JP2717854B2 - Method for producing diamond-like thin film - Google Patents

Method for producing diamond-like thin film

Info

Publication number
JP2717854B2
JP2717854B2 JP17808989A JP17808989A JP2717854B2 JP 2717854 B2 JP2717854 B2 JP 2717854B2 JP 17808989 A JP17808989 A JP 17808989A JP 17808989 A JP17808989 A JP 17808989A JP 2717854 B2 JP2717854 B2 JP 2717854B2
Authority
JP
Japan
Prior art keywords
substrate
film
diamond
thin film
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17808989A
Other languages
Japanese (ja)
Other versions
JPH0345593A (en
Inventor
正典 柴原
国博 上田
正俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP17808989A priority Critical patent/JP2717854B2/en
Priority to US07/547,736 priority patent/US5185067A/en
Publication of JPH0345593A publication Critical patent/JPH0345593A/en
Application granted granted Critical
Publication of JP2717854B2 publication Critical patent/JP2717854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダイヤモンド様薄膜の製造方法に関し、特
に表面性の良い優れたダイヤモンド様薄膜を製造する技
術に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a diamond-like thin film, and more particularly to a technique for producing a diamond-like thin film having excellent surface properties.

気相法により製造されるダイヤモンド様薄膜は硬度が
高く、耐摩耗性、耐久性、耐薬品性、耐食性等に優れて
おり、また任意形状の物品に被着できるため、こうした
特性の一つ以上が必要な物品の保護膜として有用であ
り、あるいは有望視されている。
Diamond-like thin films produced by the vapor phase method have high hardness, excellent wear resistance, durability, chemical resistance, corrosion resistance, etc., and can be applied to articles of any shape, so one or more of these characteristics Is useful as a protective film for articles that require it, or is considered promising.

(従来技術とその問題点) 気相法によるダイヤモンド様薄膜製造装置には各種の
形式がある(例えば「表面化学」第5巻第108号(1984
年)第108−115頁の各種の方法参照)。ダイヤモンド様
薄膜は任意形状の保護すべき物品の表面に被覆され、耐
食性、耐摩耗性などの保護膜として広く利用される。し
かしこれらの従来技術によって製造されたダイヤモンド
様薄膜は微結晶の集まりであるため凹凸が激しく表面粗
度が大きい。このようなダイヤモンド様薄膜は基体に対
する結合力が小さくて外力の作用で基体から剥離し易
く、又内部応力のために割れ(クラック)を生じ易く、
耐食性、耐摩耗性の用途に充分に効果を発揮出来ない
し、又電子材料、構造材用等に使用するには信頼性が低
いなどの問題があった。特に硬度の高い膜ほど表面性が
低下する傾向がある。更に表面粗度が大きいと接着剤や
塗料との親和性に欠けることになる。
(Prior art and its problems) There are various types of diamond-like thin film manufacturing apparatuses by a vapor phase method (for example, "Surface Chemistry" Vol. 5, No. 108 (1984)
Years) See various methods on pages 108-115). The diamond-like thin film is coated on the surface of an article of any shape to be protected, and is widely used as a protective film such as corrosion resistance and abrasion resistance. However, since the diamond-like thin films manufactured by these conventional techniques are aggregates of microcrystals, they have severe irregularities and large surface roughness. Such a diamond-like thin film has a small bonding force to the substrate, is easily peeled off from the substrate by the action of an external force, and is liable to crack due to internal stress.
There is a problem that the effect cannot be sufficiently exerted for the use of corrosion resistance and wear resistance, and the reliability is low when used for electronic materials and structural materials. Particularly, a film having a higher hardness tends to have a lower surface property. Further, if the surface roughness is large, the affinity for an adhesive or a paint is lacking.

従来の方法のうち、長距離秩序があり、比較的連続性
及び平滑性が良いダイヤモンド又はダイヤモンド様薄膜
の製造法としてイオン化蒸着法があるが(特開昭59−17
4507号、特願昭63−59376号(特開平1−234396号)、
特願昭63−59377号(特開平1−234397号)、特願平1
−1199号(特開平2−184595号)、特願平1−15093号
(特開平2−196095号)等)、微視的にはいまだ充分に
連続な或は平滑な膜を得ることが出来ていない。又、表
面の凹凸はグリッドの網目によりイオン流の分布が一様
にならないため更に悪化する。
Among the conventional methods, there is an ionization vapor deposition method as a method for producing diamond or a diamond-like thin film having long-range order and relatively good continuity and smoothness (Japanese Patent Laid-Open No. 59-17 / 1984)
No. 4507, Japanese Patent Application No. 63-59376 (JP-A-1-234396),
Japanese Patent Application No. 63-59377 (Japanese Patent Application Laid-Open No. 1-234397), Japanese Patent Application No. 1
-1199 (Japanese Patent Application Laid-Open No. 2-184595), Japanese Patent Application No. 1-15093 (Japanese Patent Application Laid-Open No. 2-196095), and the like. Microscopically, a sufficiently continuous or smooth film can be obtained. Not. In addition, the unevenness of the surface is further deteriorated because the distribution of the ion current is not uniform due to the mesh of the grid.

(発明の目的) 本発明の目的は、割れ(クラック)が無く、しかも表
面性の良い優れたダイヤモンド様薄膜を提供することに
ある。本発明はこの目的を達成するダイヤモンド様薄膜
製造方法を提供する。
(Object of the Invention) An object of the present invention is to provide a diamond-like thin film having no cracks and excellent surface properties. The present invention provides a method for producing a diamond-like thin film which achieves this object.

(発明の構成及び効果の概要) 本発明者は鋭意研究の結果、膜の連続性及び表面性が
炭化水素ガスイオンのエネルギーを制御し、更に基体と
グリッド間の距離を調整することにより向上し得るこ
と、又その結果内部応力が低下して膜の周部おける割れ
を抑制し得ることを見出した。
(Outline of Configuration and Effect of the Invention) As a result of earnest studies, the present inventors have found that the continuity and surface properties of a film are improved by controlling the energy of hydrocarbon gas ions and adjusting the distance between the substrate and the grid. And, as a result, it has been found that the internal stress is reduced and cracking at the periphery of the film can be suppressed.

すなわち、本発明は真空室内に低分子量炭化水素、又
は分解又は反応により低分子量炭化水素を生成し得る原
料ガスを導入し、電子生成用熱陰極フィラメントとその
周りに設けられた対電極とよりなるイオン化手段により
原料ガスを電離して炭化水素イオンの流れを形成し、こ
れを前記対電極よりも低電位にあるグリッドにより加速
して対電極よりも低電位の基体上で成膜反応させること
よりなるダイヤモンド様薄膜の製造方法において、前記
対電極を基体との距離をA、前記グリッドと基体の距離
をB、前記対電極と基体との間の印加電圧をVaとすると
き、 5<Va/A<60(V/mm) 2< B <30(mm) の条件で前記の成膜が実施することにより、表面性が良
く割れの問題がないダイヤモンド様薄膜を製造すること
が出来た。
That is, the present invention introduces a low molecular weight hydrocarbon, or a raw material gas capable of generating a low molecular weight hydrocarbon by decomposition or reaction into a vacuum chamber, and comprises a hot cathode filament for electron generation and a counter electrode provided therearound. By ionizing the source gas by the ionizing means to form a stream of hydrocarbon ions, accelerating the stream by a grid having a lower potential than the counter electrode and causing a film-forming reaction on a substrate having a lower potential than the counter electrode, Wherein the distance between the counter electrode and the substrate is A, the distance between the grid and the substrate is B, and the applied voltage between the counter electrode and the substrate is Va, 5 <Va / By performing the film formation under the condition of A <60 (V / mm) 2 <B <30 (mm), a diamond-like thin film having good surface properties and no cracking problem could be manufactured.

本発明の方法によると、グリッドの網目が原因となる
表面粗さはグリッドが基体から充分に遠くに配置される
ことにより炭化水素イオン流が一様になることで防止で
き、更に炭化水素イオンのエネルギーが最適化するため
に表面性が向上し又内部応力が減じる。
According to the method of the present invention, the surface roughness caused by the mesh of the grid can be prevented by making the grid sufficiently far from the substrate to make the hydrocarbon ion flow uniform, and furthermore, the Optimizing energy improves surface properties and reduces internal stress.

なお、必要に応じて、基体とダイヤモンド様薄膜形成
用イオン流を制御するグリッドの間に設けるマスクを基
体の表面から一定距離に位置付けると膜の周部が外周に
向けて薄くなり内部応力を更に緩和できる。
If necessary, if a mask provided between the substrate and the grid for controlling the ion flow for forming a diamond-like thin film is positioned at a certain distance from the surface of the substrate, the peripheral portion of the film becomes thinner toward the outer periphery and the internal stress is further reduced. Can be relaxed.

本発明の方法によると、ダイヤモンド様薄膜の表面粗
度が小さくなり、割れが減少し、更に充分に高い硬度を
得ることが出来る。
According to the method of the present invention, the surface roughness of the diamond-like thin film is reduced, cracks are reduced, and sufficiently high hardness can be obtained.

(発明の具体的な説明) 上に簡単に述べたように、本発明の方法はイオン化蒸
着法によるダイヤモンド様薄膜製造法である。
(Specific Description of the Invention) As briefly described above, the method of the present invention is a method for producing a diamond-like thin film by ionization vapor deposition.

イオン化蒸着法は炭化水素原料ガス又は分解又は反応
により炭化水素を生成し得る原料ガス(ここに炭化水素
とはメタン、エタン、プロパン等の飽和炭化水素、エチ
レン、プロピレン、アセチレン等の不飽和炭化水素等が
あり、分解して炭化水素を生成し得る原料ガスはメチル
アルコール、エチルアルコール等のアルコール類、アセ
トン、メチルエチルケトン等のケトン類などがあり、又
反応して炭化水素ガスを生成する原料ガスには一酸化炭
素、二酸化炭素と水素との混合ガス等がある。また前記
原料にはヘリウム、ネオン、アルゴン等の希ガスあるい
は水素、酸素、窒素、水、一酸化炭素、二酸化炭素、等
の少なくとも一種を含ませることができる)を陰極−対
陰極間のアーク放電、陰極熱フィラメント−対陰極間の
熱電子放出によるイオン化等の手段でイオン化してイオ
ン流とし、この流れを電場で加速して基体に差し向ける
ことによりダイヤモンド様薄膜を製膜する方法であり、
特開昭59−174507号、特願昭63−59376号(特開平1−2
34396号)、特願昭63−59377号(特開平1−234397)、
特願平1−1199号(特開平2−184595号)、特願平1−
15093号(特開平2−196095号)等に記載されている通
り、イオン化蒸着法は基体温度として従来のような700
℃以上の高温度を用いる必要がなく(例えば「表面化
学」第5巻第108号(1984年)第108−115頁の各種の方
法参照)、製膜能率も良く、製膜されたダイヤモンド様
膜が良好な表面性、高硬度、高熱伝導性、高屈折率を有
し、仕上表面処理が不要である等、優れた方法である。
In the ionization deposition method, a hydrocarbon raw material gas or a raw material gas capable of generating a hydrocarbon by decomposition or reaction (here, hydrocarbon is a saturated hydrocarbon such as methane, ethane, and propane, and an unsaturated hydrocarbon such as ethylene, propylene, and acetylene) Source gases that can be decomposed to produce hydrocarbons include alcohols such as methyl alcohol and ethyl alcohol, and ketones such as acetone and methyl ethyl ketone. Is a mixed gas of carbon monoxide, carbon dioxide and hydrogen, etc. The raw material is a rare gas such as helium, neon, argon, or at least hydrogen, oxygen, nitrogen, water, carbon monoxide, carbon dioxide, etc. One kind can be included) by the arc discharge between the cathode and the cathode, and the bombardment due to thermionic emission between the cathode hot filament and the cathode. Ionized by means of emission and the like as an ion current, a method of forming a film of diamond-like carbon film by directing to the substrate to accelerate the flow field,
JP-A-59-174507, Japanese Patent Application No. 63-59376 (JP-A-1-2487)
No. 34396), Japanese Patent Application No. 63-59377 (Japanese Patent Application Laid-Open No. 1-234397),
Japanese Patent Application No. 1-1199 (JP-A-2-184595), Japanese Patent Application No.
As described in JP-A-15093 (Japanese Patent Application Laid-Open No. 2-196095) and the like, the ionization vapor deposition method uses a conventional substrate temperature of 700.
It is not necessary to use a high temperature of at least 100 ° C. (for example, see various methods in “Surface Chemistry”, Vol. 5, No. 108 (1984), pp. 108-115), the film forming efficiency is good, and the formed diamond-like This is an excellent method, for example, because the film has good surface properties, high hardness, high thermal conductivity, and high refractive index, and does not require finishing surface treatment.

本発明の基本技術であるイオン化蒸着法は、特願昭63
−59377号(特開平1−234397号)、特願昭63−59376号
(特開平1−234396号)、特願平1−1199号、(特願平
2−184595号)、特願平1−15093号(特開平2−19609
5号)等に記載されており、本発明の実施例ではこれら
に記載された装置を基本とした方法及び装置を用いる。
The ionization deposition method, which is the basic technology of the present invention, is disclosed in Japanese Patent Application
-59377 (Japanese Patent Application Laid-Open No. 1-234397), Japanese Patent Application No. 63-59376 (Japanese Patent Application Laid-Open No. 1-234396), Japanese Patent Application No. 1-1199, Japanese Patent Application No. 2-184595, and Japanese Patent Application No. 1 No. 15093 (JP-A-2-19609)
No. 5) and the like, and in the embodiment of the present invention, a method and an apparatus based on the apparatus described therein are used.

(実施例の説明) 製膜装置の概要 第1図に製膜装置の好ましい例を示す。図中30は真空
容器、31はチャンバーであり、排気系38に接続されて10
-6Torr程度までの高真空に引かれる。32は基体Sの裏面
に設けられた電極である。基体Sの表面に近接又は接触
してダイヤモンド様薄膜Dの形状を規制する窓を有する
マスク42が設けられる。このマスクは基体に接していて
も良いがなるべくは離間している。33は電極32と同一の
電位を与えられたグリッドでイオンの加速を行なうのに
使用される。34は熱陰極フィラメントであり、交流電源
Ifによって加熱されて熱電子を発生する。35は原料であ
る炭化水素ガスの供給口である。フィラメント34を取囲
んで対電極36が配置されている。この対電極36は、フィ
ラメント34に対して正の電圧Vd、及び電極32及びグリッ
ド33に対して正の電位Vaを与えられている。フィラメン
ト34、対電極36及び供給口35の周りを取り囲んでイオン
化ガスの閉じ込め用の磁界を発生する電磁コイル39が配
置されている。このコイルには電源Vcによって電流IC
流される。従ってVd、Va及びコイルの電流ICを調整する
ことにより膜質を変えることができる。
(Description of Example) Outline of Film Forming Apparatus FIG. 1 shows a preferred example of a film forming apparatus. In the figure, reference numeral 30 denotes a vacuum vessel, 31 denotes a chamber, which is connected to an exhaust system 38, and 10
It is drawn to a high vacuum of about -6 Torr. Reference numeral 32 denotes an electrode provided on the back surface of the base S. A mask 42 having a window which regulates the shape of the diamond-like thin film D in proximity to or in contact with the surface of the substrate S is provided. This mask may be in contact with the substrate, but is preferably separated. 33 is used for accelerating ions in a grid provided with the same potential as the electrode 32. 34 is a hot cathode filament, which is an AC power supply
It is heated by If to generate thermoelectrons. Reference numeral 35 denotes a supply port for a hydrocarbon gas as a raw material. A counter electrode 36 is arranged around the filament 34. The counter electrode 36 is provided with a positive voltage Vd with respect to the filament 34 and a positive potential Va with respect to the electrode 32 and the grid 33. An electromagnetic coil 39 that generates a magnetic field for confining the ionized gas is disposed around the filament 34, the counter electrode 36, and the supply port 35. Current I C is flowed by the power supply Vc for this coil. Therefore Vd, it is possible to vary the film quality by adjusting the current I C of Va and coil.

第3図は第1図のA−A線から見た平面斜視図であ
り、膜の形が長方形の場合には例えば図示のような複数
フィラメントの配列体を用いるとか、コイル状に巻いた
ものを用いる。
FIG. 3 is a plan perspective view taken along the line AA in FIG. 1. When the shape of the film is rectangular, for example, an array of a plurality of filaments as shown in FIG. Is used.

なお第1図においては、炭化水素ガスの原料導入通路
37にプラズマ励起室37′が設けられており、これにより
イオン化装置の効率を高めている。プラズマ励起は例え
ばマイクロ波、高周波(RF波)、放射線、紫外線などが
利用できる。
In FIG. 1, a raw material introduction passage for hydrocarbon gas is shown.
37 is provided with a plasma excitation chamber 37 ', which increases the efficiency of the ionizer. For the plasma excitation, for example, microwave, high frequency (RF wave), radiation, ultraviolet light and the like can be used.

また、第2図に示したように第1図の構成の一部を変
更して固定又は可変強度の磁石40をフィラメント34の上
部に配置してプラズマ状のイオンビームの偏向用に用い
ても良い。磁石40の磁界強度は固定又は可変にし、磁石
の磁界はイオン流の走行方向に対して交差する方向にす
る。このようにしてCH3 +、CH4 +イオン等の所望するイオ
ンに対して偏向角度θを得る。固定の場合一方、質量が
これらのイオンと大きく異なるイオン例えば水素イオン
はさらに大きく曲げられ、また中性粒子や重質の多量体
イオンは直進する。従って、直進方向にマスクを配置す
れば結晶性の高いイオンのみが基体Sに付着する。
Also, as shown in FIG. 2, a part of the configuration shown in FIG. 1 may be modified and a fixed or variable strength magnet 40 may be disposed above the filament 34 and used for deflecting a plasma-like ion beam. good. The magnetic field strength of the magnet 40 is fixed or variable, and the magnetic field of the magnet is in a direction crossing the traveling direction of the ion flow. In this manner, the deflection angle θ is obtained with respect to desired ions such as CH 3 + and CH 4 + ions. On the other hand, in the case of fixation, ions whose masses are significantly different from these ions, for example, hydrogen ions, are further bent, and neutral particles and heavy multimeric ions go straight. Therefore, if the mask is arranged in the straight traveling direction, only ions having high crystallinity adhere to the substrate S.

第4図は本発明の特徴を示すために第1図の一部を拡
大した図である。グリッド33は基体Sから距離bのとこ
ろに配置され、又対電極36は基体Sから距離aのところ
に配置されており、又基体に対して正電位Vaにある。こ
こに距離AとB、及び電位Vaは先に述べた通り 10<Va<A<60(V/mm) 2< B <30(mm) の関係を満足しなければならない。
FIG. 4 is an enlarged view of a part of FIG. 1 to show the features of the present invention. The grid 33 is arranged at a distance b from the substrate S, and the counter electrode 36 is arranged at a distance a from the substrate S, and is at a positive potential Va with respect to the substrate. Here, the distances A and B and the potential Va must satisfy the relationship of 10 <Va <A <60 (V / mm) 2 <B <30 (mm) as described above.

この関係を満足しなければならない理由は次ぎの通り
である。
The reason that this relationship must be satisfied is as follows.

(1)Va<A・・・この値は平均電界を意味する。この
値が5(V/mm)以下であると、炭化水素イオンのエネル
ギーが低いためイオン流がグリッドを通り抜けてから良
く回折し膜の表面性が向上するとしても、炭化水素イオ
ンに充分なエネルギーを与えることが出来ないため、膜
の硬度が低下する。この値が60(V/mm)以上になると結
晶性及び硬度は上がるが表面粗度が大きくなる。
(1) Va <A... This value means an average electric field. If the value is 5 (V / mm) or less, the energy of the hydrocarbon ions is low, so that even if the ion flow is well diffracted after passing through the grid and the surface property of the film is improved, sufficient energy for the hydrocarbon ions is obtained. , The hardness of the film decreases. When this value exceeds 60 (V / mm), the crystallinity and hardness increase, but the surface roughness increases.

(2)B・・・基体とグリッドの間隔が30mm以上になる
と、イオン流グリッドを通り抜けてから良く回折するこ
とにより膜の均一化は一応行なえるが、異常放電が生じ
る結果となり、表面欠陥が増え結局表面性が損なわれ
る。この値が2mm以下になると炭化水素イオンの回り込
みが悪くなり表面粗度が増す。
(2) B: When the distance between the substrate and the grid is 30 mm or more, uniformity of the film can be achieved by diffracting well after passing through the ion current grid, but abnormal discharge occurs, resulting in surface defects. In the end, the surface properties are impaired. When this value is 2 mm or less, the wraparound of hydrocarbon ions becomes worse and the surface roughness increases.

これに対し上記の本発明の範囲内では炭化水素イオン
の回り込みが良くなるがなお充分なイオンエネルギーが
確保でき、そのため、硬度が充分高く、膜質も均一且つ
連続性なものとなりこのため、表面粗度も小さくなり、
割れも減じる。なお、上記2つの条件の上限下限はある
程度関係がある。すなわち距離Bが大きくなると回り込
みが良くなるため、電界は小さい値から大きい値まで使
用出来る。距離Bが小さくなると回り込みが悪くなるの
で電界は小さい側にしなければならない。
On the other hand, within the range of the present invention described above, the circulation of hydrocarbon ions is improved, but sufficient ion energy can still be secured, so that the hardness is sufficiently high, the film quality is uniform and continuous, and therefore, the surface roughness is improved. The degree is also smaller,
Cracks are also reduced. Note that the upper and lower limits of the above two conditions have a certain relationship. In other words, as the distance B increases, the wraparound improves, so that the electric field can be used from a small value to a large value. When the distance B decreases, the wraparound worsens, so the electric field must be on the small side.

なお、マスク42を基体Sから一定寸法離間させると基
板上に析出成長するダイヤモンド様薄膜のエッジに傾斜
部分を形成し周部の内部応力を更に緩和させることが出
来る。基板とマスクの間隔は例えば約0.5〜10mmとすれ
ば良い。
When the mask 42 is separated from the substrate S by a certain distance, an inclined portion is formed at the edge of the diamond-like thin film deposited and grown on the substrate, and the internal stress in the peripheral portion can be further reduced. The distance between the substrate and the mask may be, for example, about 0.5 to 10 mm.

製膜方法 第1図の装置によって製膜方法は詳しく説明する。先
ず、チャンバー31内を10-6Torrまで高真空とし、ガス供
給通路37のバルブを操作して所定流量のメタンガス、そ
れと水素との混合ガス、或いはそれとAr、He、Ne等のキ
ャリアガス等を各供給口35から導入しながら排気系38を
調整して所定のガス圧例えば10-1Torrとする。一方、熱
陰極フイラメント34には交流電流Ifを流して加熱し、フ
イラメント34と対陰極36の間には電位差Vdを印加して放
電を形成する。供給口35から供給されたメタンガスは熱
分解されるとともにフィラメントからの熱電子と衝突し
てプラスのイオンと電子を生じる。この電子は別の熱分
解粒子と衝突する。電磁コイルの磁界による閉じ込め作
用の下に、このような現象を繰り返すことによりメタン
ガスは熱分解物質のプラスイオンと成る。
Film Forming Method The film forming method will be described in detail using the apparatus shown in FIG. First, the inside of the chamber 31 is set to a high vacuum up to 10 -6 Torr, and a valve of the gas supply passage 37 is operated to supply a predetermined flow rate of methane gas, a mixed gas thereof and hydrogen, or a carrier gas such as Ar, He, Ne or the like. The exhaust system 38 is adjusted while being introduced from each supply port 35 to a predetermined gas pressure, for example, 10 -1 Torr. On the other hand, an alternating current If is passed through the hot cathode filament 34 to heat it, and a potential difference Vd is applied between the filament 34 and the counter electrode 36 to form a discharge. The methane gas supplied from the supply port 35 is thermally decomposed and collides with thermoelectrons from the filament to generate positive ions and electrons. This electron collides with another pyrolysis particle. By repeating such a phenomenon under the confinement effect of the magnetic field of the electromagnetic coil, methane gas becomes a positive ion of a pyrolysis substance.

プラスイオンは電極32、グリッド36に印加された負電
位Vaにより引き寄せられ、基体Sの方へ向けて加速さ
れ、基体に衝突して製膜反応を行ない、ダイヤモンド様
薄膜を形成する。所望により、上に述べた固定磁石を利
用して更に品質の良い薄膜を得ることができる。
The positive ions are attracted by the negative potential Va applied to the electrode 32 and the grid 36, accelerated toward the substrate S, collide with the substrate and perform a film forming reaction to form a diamond-like thin film. If desired, a higher quality thin film can be obtained using the fixed magnet described above.

なお、各部の電位、電流、温度等の条件については上
に述べた条件の他、先に引用した特許出願や特許公報の
ほか公知の資料を参照されたい。
For the conditions such as the potential, current, and temperature of each part, refer to the above-mentioned conditions, the above-cited patent applications and patent publications, and other known materials.

形成する膜の厚さは好ましくは100〜10,000Åであ
り、厚さが上記の範囲よりも薄いと耐摩耗性等の効果が
減じ又厚すぎても効果が増大せず製造時間が長くなる。
The thickness of the film to be formed is preferably 100 to 10,000 °, and if the thickness is smaller than the above range, the effects such as abrasion resistance are reduced. If the thickness is too large, the effect is not increased and the production time is increased.

また、予め有機溶剤による超音波洗浄等によりダイヤ
モンド様膜を形成する基体を清浄化しても良い。
Further, the substrate on which the diamond-like film is formed may be cleaned in advance by ultrasonic cleaning with an organic solvent or the like.

以下に本発明を例示する。 Hereinafter, the present invention will be exemplified.

実際例1 第1図は装置を使用し、真空室10内に板状基体Sをの
配置し、その面から種々の距離Bのところにグリッド33
を配置した。又基体Sから対電極までの距離Aは約40mm
であった。
Practical Example 1 FIG. 1 shows an example in which a plate-like substrate S is placed in a vacuum chamber 10 using an apparatus, and a grid 33 is placed at various distances B from the plane.
Was placed. The distance A from the base S to the counter electrode is about 40 mm.
Met.

真空室10を10-6Torrに排気してからメタンガスを導入
しガス圧を10-1Torrとして熱陰極フィラメント34に放電
を起こさせた。電磁コイル19の磁束密度は400ガウス、
基体電圧Va−200〜2000V、基体温度200℃とした。また
フィラメント34には交流電流If25Aを流した。
After evacuating the vacuum chamber 10 to 10 -6 Torr, methane gas was introduced to set the gas pressure at 10 -1 Torr, and discharge was caused in the hot cathode filament 34. The magnetic flux density of the electromagnetic coil 19 is 400 gauss,
The substrate voltage was set to Va-200 to 2000 V, and the substrate temperature was set to 200 ° C. An AC current If25A was passed through the filament.

フィラメント34はコイル状としその幅3mm、その周り
を取り囲む電極36との隙間8mmとした。
The filament 34 was coil-shaped and had a width of 3 mm and a gap of 8 mm with the electrode 36 surrounding the filament.

Vc=30V、Vd=−30Vの条件で、膜厚1.0μmのダイヤ
モンド様膜を得た。
Under conditions of Vc = 30 V and Vd = −30 V, a diamond-like film having a thickness of 1.0 μm was obtained.

得られた膜の表面粗度Ra(JISB0601による)、顕微鏡
観察による表面欠陥数、及びビッカース硬度Hvを測定
し、又周部の割れ(クラック)を観測した。その結果を
表1に示す。
The surface roughness Ra (according to JISB0601) of the obtained film, the number of surface defects by microscopic observation, and the Vickers hardness Hv were measured, and a peripheral crack was observed. Table 1 shows the results.

た。Was.

ここで表面欠陥数は光学顕微鏡(400倍)で観察し、
単位平行cmあたりに存在した2μm以下の欠陥数で評価
を行なった。
Here, the number of surface defects is observed with an optical microscope (400 times),
The evaluation was performed with the number of defects of 2 μm or less existing per unit parallel cm.

(作用効果) 表1から明らかな様に、本発明の基体上に成膜された
ダイヤモンド様薄膜は成膜時の電界とグリッド位置を制
御することにより、表面性の良い、硬度の高い、割れの
少ないダイヤモンド様薄膜を製造することが出来た。
(Effects) As is clear from Table 1, the diamond-like thin film formed on the substrate of the present invention has good surface properties, high hardness, and cracks by controlling the electric field and the grid position during film formation. It was possible to produce a diamond-like thin film having a small amount.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のダイヤモンド様薄膜の製造装置の一例
を示す断面図、第2図はダイヤモンド様薄膜の製造装置
の他の例を示す断面図、第3図はフィラメント部分の構
造を示す平面斜視図、及び第4図は本発明の要部を示す
第1図の装置の部分拡大図である。
FIG. 1 is a cross-sectional view showing an example of the apparatus for producing a diamond-like thin film of the present invention, FIG. 2 is a cross-sectional view showing another example of the apparatus for producing a diamond-like thin film, and FIG. FIG. 4 is a perspective view and FIG. 4 is a partially enlarged view of the apparatus shown in FIG. 1 showing a main part of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空室内に低分子量炭化水素、又は分解又
は反応により低分子量炭化水素を生成し得る原料ガスを
導入し、熱陰極フィラメントとその周りに設けられた対
電極とよりなるイオン化手段により電離して炭化水素イ
オンの流れを形成し、これを前記対電極よりも低電位に
あるグリッドにより加速して基体上で成膜反応させる、
ダイヤモンド様薄膜の製造方法において、前記対電極と
負電位の基体との距離をA、前記グリッドと基体の距離
をB、前記対電極と基体との間の印加電圧をVaとすると
き、 5<Va/A<60(V/mm) 2< B <30(mm) の条件で前記の成膜が実施されることを特徴とするダイ
ヤモンド様薄膜製造方法。
1. A low-molecular-weight hydrocarbon or a raw material gas capable of producing a low-molecular-weight hydrocarbon by decomposition or reaction is introduced into a vacuum chamber, and ionized means comprising a hot cathode filament and a counter electrode provided therearound is used. Forming a stream of hydrocarbon ions by ionization, accelerating this by a grid at a lower potential than the counter electrode and causing a film-forming reaction on the substrate,
In the method for producing a diamond-like thin film, when the distance between the counter electrode and the substrate at a negative potential is A, the distance between the grid and the substrate is B, and the applied voltage between the counter electrode and the substrate is Va, 5 < A method for producing a diamond-like thin film, wherein the film is formed under the following condition: Va / A <60 (V / mm) 2 <B <30 (mm).
JP17808989A 1989-07-10 1989-07-12 Method for producing diamond-like thin film Expired - Fee Related JP2717854B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17808989A JP2717854B2 (en) 1989-07-12 1989-07-12 Method for producing diamond-like thin film
US07/547,736 US5185067A (en) 1989-07-10 1990-06-29 Process for manufacturing diamond-like thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17808989A JP2717854B2 (en) 1989-07-12 1989-07-12 Method for producing diamond-like thin film

Publications (2)

Publication Number Publication Date
JPH0345593A JPH0345593A (en) 1991-02-27
JP2717854B2 true JP2717854B2 (en) 1998-02-25

Family

ID=16042442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808989A Expired - Fee Related JP2717854B2 (en) 1989-07-10 1989-07-12 Method for producing diamond-like thin film

Country Status (1)

Country Link
JP (1) JP2717854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654469B1 (en) * 2015-05-19 2016-09-05 두산중공업 주식회사 Micrometer

Also Published As

Publication number Publication date
JPH0345593A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JP6175104B2 (en) Plasma source and method for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP3962420B2 (en) Carbon nanowall manufacturing method, carbon nanowall and manufacturing apparatus
JP2008120676A (en) Recording medium having protective overcoat of highly tetrahedral amorphous carbon and method for their production
US5827613A (en) Articles having diamond-like protective film and method of manufacturing the same
KR100465266B1 (en) Method and apparatus for coating non-conductive fiber
US5185067A (en) Process for manufacturing diamond-like thin film
JP4762945B2 (en) Carbon nanowall structure
JP3842166B2 (en) Room temperature chemical vapor deposition system using electron cyclotron resonance and method for producing composite metal film using the same
US5169452A (en) Apparatus for the synthesis of diamond-like thin films
JP2837700B2 (en) Method for forming diamond-like thin film
JP4786156B2 (en) Method for producing carbon nanowall
JP2717854B2 (en) Method for producing diamond-like thin film
JP2717856B2 (en) Method and apparatus for producing diamond-like thin film
JP2717857B2 (en) Method for producing diamond-like thin film
JP2717853B2 (en) Diamond-like thin film, manufacturing method and manufacturing apparatus
JP2687129B2 (en) Method and apparatus for producing diamond-like thin film
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
JP2915001B2 (en) Recording / reproducing sliding member
JP2989198B2 (en) Method and apparatus for producing diamond-like thin film
JP2687156B2 (en) Method and apparatus for producing diamond-like thin film
JP2687155B2 (en) Method and apparatus for producing diamond-like thin film
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JP3485937B2 (en) Mold having protective film of diamond-like thin film and method of manufacturing the same
JP2008138289A (en) Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
JPH11106925A (en) Formation of thin film and apparatus therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees