JP2715457B2 - Manufacturing method of hydrodynamic plain bearings - Google Patents

Manufacturing method of hydrodynamic plain bearings

Info

Publication number
JP2715457B2
JP2715457B2 JP63203907A JP20390788A JP2715457B2 JP 2715457 B2 JP2715457 B2 JP 2715457B2 JP 63203907 A JP63203907 A JP 63203907A JP 20390788 A JP20390788 A JP 20390788A JP 2715457 B2 JP2715457 B2 JP 2715457B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
cylinder
outer cylinder
adhesive
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63203907A
Other languages
Japanese (ja)
Other versions
JPH0257715A (en
Inventor
敏巳 高城
博美 杉
拡光 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP63203907A priority Critical patent/JP2715457B2/en
Publication of JPH0257715A publication Critical patent/JPH0257715A/en
Application granted granted Critical
Publication of JP2715457B2 publication Critical patent/JP2715457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は事務用機器、音響機器、測定機器等に使用
される動圧形すべり軸受の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of manufacturing a dynamic pressure type sliding bearing used for office equipment, audio equipment, measuring equipment, and the like.

〔従来の技術〕 ホットメルトタイプの接着剤を内径面に固着した金属
製の外筒体を、動圧発生用みぞの形状に対応する突状な
外周面に配列された内型の外周に配設し、この内型と外
筒体に固着された接着剤との間の環状空間に加熱溶融し
た熱可塑性樹脂を注入する。注入した熱可塑性樹脂は温
度が多少下がると固化して内筒体となり、この内筒体は
接着剤によって外筒体に固着する。内筒体が固化した後
に、内筒体と外筒体とが一体になった動圧形すべり軸受
と内型とを軸方向に分離する。
[Prior Art] A metal outer cylindrical body having a hot-melt type adhesive fixed to an inner diameter surface is arranged on an outer periphery of an inner die arranged on a protruding outer peripheral surface corresponding to the shape of a groove for generating dynamic pressure. The thermoplastic resin melted by heating is injected into the annular space between the inner mold and the adhesive fixed to the outer cylinder. When the temperature of the injected thermoplastic resin is slightly lowered, the thermoplastic resin solidifies to form an inner cylinder, which is fixed to the outer cylinder by an adhesive. After the inner cylinder is solidified, the hydrodynamic plain bearing in which the inner cylinder and the outer cylinder are integrated and the inner mold are separated in the axial direction.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

動圧形すべり軸受と内型との軸方向の分離時における
動圧形すべり軸受の温度はある程度高いのでホットメル
トタイプの接着剤の温度も同じ位に高い。ホットメルト
タイプの接着剤は温度が高いので軟化状態にあり、外筒
体と内筒体との接着強度が弱いので動圧形すべり軸受と
内型との軸方向の分離時に、内筒体は内型に追随して変
形するので内筒体の成形精度が悪い。
Since the temperature of the dynamic pressure type sliding bearing is somewhat high when the dynamic pressure type sliding bearing and the inner die are separated in the axial direction, the temperature of the hot melt type adhesive is also as high. The hot-melt type adhesive is in a softened state due to high temperature, and the adhesive strength between the outer cylinder and the inner cylinder is weak, so the inner cylinder is separated when the hydrodynamic slide bearing and the inner mold are separated in the axial direction. Since it deforms following the inner mold, the molding accuracy of the inner cylinder is poor.

この発明は内筒体の成形精度が良好な動圧形すべり軸
受の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a dynamic pressure type sliding bearing having good molding accuracy of an inner cylindrical body.

〔課題を解決するための手段〕[Means for solving the problem]

この発明の動圧形すべり軸受の製造方法は、加熱硬化
型接着剤を内周面に固着した金属製の外筒体を、動圧発
生用みぞの形状に対応する突条が外周面に配列された内
型の外周に配設し、この内型と外筒体に固着された加熱
硬化型接着剤との間の環状空間に加熱溶融した熱硬化性
樹脂を注入する。熱硬化性樹脂は加熱硬化型接着剤との
間に生ずる硬化反応によって外筒体に強固に固着して内
筒体となり、この内筒体と外筒体とが一体になった動圧
形すべり軸受と、内型とを軸方向に分離する。
In the method of manufacturing a dynamic pressure type sliding bearing according to the present invention, a metal outer cylindrical body having a heat-curable adhesive fixed to an inner peripheral surface is provided with ridges corresponding to the shape of a groove for generating dynamic pressure are arranged on an outer peripheral surface. The thermosetting resin melted by heating is injected into an annular space between the inner mold and the thermosetting adhesive fixed to the outer cylinder body. The thermosetting resin is firmly fixed to the outer cylinder by a curing reaction occurring between the thermosetting resin and the heat-curable adhesive to form an inner cylinder, and the inner cylinder and the outer cylinder are integrated into a dynamic pressure type slip. The bearing and the inner mold are separated in the axial direction.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。第1
図において、環状の下型1の内周面に嵌合して軸状の内
型3が配設され、この内型3は下型1より上方の部分の
外周面に、非対称のヘリングボーンの動圧発生用みぞの
形状に対応する微少の高さの突条5を上下に二列有して
いる。前記内型3の上面は平面状であって中心部が凹球
面状であり、この内型3の上面の凹球面状の中心部には
テーパピン7が埋め込まれて内型3と一体になってい
る。前記テーパピン7は上部が下部より小径であり、ま
た内型3の外周に配設した金属製の外筒体9を下型1の
上面に置いている。前記外筒体9の外周面の上部は外方
に広がるフランジ11を有し、また外筒体9はアルミニウ
ム等の金属製である。前記フランジ11上に上型12を配設
し、また外筒体9の内周面に加熱硬化型接着剤13を20〜
40μmの厚さで固着している。前記加熱硬化型接着剤13
としてはエポキシ系やポリイミド系やポリベンズイミタ
ゾール系接着剤があり、また加熱硬化型接着剤13には硬
化剤を適宜量添加して後述する熱硬化性樹脂の硬化時間
に見合った加熱硬化型接着剤13の硬化時間とし、外筒体
9と熱硬化性樹脂との接着強度を高めることが好まし
い。次に、140〜180℃に調節した内型3と、外筒体9に
固着された加熱硬化型接着剤13との間の環状空間に加熱
溶融したフェノール変性エポキシ樹脂等の熱硬化性樹脂
を射出圧力300〜600kg/cm2で注入すると、熱硬化性樹脂
は加熱硬化型接着剤13との間に生ずる硬化反応によって
外筒体9に強固に固着して内筒体15となる。例えば、加
熱硬化型接着剤13としてエポキシ系接着剤を使用しそし
て熱硬化性樹脂としてフェノール変性エポキシ樹脂を使
用すると、接着剤と樹脂との間にエポキシ基の開環重合
反応が起こり、接着剤と樹脂とは強固に接着するので樹
脂と外筒体9とは強固に接着される。前記加熱硬化型接
着剤13と熱硬化性樹脂とはいずれも高温時に硬化が促進
される。硬化時間3〜6分で成形した後に、上型12を上
方に移動すると、熱硬化性樹脂は上型12とテーパピン7
との最短距離の個所が切断される。そして、フランジ11
の下方に配設したエジェクタピン17によってフランジ11
を上方に少し移動すると、外筒9と一体になっている内
筒体15と、テーパピン7との間にすきまが生じ、このす
きまから内型3の上面と内筒体15との間に空気が流入す
るので、内型3の上端面と内筒体15との間が真空になる
ことが防止される。フランジ11を上方に押し続けると、
有底の円筒体の内筒体15と貫通孔を有する外筒体9とが
一体になった動圧形すべり軸受と、内型3とが軸方向に
分離する。
Next, an embodiment of the present invention will be described with reference to the drawings. First
In the figure, an axial inner die 3 is disposed so as to be fitted on the inner peripheral surface of an annular lower die 1, and the inner die 3 is provided with an asymmetric herringbone on an outer peripheral surface of a portion above the lower die 1. It has two rows of ridges 5 of minute height corresponding to the shape of the groove for generating dynamic pressure. The upper surface of the inner mold 3 is flat and the center is concave spherical. The tapered pin 7 is embedded in the concave spherical center of the upper surface of the inner mold 3 to be integrated with the inner mold 3. I have. The upper portion of the taper pin 7 has a smaller diameter than the lower portion, and a metal outer cylinder 9 disposed on the outer periphery of the inner mold 3 is placed on the upper surface of the lower mold 1. The upper part of the outer peripheral surface of the outer cylindrical body 9 has a flange 11 extending outward, and the outer cylindrical body 9 is made of metal such as aluminum. An upper mold 12 is disposed on the flange 11, and a heat-curable adhesive 13 is applied to the inner peripheral surface of the outer cylinder 9 for 20 to 20 hours.
It is fixed at a thickness of 40 μm. The heat-curable adhesive 13
Examples include epoxy-based, polyimide-based, and polybenzimitazole-based adhesives.Additionally, an appropriate amount of a curing agent is added to the heat-curable adhesive 13, and heat curing is performed according to the curing time of the thermosetting resin described below. It is preferable to increase the adhesive strength between the outer cylinder 9 and the thermosetting resin by setting the curing time of the mold adhesive 13. Next, a thermosetting resin, such as a phenol-modified epoxy resin, which is heated and melted in an annular space between the inner mold 3 adjusted to 140 to 180 ° C. and the thermosetting adhesive 13 fixed to the outer cylinder 9. When injected at an injection pressure of 300 to 600 kg / cm 2 , the thermosetting resin is firmly fixed to the outer cylinder 9 by a curing reaction occurring between the thermosetting resin and the heat-curable adhesive 13 to form the inner cylinder 15. For example, when an epoxy-based adhesive is used as the heat-curable adhesive 13 and a phenol-modified epoxy resin is used as the thermosetting resin, a ring-opening polymerization reaction of an epoxy group occurs between the adhesive and the resin, and the adhesive And the resin are firmly bonded, so that the resin and the outer cylinder 9 are firmly bonded. The curing of both the thermosetting adhesive 13 and the thermosetting resin is promoted at a high temperature. When the upper mold 12 is moved upward after molding for a curing time of 3 to 6 minutes, the thermosetting resin is
Is cut off at the shortest distance. And flange 11
Of the flange 11 by the ejector pin 17
Is slightly moved upward, a clearance is generated between the inner cylindrical body 15 integrated with the outer cylinder 9 and the tapered pin 7, and air flows between the upper surface of the inner mold 3 and the inner cylindrical body 15 from this clearance. Flows in, so that a vacuum is prevented between the upper end surface of the inner mold 3 and the inner cylinder 15. If you keep pushing the flange 11 upward,
The hydrodynamic slide bearing in which the inner cylindrical body 15 having a bottomed cylindrical body and the outer cylindrical body 9 having a through-hole are integrated, and the inner mold 3 are separated in the axial direction.

第2図は第1図に示す方法で成形された動圧形すべり
軸受であるが、内径面に設けた円筒状のラジアル軸受面
21には非対称のヘリングボーンの動圧発生用みぞ23が上
下に二列設けられ、底面に設けた平面状のスラスト軸受
面25の中心部は凸球面状になっている。スラスト軸受面
25の中心部にテーパの貫通した小孔27が設けてあり、こ
の小孔27は、軸29のラジアル軸受面27への挿入を容易に
し、また動圧形すべり軸受の回転時に動圧形すべり軸受
の軸29に対する浮上量を微少量に保つ。なお、スラスト
軸受面25には中心部以外の個所にスラスト軸受面25の成
形時にスパイラル状、ヘリングボーン状等の動圧発生用
みぞが設けられても良い。
FIG. 2 shows a dynamic pressure type sliding bearing formed by the method shown in FIG. 1, but a cylindrical radial bearing surface provided on an inner diameter surface.
The asymmetric herringbone dynamic pressure generating grooves 23 are provided in two rows at the top and bottom, and the center of a planar thrust bearing surface 25 provided on the bottom surface has a convex spherical shape. Thrust bearing surface
25 has a tapered small hole 27 at the center, which facilitates the insertion of the shaft 29 into the radial bearing surface 27, and also allows the dynamic pressure sliding bearing to rotate when the dynamic pressure sliding bearing rotates. The floating amount of the bearing relative to the shaft 29 is kept very small. The thrust bearing surface 25 may be provided with a dynamic pressure generating groove having a spiral shape, a herringbone shape, or the like at the time of molding the thrust bearing surface 25 at a position other than the center.

第3図はこの発明の他の実施例に使用する成形装置で
あるが、内径3はテーパピンを有していない。また、内
型3は対称のヘリングボーンの動圧発生用みぞの形状に
対応する微少の高さの突条5を上下に二列有し、また図
示されてないが内型3の上面は平面状であって中心部が
凹球面状である。なお、スラスト軸受面25にはスラスト
軸受面25の成形時にスパイラル状、ヘリングボーン状等
の動圧発生用みぞが設けられても良い。
FIG. 3 shows a molding apparatus used in another embodiment of the present invention. The inside diameter 3 does not have a tapered pin. The inner mold 3 has two rows of ridges 5 of minute height corresponding to the shape of a symmetric herringbone groove for generating dynamic pressure. The upper surface of the inner mold 3 is not shown but is flat. And the center is a concave spherical surface. The thrust bearing surface 25 may be provided with a dynamic pressure generating groove such as a spiral shape or a herringbone shape when the thrust bearing surface 25 is formed.

なお、外筒体9としてアルミニウム、内筒体15として
エポキシ樹脂、加熱硬化型接着剤としてエポキシ系接着
剤をそれぞれ使用したことの発明の方法で製造された動
圧形すべり軸受の寸法精度と、外筒体としてアルミニウ
ム、内筒体として炭素繊維20%及びPTFE 10%入りのナ
イロン12、接着剤としてホットメルトタイプの接着剤を
それぞれ使用した従来の動圧形すべり軸受の寸法精度と
を第1表に示す。この発明の方法で製造された動圧形す
べり軸受と従来の動圧形すべり軸受との寸法はいずれも
内径20mm、円筒状孔31の深さ35mm、内筒体の厚さ1mm、
外筒体の厚さ1mmとした。内径真円度は円筒状孔31の下
端32からの深さが5mm、17mm、及び30mmの個所をそれぞ
れ測定した。
The dimensional accuracy of the dynamic pressure type sliding bearing manufactured by the method of the invention in which aluminum was used as the outer cylinder 9, epoxy resin was used as the inner cylinder 15, and epoxy adhesive was used as the heat-curable adhesive, The dimensional accuracy of the conventional hydrodynamic plain bearings using aluminum as the outer cylinder, nylon 12 containing 20% carbon fiber and 10% PTFE as the inner cylinder, and hot-melt type adhesive as the adhesive. It is shown in the table. The dimensions of the hydrodynamic plain bearing manufactured by the method of the present invention and the conventional hydrodynamic plain bearing are both 20 mm in inner diameter, 35 mm in depth of the cylindrical hole 31, 1 mm in thickness of the inner cylinder,
The outer cylinder had a thickness of 1 mm. The roundness of the inner diameter was measured at depths of 5 mm, 17 mm, and 30 mm from the lower end 32 of the cylindrical hole 31.

なお、この発明の方法で製造された発明品及び従来品
にはいずれも小孔27を設けていない。
Note that neither the invention nor the conventional product manufactured by the method of the present invention has the small hole 27.

従来品において、円筒状孔の下端32からの深さが深い
ほど内径真円度が良くないのは、成形後に動圧形すべり
軸受と内型とを軸方向に分離する時に、内型の上端面と
内筒体との間に真空が生ずるからであり、また内筒体と
外筒体との接着強度が弱いからであると推測される。
In conventional products, the deeper the depth from the lower end 32 of the cylindrical hole, the lower the roundness of the inner diameter is. The reason for this is that when the hydrodynamic plain bearing and the inner die are separated in the axial direction after molding, It is presumed that vacuum is generated between the end face and the inner cylinder, and that the adhesive strength between the inner cylinder and the outer cylinder is weak.

第4図はこの発明の他の実施例に使用する成形装置で
あるが、上型12は上型12の下面に埋め込んだテーパピン
7と一体になっている。この方法によって製造された動
圧形すべり軸受はテーパピン7によって成形された小孔
27が軸の円筒状孔31への挿入を容易にし、また、軸の円
筒状孔31への挿入時にラジアル軸受面21及びスラスト軸
受面25へ塗付した潤滑剤のうちの余分な潤滑剤を外部へ
排出する。なお、円筒状孔31内に軸を挿入した後は、小
孔27にゴム、合成樹脂等からなる部材を圧入して潤滑剤
洩れを防止して使用する。
FIG. 4 shows a molding apparatus used in another embodiment of the present invention. The upper mold 12 is integrated with the tapered pin 7 embedded in the lower surface of the upper mold 12. The hydrodynamic plain bearing manufactured by this method has a small hole formed by the tapered pin 7.
27 facilitates insertion of the shaft into the cylindrical hole 31, and removes excess lubricant from the lubricant applied to the radial bearing surface 21 and the thrust bearing surface 25 when the shaft is inserted into the cylindrical hole 31. Discharge to the outside. After the shaft is inserted into the cylindrical hole 31, a member made of rubber, synthetic resin or the like is press-fitted into the small hole 27 to prevent the lubricant from leaking.

第5図は、上型12の上に配設した支持部材33がテーパ
ピン7と一体であり、上型12とテーパピン7とを上に上
げた後に外筒体9を上に上げる。また、外筒体9の上面
には周みぞ35が設けられ、この周みぞ35内に注入した熱
硬化性樹脂と外筒体9の内周に位置する熱硬化性樹脂と
が一体になっているので内筒体15は外筒体9により強固
に固定される。また、この方法によって製造される動圧
形すべり軸受はテーパピン7によって成形された小孔に
潤滑剤を入れた後に小孔に適宜の部材を圧入して密封す
ると、小孔は潤滑剤溜めとしての機能を営むので潤滑剤
不足を緩和できる。また、小孔は円筒状孔31への軸の挿
入時に余分の潤滑剤を外部に流出する作用も行う。
FIG. 5 shows that the support member 33 disposed on the upper die 12 is integral with the tapered pin 7, and the outer cylinder 9 is raised after the upper die 12 and the tapered pin 7 are raised. Further, a circumferential groove 35 is provided on the upper surface of the outer cylindrical body 9, and the thermosetting resin injected into the circumferential groove 35 and the thermosetting resin located on the inner circumference of the outer cylindrical body 9 are integrated. Therefore, the inner cylinder 15 is firmly fixed by the outer cylinder 9. Further, in the dynamic pressure type sliding bearing manufactured by this method, after a lubricant is put into a small hole formed by the tapered pin 7, an appropriate member is pressed into the small hole and sealed, and the small hole serves as a lubricant reservoir. As it performs its function, it can alleviate the shortage of lubricant. In addition, the small hole also has a function of flowing out extra lubricant to the outside when the shaft is inserted into the cylindrical hole 31.

また、第6図では内型3がスリーブ状の第一の内型37
と第一の内型37の内周面に嵌合する軸状の第二の内型39
とから構成されている。従って、動圧形すべり軸受の成
形後に上型12を上に上げ、そして第二の内型39を下方に
移動すると第一の内型37と第二の内型39との間にすきま
が生じ、エジェクタピン17によって外筒体9を上方に移
動した時に、内型3と内筒体15との間が真空となること
はない。
In FIG. 6, the inner mold 3 is a sleeve-shaped first inner mold 37.
And an axial second inner mold 39 fitted to the inner peripheral surface of the first inner mold 37.
It is composed of Accordingly, when the upper die 12 is raised and the second inner die 39 is moved downward after the formation of the dynamic pressure type sliding bearing, a clearance is generated between the first inner die 37 and the second inner die 39. When the outer cylinder 9 is moved upward by the ejector pins 17, there is no vacuum between the inner mold 3 and the inner cylinder 15.

第7図はこの発明の他の実施例に使用する成形装置で
あるが、内型3の上端部は内型3の他の個所より僅かに
小径の小径部41である。外筒体9を内型3に挿入する前
に、内型3の上端面に内筒体15とは異種材料のフッ素系
樹脂等の摺動性の良いシート部材43を置く。前記シート
部材43はラジアル軸受面21より小径であるが小径部41よ
り大径であり、このシート部材43の上面にエポキシ系接
着剤等の加熱硬化型接着剤13を塗付しておく。次に、内
型3の外周に外筒体9を配設して外筒体9と内型3との
間に熱硬化性樹脂を注入すると、注入された熱硬化性樹
脂はシート部材43の外周部を軸方向にはさんでシート部
材43と一体になって成形される。このようにすると、シ
ート部材43は熱硬化性樹脂と強く固着し、またシート部
材43は熱硬化性樹脂より摺動性が良いので動圧形すべり
軸受としての使用中におけるスラスト軸受面25の損傷が
少ないと共に低トルクである。なお、シート部材43の下
面即ちスラスト軸受面25には動圧発生用みぞが設けられ
ていても良い。
FIG. 7 shows a molding apparatus used in another embodiment of the present invention. The upper end of the inner mold 3 is a small diameter portion 41 slightly smaller in diameter than other parts of the inner mold 3. Before inserting the outer cylinder 9 into the inner mold 3, a sheet member 43 having good slidability, such as a fluororesin made of a different material from the inner cylinder 15, is placed on the upper end surface of the inner mold 3. The sheet member 43 has a smaller diameter than the radial bearing surface 21 but has a larger diameter than the small diameter portion 41, and the upper surface of the sheet member 43 is coated with a thermosetting adhesive 13 such as an epoxy adhesive. Next, when the outer cylinder 9 is disposed on the outer periphery of the inner mold 3 and a thermosetting resin is injected between the outer cylinder 9 and the inner mold 3, the injected thermosetting resin is applied to the sheet member 43. The outer peripheral portion is formed integrally with the sheet member 43 by sandwiching the outer peripheral portion in the axial direction. In this case, the sheet member 43 is firmly fixed to the thermosetting resin, and the sheet member 43 has better slidability than the thermosetting resin, so that the thrust bearing surface 25 is damaged during use as a dynamic pressure type sliding bearing. And low torque. A groove for generating dynamic pressure may be provided on the lower surface of the seat member 43, that is, on the thrust bearing surface 25.

また、シート部材43の上面にみぞを設けると、シート
部材43は熱硬化性樹脂とより強く固着する。
Further, when grooves are provided on the upper surface of the sheet member 43, the sheet member 43 is more firmly fixed to the thermosetting resin.

第8図はこの発明の他の実施例によって製造された動
圧形すべり軸受であるが、動圧形すべり軸受を成形した
後に、円筒状孔31の底面に、下面に接着剤を塗付したPT
FE系樹脂の摺動性の良いシート部材43を押圧して接着し
ている。
FIG. 8 shows a dynamic pressure type slide bearing manufactured according to another embodiment of the present invention. After the dynamic pressure type slide bearing is formed, an adhesive is applied to the bottom surface of the cylindrical hole 31 and the lower surface. PT
The sheet member 43 of the FE resin having good slidability is pressed and adhered.

第7図及び第8図に示す実施例ではシート部材43が良
好な摺動性を有するので内筒体15の材料である熱硬化性
樹脂を成形精度重視で選定できる。
In the embodiment shown in FIGS. 7 and 8, since the sheet member 43 has good slidability, the thermosetting resin which is the material of the inner cylinder 15 can be selected with emphasis on molding accuracy.

なお、外筒体9の金属材料と内筒体15の熱硬化性樹脂
と軸29の金属材料との熱膨脹係数を適宜選定して組合わ
せることにより、周囲温度が変化しても内筒体15と軸29
との間のラジアル軸受すきまをほぼ一定にできる。
Incidentally, by appropriately selecting and combining the thermal expansion coefficients of the metal material of the outer cylinder 9, the thermosetting resin of the inner cylinder 15, and the metal material of the shaft 29, even if the ambient temperature changes, the inner cylinder 15 can be used. And axis 29
And the radial bearing clearance between them can be made substantially constant.

しかし、樹脂は高温において真円度や円筒度の形状が
くずれやすくて軸29と内筒体15とが接触する危険があ
る。それゆえに、ラジアル軸受すきまは高温になるにつ
れて僅かに大きくなる方が好ましい。
However, the shape of the roundness or the cylindricity of the resin tends to be lost at a high temperature, and there is a danger that the shaft 29 and the inner cylindrical body 15 come into contact with each other. Therefore, it is preferred that the radial bearing clearance increase slightly with increasing temperature.

〔発明の効果〕〔The invention's effect〕

この発明の動圧形すべり軸受の製造方法によると、外
筒体9と内筒体15との接着力が強いので内筒体15の精度
が良好であるという効果を有する。
According to the method of manufacturing a dynamic pressure type sliding bearing of the present invention, the adhesive strength between the outer cylinder 9 and the inner cylinder 15 is strong, so that the effect of improving the accuracy of the inner cylinder 15 is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に使用する動圧形すべり軸
受の成形装置の断面図、第2図は第1図に示す装置によ
って成形された動圧形すべり軸受の断面図、第3図ない
し第7図はこの発明の他の実施例に使用する動圧形すべ
り軸受の成形装置の断面図、第8図はこの発明の他の実
施例によって製造された動圧形すべり軸受の断面図であ
る。 図中、3は内型、5は突条、、9は外筒体、13は加熱硬
化型接着剤、15は内筒体、23は動圧発生用みぞである。
FIG. 1 is a sectional view of a forming apparatus of a dynamic pressure type sliding bearing used in one embodiment of the present invention, FIG. 2 is a sectional view of a dynamic pressure type sliding bearing formed by the apparatus shown in FIG. 7 are sectional views of a forming apparatus for a dynamic pressure type sliding bearing used in another embodiment of the present invention, and FIG. 8 is a sectional view of a dynamic pressure type sliding bearing manufactured by another embodiment of the present invention. FIG. In the figure, 3 is an inner mold, 5 is a ridge, 9 is an outer cylinder, 13 is a thermosetting adhesive, 15 is an inner cylinder, and 23 is a groove for generating dynamic pressure.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱硬化型接着剤を内周面に固着した金属
製の外筒体を、動圧発生用みぞの形状に対応する突条が
外周面に配列された内型の外周に配設し、該内型と外筒
体に固着された加熱硬化型接着剤との間の環状空間に加
熱溶融した熱硬化性樹脂を注入し、該熱硬化性樹脂は加
熱硬化型接着剤との間に生ずる硬化反応によって外筒体
に強固に固着して内筒体となり、該内筒体と外筒体とが
一体になった動圧形すべり軸受と、内型とを軸方向に分
離する動圧形すべり軸受の製造方法。
1. A metal outer cylindrical body having a heat-curable adhesive fixed to an inner peripheral surface thereof is disposed on an outer periphery of an inner die in which ridges corresponding to the shape of a groove for generating dynamic pressure are arranged on an outer peripheral surface. A thermosetting resin that is heated and melted is injected into an annular space between the inner mold and the thermosetting adhesive fixed to the outer cylinder, and the thermosetting resin is mixed with the thermosetting adhesive. An inner cylinder is firmly fixed to the outer cylinder by a hardening reaction generated therebetween, and the inner mold is separated from the dynamic pressure type slide bearing in which the inner cylinder and the outer cylinder are integrated with each other in the axial direction. Manufacturing method of hydrodynamic plain bearings.
JP63203907A 1988-08-18 1988-08-18 Manufacturing method of hydrodynamic plain bearings Expired - Lifetime JP2715457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203907A JP2715457B2 (en) 1988-08-18 1988-08-18 Manufacturing method of hydrodynamic plain bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203907A JP2715457B2 (en) 1988-08-18 1988-08-18 Manufacturing method of hydrodynamic plain bearings

Publications (2)

Publication Number Publication Date
JPH0257715A JPH0257715A (en) 1990-02-27
JP2715457B2 true JP2715457B2 (en) 1998-02-18

Family

ID=16481674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203907A Expired - Lifetime JP2715457B2 (en) 1988-08-18 1988-08-18 Manufacturing method of hydrodynamic plain bearings

Country Status (1)

Country Link
JP (1) JP2715457B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109823A (en) * 1979-02-13 1980-08-23 Fudo Kagaku Kogyo Kk Slide unit and its manufacturing method
JPS6136516A (en) * 1984-07-25 1986-02-21 Nippon Seiko Kk Dynamic pressure type plain bearing and preparation thereof
JPS61112115U (en) * 1984-12-26 1986-07-16

Also Published As

Publication number Publication date
JPH0257715A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US2976093A (en) Fabrication of plastic material
US4501431A (en) Composite teflon helix seal
US6501617B1 (en) Press-fit and plastic-flow coupling of a shaft to a hub of a disk device
KR890002572A (en) Spherical Bearings and Manufacturing Method
WO2007058351A1 (en) Resin retainer and rolling bearing
JP4808457B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JPS5817212A (en) Ball joint and its manufacture
JP2715457B2 (en) Manufacturing method of hydrodynamic plain bearings
JP5095111B2 (en) Hydrodynamic bearing device
JP2754769B2 (en) Manufacturing method of bearing with dynamic pressure groove
JPH0531681B2 (en)
JP3984091B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2003206935A (en) Roller bearing ring manufacturing method and roller bearing ring
JPS62215123A (en) Sliding bearing and its process
JPS60252816A (en) Spherical bearing and manufacture thereof
US3237278A (en) Bearing and method of making
JP2004019857A (en) Resin bearing and resin bearing manufacturing method
JPS633167B2 (en)
JPH0615745A (en) Composite material and production thereof
JP2001027225A (en) Hydrodynamic pressure bearing made of resin, and spindle motor
KR20040098527A (en) Mold for molding disk substrate
JPH0493217A (en) Rotary head cylinder and its manufacture
JPS63203916A (en) Dynamic pressure type plain bearing and manuracture thereof
JPS61255842A (en) Method for molding bearing surface of dynamic pressure type bearing
US3420587A (en) Low friction spherical bearing