下におかれていても改質性能を
劣化しない改質方法並びに安定した触媒が必要である。
Conventionally, when using the sensible heat of exhaust gas from engines, gas turbines, etc. as a heat source, and performing a decomposition or steam reforming reaction using methanol or a mixture of methanol and water as a raw material, the temperature of the exhaust gas is 200 to 700 ° C. as is well known. Degree, it can be reformed with a small amount of catalyst that can be installed in an internal combustion engine over a wide temperature range, and, for example,
A reforming method that does not degrade the reforming performance even at the above-mentioned high temperature of about 700 ° C. and a stable catalyst are required.

従来のメタノールを改質する触媒は、先に述べた金属
担持法や沈殿法によって調製される触媒が提案されてい
るが、これらの触媒は低温活性に乏しく、熱的劣化を起
こしやすいなど現在のところ多くの問題点を残してい
る。
As the conventional catalyst for reforming methanol, catalysts prepared by the above-described metal loading method and precipitation method have been proposed, but these catalysts have poor low-temperature activity and are liable to be thermally degraded. However, many problems remain.

また、反応器としては、シェルアンドチューブ型の熱
交換器型式となっており、チューブ内に触媒を充填し、
原料のメタノール蒸気又はメタノールと水の混合蒸気は
触媒との接触反応により水素含有ガスに改質される。こ
の改質反応は大きな吸熱反応があり、必要な反応熱はシ
ェル側の熱媒から供給されるが、伝熱速度があまり大き
くないため、触媒装内の温度が反応熱により低くなり、
反応速度を大きくすることが難しいという問題がある。
In addition, the reactor is a shell and tube type heat exchanger type, and the catalyst is filled in the tube,
The raw material methanol vapor or the mixed vapor of methanol and water is reformed into a hydrogen-containing gas by a catalytic reaction with a catalyst. This reforming reaction has a large endothermic reaction, and the necessary reaction heat is supplied from the heat medium on the shell side.However, since the heat transfer rate is not so large, the temperature inside the catalyst device is reduced by the reaction heat,
There is a problem that it is difficult to increase the reaction rate.

本発明は上記技術水準に鑑み、伝熱機能及び触媒機能
の双方を同時に併せもった触媒を使用してメタノールの
改質反応を合目的に行い得る方法を提供しようとするも
のである。
The present invention has been made in view of the above-mentioned state of the art, and an object of the present invention is to provide a method capable of performing a methanol reforming reaction using a catalyst having both a heat transfer function and a catalytic function at the same time.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、メタノール又はメタノールと水の混合物か
ら水素含有ガスを製造する方法において、銅、亜鉛、ク
ロムからなる群の一種以上の酸化物及びニッケルの酸化
物を多孔質担体に含有させた粉末を金属又は合金材料に
そのまゝ、又は溶射用に造粒した後、溶射被覆してなる
触媒を用いるメタノールの改質方法である。
The present invention relates to a method for producing a hydrogen-containing gas from methanol or a mixture of methanol and water, comprising a powder in which a porous carrier contains at least one oxide of the group consisting of copper, zinc, and chromium and an oxide of nickel. This is a method for reforming methanol using a catalyst formed by spray coating a metal or alloy material as it is or after granulating for thermal spraying.

本発明の上記構成における金属又は合金材料として伝
熱管そのものを使用することを好ましい態様とするもの
であり、また金属又は合金材料に被覆してなる触媒を還
元処理して用いることも好ましい態様とするものであ
る。
In a preferred embodiment, the heat transfer tube itself is used as the metal or alloy material in the above configuration of the present invention, and a reduction treatment of a catalyst coated on the metal or alloy material is also used in a preferred embodiment. Things.

〔作用〕[Action]

金属又は合金材料に触媒成分が担持されているので伝
熱機能がよい。特に、触媒成分を担持した伝熱管を用
い、該伝熱管の触媒面でメタノール改質を行うと、伝熱
機能と触媒機能の双方を同時に併せもたせることがで
き、メタノール改質方法として極めて合目的である。
Since the catalyst component is supported on the metal or alloy material, the heat transfer function is good. In particular, when a heat transfer tube carrying a catalyst component is used and methanol reforming is performed on the catalyst surface of the heat transfer tube, both the heat transfer function and the catalytic function can be simultaneously provided, which is extremely suitable as a methanol reforming method. It is.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明でいう水素含有ガスとは、水素を50%以上、一
酸化炭素を35%以下、二酸化炭素を25%以下含有するガ
スである。
The hydrogen-containing gas in the present invention is a gas containing 50% or more of hydrogen, 35% or less of carbon monoxide, and 25% or less of carbon dioxide.

素地金属材料としては、鉄、銅、アルミニウム、亜
鉛、コバルト、ニッケルまたはそれらの合金を用いるこ
とができ、これらの表面に銅、亜鉛、クロムからなる群
の一種以上の酸化物とニッケルの酸化物を多孔質担体に
含有させた粉末をそのまま又は溶射用に造粒した後、溶
射被覆によって溶着させる。
As the base metal material, iron, copper, aluminum, zinc, cobalt, nickel or an alloy thereof can be used, and at least one of oxides of the group consisting of copper, zinc, and chromium and oxides of nickel Is directly or granulated for thermal spraying and then welded by thermal spray coating.

銅、亜鉛、クロムからなる群の一種以上の酸化物とニ
ッケルの酸化物を多孔質担体に含有させた粉末とは、次
のとおりである。まず触媒成分の組成は銅、亜鉛、クロ
ムからなる群の一種以上の酸化物の一種とニッケル酸化
物の組合せにおいては、CuO/NiO,ZnO/NiO,Cr2O3/NiOで1
0/90〜90/10の範囲(以下、モル比で表示)が適当であ
り、特に20/80〜60/40の範囲が好ましい。CuO,ZnO,Cr2O
3の二種以上との組合わせにおいては、CuO−ZnO,CuO−C
r2O3,ZnO−Cr2O3とNiOとの比で、10:90〜90:10の範囲が
好ましく、また、CuO,ZnO,Cr2O3の三種との組合わせに
おいては、NiOとの比で、10:90〜90:10の範囲が好まし
い。次に触媒の組成は、上記触媒成分(CuO,ZnO,Cr2O3
の一種以上とNiOの混合物)と多孔質担体の重量比で20:
80〜95:5の範囲が好ましく、特に40:60〜80:20の範囲が
好ましい。ここで多孔質担体はケイソウ土、アルミナ、
シリカ、チタニア、ゼオライトなどであり、比表面積が
0.1〜500m3/gのものをさす。
The powder in which the porous carrier contains one or more oxides of the group consisting of copper, zinc, and chromium and the oxides of nickel is as follows. First, the composition of the catalyst component is copper, zinc, in the combination of one or more oxides of the group consisting of chromium and nickel oxide, CuO / NiO, ZnO / NiO, Cr 2 O 3 / NiO, 1
The range of 0/90 to 90/10 (hereinafter, represented by a molar ratio) is appropriate, and the range of 20/80 to 60/40 is particularly preferable. CuO, ZnO, Cr 2 O
In combination with two or more of 3 , CuO-ZnO, CuO-C
r 2 O 3 , the ratio of ZnO-Cr 2 O 3 to NiO is preferably in the range of 10:90 to 90:10, and in combination with CuO, ZnO and Cr 2 O 3 , NiO Is preferably in the range of 10:90 to 90:10. Next, the composition of the catalyst is determined by the above catalyst components (CuO, ZnO, Cr 2 O 3
A mixture of at least one of NiO and a porous carrier in a weight ratio of 20:
The range is preferably from 80 to 95: 5, particularly preferably from 40:60 to 80:20. Here, the porous carrier is diatomaceous earth, alumina,
Silica, titania, zeolite, etc., having a specific surface area
0.1 to 500 m 3 / g

本発明の銅、亜鉛、クロムからなる群の一種以上の酸
化物をニッケルの酸化物を多孔質担体に含有させた粉末
を調製することは、上記金属化合物と多孔質担体の水溶
液に沈殿剤としてアルカリ金属元素又はアルカリ土類金
属元素の水酸化物又は炭酸塩をそのまま、あるいは水溶
液にしたもの又はアンモニア水等を混合し、沈殿を生成
させ、乾燥、焼成する方法などが用いられる。
To prepare a powder containing one or more oxides of the group consisting of copper, zinc, and chromium of the present invention in a porous carrier containing an oxide of nickel as a precipitant in an aqueous solution of the metal compound and the porous carrier. A method in which a hydroxide or carbonate of an alkali metal element or an alkaline earth metal element is used as it is, or an aqueous solution thereof or an aqueous ammonia solution is mixed to form a precipitate, which is then dried and calcined.

又本発明でいう溶射用に造粒とは、上述のように調製
した粉末を溶射機の粉末供給管中での流動性を高めるた
め、所定量の水、バインダ、解こう剤を加えて混練し、
スプレードライ法で造粒することをさす。
In the present invention, granulation for thermal spraying refers to kneading a powder prepared as described above by adding a predetermined amount of water, a binder, and a deflocculant in order to enhance fluidity in a powder supply pipe of a thermal spraying machine. And
Granulation by spray drying.

溶射被覆の手段としては粉末式火炎溶射及びプラズマ
溶射などがある。
Means for thermal spray coating include powder flame spraying and plasma spraying.

また、本発明で触媒反応を行わせる前処理として、水
素を3%以上100%以下含有するガス(不活性ガスバラ
ンス)を、200〜500℃で触媒上を流通させ金属複合酸化
物を還元する処理を行うのが好ましい。
Further, as a pretreatment for performing a catalytic reaction in the present invention, a gas containing 3% to 100% of hydrogen (inert gas balance) is passed over the catalyst at 200 to 500 ° C. to reduce the metal composite oxide. Preferably, a treatment is performed.

本発明のメタノール改質方法にける好ましい反応条件
は、次のとおりである。
Preferred reaction conditions in the methanol reforming method of the present invention are as follows.

反応温度:200〜700℃ 特に好ましくは200〜500℃ 反応圧力:0〜30kg/cm2G 特に好ましくは0〜15kg/cm2G メタノール1モルに対する水の供給モル比: 10以下、特に好ましくは3以下 〔実施例〕 以下、実施例により本発明を具体的に説明する。Reaction temperature: 200 to 700 ° C. Particularly preferably 200 to 500 ° C. Reaction pressure: 0 to 30 kg / cm 2 G Particularly preferably 0 to 15 kg / cm 2 G Water supply molar ratio to 1 mol of methanol: 10 or less, particularly preferably Example 3 Hereinafter, the present invention will be described specifically with reference to examples.

〔実施例1〕 15mm×70mm×2mm(厚さ)のSUS304板を十分に清浄に
した後、粉末式火炎溶射機に表1に示す9種の粉末を粉
末供給管に供給して上記SUS304板上に粉末式火炎溶射を
行い、触媒1〜9を調製した。
[Example 1] After sufficiently cleaning a SUS304 plate of 15 mm x 70 mm x 2 mm (thickness), nine types of powders shown in Table 1 were supplied to a powder supply tube by a powder type flame spraying machine, and the above SUS304 plate was supplied. Powder flame spraying was performed thereon to prepare Catalysts 1 to 9.

上記触媒1〜9を反応器に充填して200〜350℃で、12
〜16時間水素還元処理を行った後、下記第2表に示す条
件で触媒活性評価を行った。結果を第3表に示す。
The above catalysts 1 to 9 were charged into a reactor at 200 to 350 ° C. and 12
After performing the hydrogen reduction treatment for up to 16 hours, the catalytic activity was evaluated under the conditions shown in Table 2 below. The results are shown in Table 3.

なお、生成ガスの組成(mol%−乾燥ベースでH2O,CH3
OHを除外した組成、以下同じ)は、次の通りであった。
The composition of the generated gas (H 2 O, CH 3 on a dry basis)
The composition excluding OH, hereinafter the same) was as follows.

(1)メタノール原料 H2:64〜67%、CO:31〜33%、 CO2:0.1〜2%、CH4:0.02〜2% (2)メタノール・水混合液原料 H2:66〜71%、CO:14〜33%、 CO2:0.5〜14%、CH4:0.01〜1% 〔実施例2〕 実施例1と同じ方法で第4表に示す4種の粉末を、粉
末式火炎溶射機に供給して、粉末式火炎溶射を行い触媒
10〜13を調製した。これらの触媒を反応器に充填して、
200〜350℃で、12〜16時間水素還元処理を行った後、第
5表に示す条件で触媒活性評価を行った。結果を第6表
に示す。
(1) Methanol feed H 2: 64~67%, CO: 31~33%, CO 2: 0.1~2%, CH 4: 0.02~2% (2) Methanol water mixture feed H 2: 66-71 %, CO: 14 to 33%, CO 2 : 0.5 to 14%, CH 4 : 0.01 to 1% [Example 2] In the same manner as in Example 1, four kinds of powders shown in Table 4 were powdered flames Supply to the thermal spraying machine to perform powder flame spraying and perform catalyst
10-13 were prepared. Fill these reactors with these catalysts,
After performing a hydrogen reduction treatment at 200 to 350 ° C. for 12 to 16 hours, the catalyst activity was evaluated under the conditions shown in Table 5. The results are shown in Table 6.

なお、各温度での生成ガスの組成は次の通りであっ
た。
The composition of the generated gas at each temperature was as follows.

(1)反応温度 250℃、300℃ H2:66〜72%、CO:13〜33%、 CO2:1〜15%、CH4:0.01〜1% (2)反応温度 350℃ H2:66〜73%、CO:8〜33%、 CO2:1〜19%、CH4:0.01〜1% さらに、上記触媒を第5表に示す反応条件(反応温度
350℃)で1000時間連続試験を行った結果、メタノール
転化率は100%で一定であった。
(1) Reaction temperature 250 ℃, 300 ℃ H 2: 66~72%, CO: 13~33%, CO 2: 1~15%, CH 4: 0.01~1% (2) reaction temperature 350 ° C. H 2: 66~73%, CO: 8~33%, CO 2: 1~19%, CH 4: 0.01~1% Furthermore, the reaction conditions (reaction temperature indicating the catalyst in table 5
(350 ° C) for 1000 hours, the methanol conversion was constant at 100%.

〔実施例3〕 実施例1の触媒1の粉末調製工程で、多多質担体とし
てゼオライトの代わりに、アルミナ、シリカ、チタニア
又はケイソウ土粉末を用いた以外は同じ方法で、触媒14
〜16(NiO:CuO=50:50モル比、触媒中の多孔質担体の含
有量50重量%)を調製した。これらの触媒を実施例1と
同じ方法で水素還元後、活性評価を行った。結果を第7
表に示す。
Example 3 A catalyst 14 was prepared in the same manner as in Example 1 except that alumina, silica, titania, or diatomaceous earth powder was used in place of zeolite in the powder preparation step of catalyst 1 of Example 1.
-16 (NiO: CuO = 50:50 molar ratio, content of porous carrier in catalyst 50% by weight). The activity of these catalysts was evaluated after hydrogen reduction in the same manner as in Example 1. Result 7
It is shown in the table.

なお生成ガスの組成は、次の通りであった。 The composition of the generated gas was as follows.

(1)メタノール原料 H2:63〜61%、CO:30〜32%、 CO2:0.5〜3%、CH4:0.1〜3% (2)メタノール・水混合原料 H2:64〜71%、CO:14〜32%、 CO2:1〜14%、CH4:0.05〜2% 〔実施例4〕 予め十分に清浄にした外径10.5mm、長さ100mm、触媒
外表面積33cm2のSUS304管の管外壁に、下記第8表に示
す粉末を粉末式火炎溶射機に供給して粉末式火炎溶射を
行い、触媒18を調製した。
(1) Methanol feed H 2: 63~61%, CO: 30~32%, CO 2: 0.5~3%, CH 4: 0.1~3% (2) Methanol water mixture feed H 2: 64-71% , CO: 14~32%, CO 2 : 1~14%, CH 4: 0.05~2% example 4 advance sufficiently outside diameter 10.5mm was cleaned, length 100 mm, SUS304 catalyst outside surface area 33cm 2 The powder shown in Table 8 below was supplied to the powder flame spraying machine on the outer wall of the tube to perform powder flame spraying, thereby preparing a catalyst 18.

上記触媒18を反応管として、反応管の内側を熱媒で加
熱することにより昇温し、熱媒温度を200〜350℃にし、
反応管外表面に水素30%(窒素バランス)ガスを供給し
て還元処理を行った後、熱媒を昇温し熱媒温度を350℃
に一定にした後、反応管外表面に、350℃のメタノール
と水の混合蒸気{H2O/CH3OH=1.5(mol/ml)}を15〔cc
/h〕の流量で供給した結果、メタノール反応率は98%で
あった。
Using the catalyst 18 as a reaction tube, the temperature of the inside of the reaction tube is increased by heating the inside of the reaction tube with a heating medium, and the heating medium temperature is set to 200 to 350 ° C.,
After performing a reduction treatment by supplying hydrogen 30% (nitrogen balance) gas to the outer surface of the reaction tube, the temperature of the heating medium is raised to 350 ° C.
After that, a mixture steam of 350 ° C. methanol and water {H 2 O / CH 3 OH = 1.5 (mol / ml)} was applied to the outer surface of the reaction tube at 15 [cc
/ h], the methanol conversion was 98%.

一方、同じ触媒外表面積になるように、従来のペレッ
ト型触媒を二重管の外側に充填し、内側と熱媒を通すよ
うな反応管として同じように反応させた結果、メタノー
ル反応率は90%以下であった。
On the other hand, the conventional pellet-type catalyst was filled into the outside of the double tube so as to have the same outer surface area of the catalyst, and the same reaction was carried out as a reaction tube through which the inside and the heat medium were passed. % Or less.

結局、本発明による反応管は伝熱速度が大きいためメ
タノール反応率が大きいことがわかった。
As a result, it was found that the reaction tube according to the present invention has a high heat transfer rate and a high methanol conversion rate.

〔発明の効果〕〔The invention's effect〕

以上の実施例からも明らかなように、本発明による伝
熱機能の優れた触媒を用いることにより、メタノールは
メタノールと水と混合物から水素含有ガスを製造する方
法において極めて合目的に行える方法が提供される。
As is clear from the above examples, the use of the catalyst having an excellent heat transfer function according to the present invention provides a method for producing methanol containing hydrogen from a mixture of methanol, water, and hydrogen, which is extremely suitable. Is done.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 3/32 B01J 23/74 321M (56)参考文献 特開 昭63−238198(JP,A) 特開 昭63−209752(JP,A) 特開 昭60−220143(JP,A) 特開 昭63−2801(JP,A) 特開 昭58−27787(JP,A) 特公 昭62−35814(JP,B2)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C01B 3/32 B01J 23/74 321M (56) References JP-A-63-238198 (JP, A) JP-A-63-209752 (JP, A) JP-A-60-220143 (JP, A) JP-A-63-2801 (JP, A) JP-A-58-27787 (JP, A) JP-B-62-35814 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】メタノール又はメタノールと水の混合物か
ら水素含有ガスを製造する方法において、銅、亜鉛、ク
ロムからなる群の一種以上の酸化物及びニッケルの酸化
物を多孔質担体に含有させた粉末を金属又は合金材料に
そのまゝ、又は溶射用に造粒した後、溶射被覆してなる
触媒を用いることを特徴とするメタノールの改質方法。
1. A method for producing a hydrogen-containing gas from methanol or a mixture of methanol and water, comprising a porous carrier containing at least one oxide of the group consisting of copper, zinc and chromium and an oxide of nickel. Using a catalyst obtained by spraying a metal or alloy material as it is or granulating for thermal spraying and then spray coating.
JP2131260A 1990-05-23 1990-05-23 Methanol reforming method Expired - Fee Related JP2734481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131260A JP2734481B2 (en) 1990-05-23 1990-05-23 Methanol reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131260A JP2734481B2 (en) 1990-05-23 1990-05-23 Methanol reforming method

Publications (2)

Publication Number Publication Date
JPH0426503A JPH0426503A (en) 1992-01-29
JP2734481B2 true JP2734481B2 (en) 1998-03-30

Family

ID=15053765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131260A Expired - Fee Related JP2734481B2 (en) 1990-05-23 1990-05-23 Methanol reforming method

Country Status (1)

Country Link
JP (1) JP2734481B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677320B2 (en) * 1994-11-24 1997-11-17 工業技術院長 Dehydrogenation reaction catalyst, method for producing the same, and methanol decomposition method using the catalyst
JP6449251B2 (en) * 2013-05-24 2019-01-09 ヒンドゥスタン・ペトロリアム・コーポレーション・リミテッド Catalytic degradation of lower hydrocarbons to produce carbon oxide free hydrogen and bamboo structure carbon nanotubes
CN104001518B (en) * 2014-06-10 2016-11-09 中国计量学院 A kind of preparation method of nickel alloy/porous material catalyst
CN104226319B (en) * 2014-06-24 2016-10-19 中国计量学院 A kind of preparation method of nickel alloy/aluminium oxide nano catalyst
CN104162454B (en) * 2014-08-18 2016-01-27 浙江大学 Multiple dimensioned reaction carriers with porous MCA and preparation method thereof
CN106669819A (en) * 2016-12-23 2017-05-17 常州大学 Method and process for preparing Cu, Fe and MgO loaded AlPO<4>-5 molecular sieve for catalysis of hydrogen production from steam reforming of methanol

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827787A (en) * 1981-08-10 1983-02-18 Matsushita Electric Ind Co Ltd Control of carbon
JPS60220143A (en) * 1984-04-16 1985-11-02 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JPS6235814A (en) * 1985-08-09 1987-02-16 Hitachi Ltd Molding equipment
JPS632801A (en) * 1986-06-21 1988-01-07 Ofic Co Gaseous hydrogen generating material
JPS63209752A (en) * 1987-02-26 1988-08-31 Agency Of Ind Science & Technol Methanol reforming catalyst
JPS63238198A (en) * 1987-03-26 1988-10-04 Kyushu Refract Co Ltd Production of synthetic natural gas

Also Published As

Publication number Publication date
JPH0426503A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
CN100352760C (en) One step conversion of methanol into hydrogen and carbon dioxide
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
JP2734481B2 (en) Methanol reforming method
JP2738975B2 (en) Methanol reforming method
JPH11106770A (en) Method and apparatus for power generation with dimethyl ether modification gas
JPH03119094A (en) Reformed gas-producing equipment by electroless plating and method therefor
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
JP2659836B2 (en) Methanol reforming method
CN108927133A (en) A kind of dimethyl ether-steam reforming catalyst and its hydrogen production process
JPS6045939B2 (en) Methanol decomposition catalyst for hydrogen and carbon monoxide production
JPH07275711A (en) Nickel-supported catalyst for modifying hydrocarbon and production thereof
JP2659816B2 (en) Methanol reforming method
JPH03196839A (en) Production of methanol reforming catalyst
JPH0724320A (en) Production of catalyst for steam reforming of methanol
JPH0427434A (en) Catalyst for reforming methanol
JPS62176545A (en) Catalyst for reforming methanol
JPH03249943A (en) Methanol reforming catalyst
JPS6150640A (en) Catalyst for preparing methane-containing gas
JPH04362001A (en) Methanol reforming catalyst
JP2851406B2 (en) Methanol reforming catalyst
JPH0455301A (en) Method for reforming methanol
JPH0312302A (en) Methanol reformer
JPH02279502A (en) Method for reforming methanol
JPH02172801A (en) Method for reforming methanol
JPS60122038A (en) Catalyst for reforming methanol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees