JPS6150640A - Catalyst for preparing methane-containing gas - Google Patents

Catalyst for preparing methane-containing gas

Info

Publication number
JPS6150640A
JPS6150640A JP59170031A JP17003184A JPS6150640A JP S6150640 A JPS6150640 A JP S6150640A JP 59170031 A JP59170031 A JP 59170031A JP 17003184 A JP17003184 A JP 17003184A JP S6150640 A JPS6150640 A JP S6150640A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
oxide
methanol
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59170031A
Other languages
Japanese (ja)
Other versions
JPH0361494B2 (en
Inventor
Tetsuya Imai
哲也 今井
Hiroshi Fujita
浩 藤田
Akira Shirohana
城鼻 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59170031A priority Critical patent/JPS6150640A/en
Publication of JPS6150640A publication Critical patent/JPS6150640A/en
Publication of JPH0361494B2 publication Critical patent/JPH0361494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst excellent in activity and selectivity, by supporting nickel or oxide thereof by a carrier containing a basic oxide mixture. CONSTITUTION:Nickel or nickel oxide is supported by a carrier containing a basic oxide mixture comprising two or more of an alkaline earth metal, a rare earth metal and an alkali metal. Thus obtained catalyst performs the highly active and highly selective reaction for forming methane-containing gas by using methanol or a mixture of methanol and water as a stock material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタン含有ガス製造用触媒に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a catalyst for producing methane-containing gas.

更に詳しくは、メタノール又はメタノールと水の混合物
を原料としてメタン含有ガスに改質する方法において、
メタンを選択的に生成させ、低温で高活性かつ長寿命の
触媒を提供するものである。
More specifically, in a method of reforming methanol or a mixture of methanol and water as a raw material into a methane-containing gas,
It selectively generates methane and provides a highly active and long-life catalyst at low temperatures.

(従来の技術) 従来、メタンを含有する高発熱量ガスは、ナフサ、ブタ
ン等の炭化水素をNl系触媒により接触分解させて得て
いる。しかしながら、この従来の方法は下記の欠点を有
している。
(Prior Art) Conventionally, a high calorific value gas containing methane has been obtained by catalytically cracking hydrocarbons such as naphtha and butane using an Nl-based catalyst. However, this conventional method has the following drawbacks.

(1)接触分解に先立ち原料の脱硫を必要とするため、
脱硫装置の設置及びその運転管理が必要となりコスト高
となる。
(1) Desulfurization of the raw material is required prior to catalytic cracking;
Installation of a desulfurization equipment and its operational management are required, resulting in high costs.

(ii)  N i 系触媒は、低温域では触媒活性を
示さないので、高温度で接触反応を行う必要があり、こ
れは生成ガスの高発熱量化には不利である。
(ii) Since the Ni-based catalyst does not exhibit catalytic activity in a low temperature range, it is necessary to carry out the catalytic reaction at a high temperature, which is disadvantageous for increasing the calorific value of the generated gas.

010  高温度でガス化させるため、外部熱源による
原料の予熱が必要であり、これはプロセス全体の熱効率
を低下させる原因となる。
010 Due to the high temperature gasification, preheating of the raw material by an external heat source is required, which causes a reduction in the thermal efficiency of the entire process.

また、最近では液化天然ガスの導入が進められているが
、液化天然ガスは貯蔵と輸送の面で技術的な制約があり
、巨額の投資を必要とするという問題点がある。
In addition, recently, progress has been made in the introduction of liquefied natural gas, but liquefied natural gas has technical limitations in terms of storage and transportation, and there are problems in that it requires a huge amount of investment.

以上のような情勢から、天然ガス又は石炭などt1重比
重において、まず水蒸気によって水素及び−酸化炭素と
からなる合成ガスに分解し、ついで触媒上でメタノール
に転化させ、このメタノールを輸送し、消費地でそのま
ま燃料として、またメタノールをメタンに転化してガス
燃料として用いる方法などが検討されている。
From the above situation, natural gas or coal at t1 gravity is first decomposed by steam into synthesis gas consisting of hydrogen and carbon oxide, then converted to methanol on a catalyst, and this methanol is transported and consumed. Methods such as using it directly as fuel in the ground, or converting methanol to methane and using it as gas fuel are being considered.

このメタノールをメタン含有ガスに転化する触媒として
は、従来、下記のような触媒が提案されている。
Conventionally, the following catalysts have been proposed as catalysts for converting methanol into methane-containing gas.

(])活性アルミニウム及び/又は珪藻土な担体とした
ニッケル触媒(特開昭51−122102号)、 (2)ニッケルを25〜50重貴チ、アルミナ熔融セメ
ントを少なくとも5重量%、二酸化ジルコニウム又は二
酸化チタンを少なくとも5重量%含有する触媒(特開昭
53−55702号、54−111503号) (発明が解決しようとする問題点) 上記の触媒は低温活性に乏しく、耐熱性がない、また生
成ガス中のメタン含有量が小さい、など現在までのとこ
ろ多くの問題点を残しているO 上記従来の触媒の中で、例えばγ−A40.にニッケル
を担持した触媒については、目的の反応■のみでな(、
水素、−酸化炭素、エーテル、アルデヒド及びカーボン
青の生成する副反応■が起こりやすいという問題かある
(]) Nickel catalyst with activated aluminum and/or diatomaceous earth carrier (JP-A-51-122102); (2) 25-50% nickel, at least 5% by weight of alumina fused cement, zirconium dioxide or zirconium dioxide; Catalysts containing at least 5% by weight of titanium (JP-A-53-55702, JP-A-54-111503) (Problems to be Solved by the Invention) The above catalysts have poor low-temperature activity, lack heat resistance, and produce gas Among the conventional catalysts mentioned above, for example, γ-A40. For the catalyst with nickel supported on it, only the desired reaction (■)
There is a problem in that side reaction (2), which generates hydrogen, carbon oxide, ether, aldehyde and carbon blue, is likely to occur.

反応■ 4CH,OH→3CH,+2H,0+Co。Reaction■ 4CH, OH → 3CH, +2H, 0+Co.

反応■ CI、OIl   →CO+2H。Reaction■ CI, OIl → CO+2H.

CH,OH+H,0→ CO2+5HzL’H,OH−
+14CH,,0CH5+1/2H,0CI4.OH−
+ HeHO−)H。
CH, OH+H, 0→ CO2+5HzL'H, OH-
+14CH,,0CH5+1/2H,0CI4. OH-
+ HeHO−)H.

CH,○)]   →C+H,十〇、 02CO→ C
+CO。
CH, ○)] →C+H, 10, 02CO→ C
+CO.

上記反応のうち■は原料メタノール1モルごまたつのメ
タン収率が最も高い反応であり、水又   1は炭酸カ
スの除去が容易に行われうるため、最も高発熱菫のガス
が得られる。
Among the above reactions, ① gives the highest yield of methane per 1 mole of raw methanol, and ① provides the highest exothermic violet gas because carbon dioxide residue can be easily removed in ①.

また、反応■のうちカーボン生成反応は触媒の劣化ある
いはりアクタ−の閉塞などをきたし長期安定操業の妨げ
となる。
In addition, the carbon production reaction of reaction (2) causes deterioration of the catalyst or blockage of the reactor, which impedes long-term stable operation.

(問題点を解決するための手段) 本発明者らは、上m己の問題を解決すべく、アルカリ土
類金属元素、希土類元素、アルカリ金属元素の2棟以上
の元素の酸化物を含有する担体が塩基性であることKよ
り、エーテル生成などの副反応が抑制されること、また
上記担体に担持したニッケル又はニッケルの酸化物が、
担体との間のスピネル化合物生成反応ケ起こさず、非常
に安定化されることに注目し、種々の実験検討を重ねた
結果、本発明を完成するに至った0すなわち本発明は、
アルカリ土類金属元素、希土類元素、アルカリ全編元素
からなる群の2柚以上の元素の酸化物を含有する相体上
に、ニッケル又はニック°ルの酸化物を担持させたこと
を特徴とするメタノール又はメタノールと水の混合物を
原料としたメタン含有ガス製造用触媒に関するものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have proposed a method containing oxides of two or more elements: alkaline earth metal elements, rare earth elements, and alkali metal elements. Because the carrier is basic, side reactions such as ether formation are suppressed, and the nickel or nickel oxide supported on the carrier is
Focusing on the fact that the spinel compound is highly stabilized without causing any reaction to form a spinel compound with the carrier, and as a result of various experimental studies, the present invention was completed.
Methanol characterized in that nickel or nickel oxide is supported on a phase containing oxides of two or more elements of the group consisting of alkaline earth metal elements, rare earth elements, and alkali elements. Or it relates to a catalyst for producing methane-containing gas using a mixture of methanol and water as a raw material.

本発明触媒しま、メタノール又はメタノールと水の混合
物からのメタン含有ガス生成反応において、活性、選択
性とも極めて優れるものである。
The catalyst strip of the present invention has extremely excellent activity and selectivity in a reaction for producing a methane-containing gas from methanol or a mixture of methanol and water.

ここでアルカリ土類金属元素、希土類元素、アルカリ金
属元素からなる群の2種以上の元素の酸化物(以下、塩
基性混合酸化物と呼ぶ)を含有する担体とは、アルカリ
土類金属元素の酸化物、希土類元素の酸化物、アルカリ
金属元素の酸化物の2柚又は6種の混合物で、各酸化物
を少くとも001重責重責上(以下、各酸化物の含有量
は担体全量基準で表示する)、好ましくは0.1〜95
重i%含有する担体で、上記酸化物以外の物質としてア
ルミナ、チタニア、ジルコニア、シリカその他バインダ
ー成分などを含有するものをさす。なお、酸化物の含有
量を0.01重重チ以上としたのは、これ以下では酸化
物の効果が発現されないからである。
Here, the carrier containing oxides of two or more elements of the group consisting of alkaline earth metal elements, rare earth elements, and alkali metal elements (hereinafter referred to as basic mixed oxides) refers to A mixture of two or six types of oxides, oxides of rare earth elements, and oxides of alkali metal elements, each containing at least 001 oxides (hereinafter, the content of each oxide is expressed based on the total amount of the carrier) ), preferably 0.1 to 95
This refers to a carrier containing alumina, titania, zirconia, silica, and other binder components as substances other than the above-mentioned oxides. The reason why the content of the oxide is set to 0.01 weight or more is because the effect of the oxide is not exhibited below this value.

上記担体の調製法としては、通常担体として用いられ℃
いるアルミナ、チタニアなどを塩基性混合酸化物で被覆
する方法、塩基性混合酸化物とアルミナ、チタニアなど
を物理混合する方法、又はアルカリ土類金屑元素、希土
類元素、アルカリ金属元素の化合物の混合水溶液とアル
ミニウム化合物含有水溶液の混合液(アルカリを加えて
沈殿を作り焼成する方法などが適用できる。
The method for preparing the above carrier is as follows:
A method of coating alumina, titania, etc., with a basic mixed oxide, a method of physically mixing a basic mixed oxide with alumina, titania, etc., or a method of mixing a compound of an alkaline earth metal scrap element, a rare earth element, or an alkali metal element. A mixed solution of an aqueous solution and an aqueous solution containing an aluminum compound (a method of adding an alkali to form a precipitate and firing, etc. can be applied).

ここで、アルカリ土類金属元素の酸化物の例としては、
酸化マグネシウム(MgO)、酸化カルシウム(C!a
o)、酸化バリウム(Bad)又はこれらの混合物など
があり、アルカリ金属元素の酸化物の例としては酸化カ
リウム(XZO)、酸化ナトリウム(Nano)又はこ
れらの混合物などがある。また希土類元素の酸化物とは
周期律表のlqa族の希土類元素の酸化物であり、例え
ば酸化ランタン(La1O,) 、酸化セリウム(Ce
Ol)、酸化ネオジウム(Nd20s )又はこれ! 
   らの酸化物などがある。
Here, examples of oxides of alkaline earth metal elements include:
Magnesium oxide (MgO), calcium oxide (C!a
Examples of oxides of alkali metal elements include potassium oxide (XZO), sodium oxide (Nano), and mixtures thereof. Rare earth element oxides are oxides of rare earth elements in the lqa group of the periodic table, such as lanthanum oxide (La1O,), cerium oxide (Ce
Ol), neodymium oxide (Nd20s) or this!
There are oxides of these.

塩基性混合酸化物を含有する担体の一例としては、La
1O3−CaO−A40B 、 La1O1−MgO−
A403゜La203−に2O−A401.CeO,−
CaO−A403 、Ce0l−Ba 0−Al2O,
、Nd20g −に2O−A403 、 La2O3−
Ca O−Na20−Ti02 、 CeO,−MgO
−に、0−ZrO2などの組み合わせがある。
An example of a carrier containing a basic mixed oxide is La
1O3-CaO-A40B, La1O1-MgO-
A403°La203- to 2O-A401. CeO,-
CaO-A403, Ce0l-Ba0-Al2O,
, Nd20g-2O-A403, La2O3-
CaO-Na20-Ti02, CeO,-MgO
-, there are combinations such as 0-ZrO2.

La103−Ca O−At20B 担体な一例として
a製法を説明すると、 (1)  アルミナを硝酸ランタン、硝酸カルシウム水
溶液に浸漬する。
La103-Ca O-At20B As an example of the carrier, method a will be explained: (1) Alumina is immersed in an aqueous solution of lanthanum nitrate and calcium nitrate.

(2)  アルミナを硝酸ランタン、硝酸カルシウム水
溶液KN漬し、炭酸ソーダなどのアルカリを加えて沈殿
を作る。
(2) Alumina is soaked in an aqueous solution of lanthanum nitrate and calcium nitrate (KN), and an alkali such as soda carbonate is added to form a precipitate.

(3)  La103 、 CaOの粉末混合物をアル
ミナゾルと混合する。
(3) Mix the powder mixture of La103 and CaO with alumina sol.

(4)  ランタン化合物、カルシウム化合物を含有す
る水溶液とアルミニウム化合物含有水溶液の混合液に炭
酸ソーダなどのアルカリを加えて沈殿を作る。
(4) Add an alkali such as soda carbonate to a mixture of an aqueous solution containing a lanthanum compound and a calcium compound and an aqueous solution containing an aluminum compound to form a precipitate.

工程の後、乾燥、焼成することによって容易に得られる
After the process, it can be easily obtained by drying and firing.

次に、このようにして得られた担体にニッケル又はニッ
ケルの酸化物を担持させる方法は、従来から用いられて
いる方法で問題なく、例えばニッケルの硝酸塩、硫酸塩
、塩化物、酢酸塩、ギ酸塩などの化合物の水溶液に担体
を浸漬した後、乾燥焼成することによりニッケルの酸化
物を担持した触媒が、さらにこれを水素処理など罠より
還元すればニッケルを担持した触媒が得られる。ここで
、ニッケル又はニッケルの酸化物の担持量(以下、担持
量は、触媒全量基準でN1又はN10として表示)は、
ニッケルの場合は少くとも0.08重量−以上、好まし
くは0.8〜72重i−の範囲、ニッケルの酸化物の場
合は少(とも0.01重j1%以上、好ましくは1〜9
0重量%の範囲である。なお、ニッケルの場合α08重
量%以下であると活性が殆んどなく、ニッケルの酸化物
の場合もα01重量%以下であると活性が殆んどない。
Next, the method of supporting nickel or nickel oxide on the carrier thus obtained can be any conventional method, such as nickel nitrate, sulfate, chloride, acetate, formate. By immersing a carrier in an aqueous solution of a compound such as a salt and then drying and firing, a catalyst with nickel oxide supported can be obtained.If this is further reduced by a trap such as hydrogen treatment, a catalyst with nickel supported can be obtained. Here, the supported amount of nickel or nickel oxide (hereinafter, the supported amount is expressed as N1 or N10 based on the total amount of catalyst) is:
In the case of nickel, it is at least 0.08% by weight, preferably in the range of 0.8 to 72%, and in the case of nickel oxides, it is at least 0.01% by weight, preferably 1 to 9%.
It is in the range of 0% by weight. In the case of nickel, there is almost no activity when α08% by weight or less, and in the case of nickel oxide, there is almost no activity when α01% by weight or less.

以上の触媒は、メタノール又はメタノールと水の混合物
を原料としてメタン含有ガスに改質する反応に対し、高
選択性でかつ活性が高く、耐久性にも極めて優れた性能
を有するものである。なお、この反応は、一般に温度1
50’C以上、好ましくは200〜60o℃、加圧力O
kg/crn2以上、好ましくは0〜11] Okl/
/cm” Gで行われる。またメタノールと水の混合物
′jfI:涼科とす原料合は、メタノール100重蓋部
に対して水1〜1o o o M置部と丁りことが好ま
しい。
The above catalyst has high selectivity and activity in the reaction of reforming methanol or a mixture of methanol and water as a raw material into a methane-containing gas, and has extremely excellent durability. Note that this reaction is generally carried out at a temperature of 1
50'C or higher, preferably 200 to 60oC, pressure O
kg/crn2 or more, preferably 0 to 11] Okl/
/cm''G. Also, in the mixture of methanol and water, it is preferable to mix 100 parts of methanol with 1 to 1 parts of water.

水を1重量部以上とするのはカーボン析出防止効果χ得
るためであり、またi ooo重量部以下とするのは、
これ以上であると水が多すぎて熱効率が低下するからで
あ6゜ (実施例) 実施例1 粒径2〜4taaのγ−A40.からなるベレツトを硝
酸セリウム及び硝酸カルシウムの水溶液に浸漬後、乾燥
し、500℃で6時間焼成してアルミニウムに対してC
eO2,CaOが各々5重量%相持された相体を得た。
The reason why the water content is 1 part by weight or more is to obtain the effect of preventing carbon precipitation χ, and the reason why the water content is less than i ooo parts by weight is as follows.
If it is more than this, there will be too much water and the thermal efficiency will decrease.Example 1 γ-A40. with a particle size of 2 to 4 taa. A beret made of
A phase body containing 5% by weight of each of eO2 and CaO was obtained.

このようにして得られた相体を硝酸ニッケルの水溶液に
浸漬し、戟燥後500℃で3時間焼成して10重量%(
触媒全重讐基準)の酸化ニッケルを担持した触媒1を調
製した。
The phase obtained in this way was immersed in an aqueous solution of nickel nitrate, dried, and then calcined at 500°C for 3 hours to give a concentration of 10% by weight (
Catalyst 1 was prepared which supported nickel oxide (based on the total weight of the catalyst).

この触媒を400℃で3時間4チ水素気流中で還元し、
表1に示す条件で活性評価試験を行い、表2の結果を得
た。
This catalyst was reduced at 400°C for 3 hours in a hydrogen stream,
An activity evaluation test was conducted under the conditions shown in Table 1, and the results shown in Table 2 were obtained.

なお比較触媒として、従来のγ−A40.担体に10重
量%の酸化ニッケルを担持した触媒を調製し、反応温度
400℃とした以外は表1に示す条件で活性評価試験を
行い、この結果を表2に示した。
As a comparative catalyst, the conventional γ-A40. A catalyst in which 10% by weight of nickel oxide was supported on a carrier was prepared, and an activity evaluation test was conducted under the conditions shown in Table 1 except that the reaction temperature was 400°C. The results are shown in Table 2.

また、N10のまま(上記の水素還元をしない)で−上
糺と同様の活性評価を行ったところ、反応生成物の)]
、、COKより還元されて反応開始後1時間には−1−
記の予め水素還元処理した場合と同様の性能が得られた
In addition, when we performed the same activity evaluation as the above-mentioned N10 (without the hydrogen reduction described above), we found that the reaction product ()]
,, -1- is reduced by COK and 1 hour after the start of the reaction.
Performance similar to that obtained in the case where hydrogen reduction treatment was performed in advance was obtained.

表  1 表  2 表2及び以下の分解カス組成は、水を除外した乾ガス基
準で表示する。
Table 1 Table 2 The cracked residue compositions in Table 2 and below are expressed on a dry gas basis excluding water.

実施例2 実施例1で調製した触媒1と同じ方法でCe O,。Example 2 CeO, in the same manner as Catalyst 1 prepared in Example 1.

CaOの濃度(相体金蓋基準)それぞれo5゜2.5,
10,25.45重量%になるよう担体を調製し、これ
を硝酸ニッケルの水溶液圧浸漬し、焼成することKよっ
て酸化ニッケルが10重量%になるよ51CJji持し
た触媒2〜6を調製    1した。
Concentration of CaO (based on phase gold lid), respectively o5゜2.5,
A carrier was prepared so that the amount of nickel oxide was 10% by weight, 25.45% by weight, pressure immersed in an aqueous solution of nickel nitrate, and calcined to prepare catalysts 2 to 6 having nickel oxide content of 10% by weight. .

これらの触媒につい℃、反応温度Y400℃した以外は
実施例1と同じ条件で、水素還元処理仮活性粁価試験を
行い、表6の結果を得た。
These catalysts were subjected to a hydrogen reduction treatment provisional activation value test under the same conditions as in Example 1, except that the reaction temperature was 400°C, and the results shown in Table 6 were obtained.

また、NiOのまま(上記の水素還元をしない)で上記
と同様の活1士評価を行ったところ、反応生成物のH,
、COKより還元されて反応開始後1時間には上Hdの
予め水素還元処理した場合と同様の性能か得られた。
In addition, when we conducted the same evaluation as above with NiO as it is (without the above hydrogen reduction), we found that the reaction product H,
, and COK, and one hour after the start of the reaction, performance similar to that obtained when the upper Hd was subjected to hydrogen reduction treatment in advance was obtained.

実施例3 粒径2〜4晴のγ−A403からなるペレットを硝酸ラ
ンタン、及び硝酸マグネシウムの水溶液VC,浸漬後、
乾燥し、500℃で3時間焼成してアルミニウムに対し
てLa103 、 MgOが各々5重itチ担持された
担体な得た。この担体に実施例1と同じ方法で酸化ニッ
ケル濃度5,20゜50.80重量%になるよう担持し
た触媒7〜10をPA製した。
Example 3 After immersing pellets of γ-A403 with a particle size of 2 to 4 in an aqueous solution of lanthanum nitrate and magnesium nitrate,
It was dried and calcined at 500° C. for 3 hours to obtain a carrier in which La103 and MgO were each supported in five layers on aluminum. Catalysts 7 to 10 were made of PA and were supported on this carrier in the same manner as in Example 1 so that the nickel oxide concentration was 5.20° and 50.80% by weight.

また、塩化ニッケル、酢酸ニッケルの各水溶液に上記担
体を浸漬し、乾燥後500℃で3時間焼成して、酸化ニ
ッケルとして10重量%に、   なるよう相持した触
媒11.12を調製した。
Further, the above-mentioned carrier was immersed in each aqueous solution of nickel chloride and nickel acetate, dried and then calcined at 500° C. for 3 hours to prepare catalyst 11.12 containing 10% by weight of nickel oxide.

また、上記担体を硝酸ニッケルの水溶液Kv潰し、アル
カリ(沈殿剤)とし℃アンモニア水、炭酸ソーダ水溶液
をそれぞれ添加し、担体の表面に水酸化ニッケルの沈殿
を生成させた後、乾燥焼成を行い、10重量−の酸化ニ
ッケルを担持した触媒13(アンモニア水使用)、14
(炭酸ソーダ水溶液使用)を調製した。
In addition, the above-mentioned carrier was crushed with an aqueous solution of nickel nitrate (Kv), used as an alkali (precipitant), and aqueous ammonia and sodium carbonate were respectively added thereto to form a precipitate of nickel hydroxide on the surface of the carrier, followed by drying and firing. Catalysts 13 (using ammonia water), 14 supporting nickel oxide weighing 10% by weight
(using aqueous sodium carbonate solution) was prepared.

これらの触媒について水素還元処理後、表4に示す条件
で活性評価試験を行い、表5の結果を得た。
After hydrogen reduction treatment for these catalysts, an activity evaluation test was conducted under the conditions shown in Table 4, and the results shown in Table 5 were obtained.

表 4 表  5 また、NiOのまま(上記の水素還元をしない)で上記
と同様の活性評価を行ったところ、反応生成物のH,、
Co  により還元されて反応開始後1時間には上記の
予め水素還元処理した場合と同様の性能が得られた。
Table 4 Table 5 In addition, when we performed the same activity evaluation as above with NiO as it is (without the above hydrogen reduction), we found that the reaction products H,...
One hour after the start of the reaction after reduction with Co 2 , the same performance as in the case of the above-mentioned hydrogen reduction treatment was obtained.

実施例4 r−A/403の代わりにチタニア又はジルコニアを用
いた以外は実施例1の触媒1と同じ方法でチタニア、ジ
ルコニア各々に対してNd、03及びに、Oが各々5重
量%担持された担体1,2を得た。各相体に20重量%
の酸化ニッケルを担持した触媒15.16をfA製した
Example 4 Nd, 03, and O were supported in an amount of 5% by weight on each of titania and zirconia in the same manner as in Catalyst 1 of Example 1 except that titania or zirconia was used instead of r-A/403. Carriers 1 and 2 were obtained. 20% by weight for each phase
Catalyst 15.16 supporting nickel oxide was manufactured by fA.

また、硝酸塩水浴液を出発原料とし炭酸ソーダ水溶液を
添加する。沈殿法により陶製した表6に示す組成の担体
5〜6を硝酸ニッケルの水溶液に浸漬し、乾燥、焼成す
ることにより20重量%の酸化ニッケルを担持した触媒
17〜20を調製した。
Further, a nitrate water bath solution is used as a starting material and a sodium carbonate aqueous solution is added. Catalysts 17 to 20 supporting 20% by weight of nickel oxide were prepared by immersing carriers 5 to 6 having the compositions shown in Table 6, which were made of ceramic by the precipitation method, in an aqueous solution of nickel nitrate, drying, and firing.

これらの触媒について、水素還元処理後、表4に示す条
件で活性評価試験を行い、表6の結果を得た。
After hydrogen reduction treatment, an activity evaluation test was conducted on these catalysts under the conditions shown in Table 4, and the results shown in Table 6 were obtained.

また、N10のまま(上記の水素還元をしない)で上記
と同様の活性評価を行ったところ、反応生成物のH,、
Co  により還元されて反応開始後1時間には上記の
予め水素還元処理した場合と同様の性能が得られた。
In addition, when we performed the same activity evaluation as above with N10 as it is (without the above hydrogen reduction), we found that the reaction product H,
One hour after the start of the reaction after reduction with Co 2 , the same performance as in the case of the above-mentioned hydrogen reduction treatment was obtained.

実施例5 実施例1で調製した触媒1(水素還元したもの)及び比
較触媒をステンレス製の反応管に10cc  充てんし
、400℃でメタノールを20cc/hで連続供給し、
5000時間の耐久性試験を行った。
Example 5 10 cc of catalyst 1 (hydrogen-reduced) prepared in Example 1 and comparative catalyst were filled in a stainless steel reaction tube, and methanol was continuously supplied at 20 cc/h at 400°C.
A 5000 hour durability test was conducted.

この結果、表7に示すように、比較触媒はカーボン析出
が多(劣化が激しいが、本発明の触媒1はメタノール反
応率及び分解ガス組成とも初期と殆んど変化がなく、触
媒表面へのカーボン析出もないことを確認した。
As a result, as shown in Table 7, the comparative catalyst had a large amount of carbon deposited (severe deterioration), but the catalyst 1 of the present invention had almost no change from the initial stage in both the methanol reaction rate and the cracked gas composition, and the catalyst surface It was confirmed that there was no carbon precipitation.

3000時間後の触媒上のカーボン析出量は次の通りで
あった。
The amount of carbon deposited on the catalyst after 3000 hours was as follows.

触媒1の場合   02重量% 比較触媒の場合   9重量% また、上記触媒1につきNiOのまま(水素還元をしな
い)で上記と同様の活性評価を行ったところ、反応生成
物のH,、Co  により還元されて反応開始後1時間
には予め水嵩還元処理した場合と同様の性能が得られた
In the case of catalyst 1: 02% by weight In the case of comparative catalyst: 9% by weight In addition, when the above catalyst 1 was evaluated for activity in the same manner as above with NiO as it is (without hydrogen reduction), it was found that the reaction products H,, Co. One hour after the start of the reaction, the same performance as in the case of prior water reduction treatment was obtained.

実施例では粒状触媒について記述しであるが、触媒の形
状を特に限定するものではなく、ハニカム状などの形状
で用いて良いことは言うまでもない。
In the examples, a granular catalyst is described, but the shape of the catalyst is not particularly limited, and it goes without saying that it may be used in a honeycomb shape or the like.

復代理人  内 1)  明 復代理人  萩 原 亮 −Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] アルカリ土類金属元素、希土類元素、アルカリ金属元素
からなる群の2種以上の元素の酸化物を含有する担体上
に、ニッケル又はニッケルの酸化物を担持させたことを
特徴とするメタノール又はメタノールと水の混合物を原
料としたメタン含有ガス製造用触媒。
Methanol or methanol characterized in that nickel or an oxide of nickel is supported on a carrier containing oxides of two or more elements of the group consisting of alkaline earth metal elements, rare earth elements, and alkali metal elements. Catalyst for producing methane-containing gas using a water mixture as raw material.
JP59170031A 1984-08-16 1984-08-16 Catalyst for preparing methane-containing gas Granted JPS6150640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170031A JPS6150640A (en) 1984-08-16 1984-08-16 Catalyst for preparing methane-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170031A JPS6150640A (en) 1984-08-16 1984-08-16 Catalyst for preparing methane-containing gas

Publications (2)

Publication Number Publication Date
JPS6150640A true JPS6150640A (en) 1986-03-12
JPH0361494B2 JPH0361494B2 (en) 1991-09-20

Family

ID=15897318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170031A Granted JPS6150640A (en) 1984-08-16 1984-08-16 Catalyst for preparing methane-containing gas

Country Status (1)

Country Link
JP (1) JPS6150640A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053599C (en) * 1994-05-16 2000-06-21 北京化工大学 Zirconium-base solid catalyst for synthetizing of glycol series monoether acetic ether
CN1053598C (en) * 1994-05-16 2000-06-21 北京化工大学 Zirconium oxide catalyst used in glycol series monoether acetate synthesis
JP2007283209A (en) * 2006-04-17 2007-11-01 Takuma Co Ltd Gasification catalyst, its manufacturing method and gasification system
JP2010240621A (en) * 2009-04-09 2010-10-28 Gunma Univ Catalyst and method for producing the same
JP2011255375A (en) * 2011-07-21 2011-12-22 Takuma Co Ltd Method for producing gasification catalyst, and gasification treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053599C (en) * 1994-05-16 2000-06-21 北京化工大学 Zirconium-base solid catalyst for synthetizing of glycol series monoether acetic ether
CN1053598C (en) * 1994-05-16 2000-06-21 北京化工大学 Zirconium oxide catalyst used in glycol series monoether acetate synthesis
JP2007283209A (en) * 2006-04-17 2007-11-01 Takuma Co Ltd Gasification catalyst, its manufacturing method and gasification system
JP2010240621A (en) * 2009-04-09 2010-10-28 Gunma Univ Catalyst and method for producing the same
JP2011255375A (en) * 2011-07-21 2011-12-22 Takuma Co Ltd Method for producing gasification catalyst, and gasification treatment system

Also Published As

Publication number Publication date
JPH0361494B2 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
US20050096215A1 (en) Process for producing synthesis gas using stabilized composite catalyst
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
JPH08127544A (en) Production of methane from carbon dioxide and hydrogen
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
KR20080060739A (en) Metallic structured catalyst and its manufacturing method and manufacturing method for liquid fuel production in fischer-tropsch synthesis using thereof
CN102451690A (en) Preparation method of substitute natural gas
JPS60220143A (en) Catalyst for preparing methane-containing gas
JPS63283755A (en) Catalyst for producing gas containing methane
JPH0361493B2 (en)
JPH0440063B2 (en)
JP2625170B2 (en) Steam reforming catalyst for fuel cells
JPS6291245A (en) Manufacture of catalyst for inverting synthetic gas
JPH0440062B2 (en)
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH0361495B2 (en)
JPH0371174B2 (en)
JPS62129147A (en) Catalyst for preparing methane-containing gas
JPS62180752A (en) Catalyst for producing methane-containing gas
US11717812B2 (en) Catalyst
JP2002173303A (en) Method of producing synthetic gas
JPS62129148A (en) Catalyst for preparing methane-containing gas
JP5008601B2 (en) Gasification catalyst, production method thereof, and gasification treatment system
JPH0361496B2 (en)