JPS633167B2 - - Google Patents

Info

Publication number
JPS633167B2
JPS633167B2 JP57169822A JP16982282A JPS633167B2 JP S633167 B2 JPS633167 B2 JP S633167B2 JP 57169822 A JP57169822 A JP 57169822A JP 16982282 A JP16982282 A JP 16982282A JP S633167 B2 JPS633167 B2 JP S633167B2
Authority
JP
Japan
Prior art keywords
inner ring
synthetic resin
ring
thermoplastic synthetic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57169822A
Other languages
Japanese (ja)
Other versions
JPS5962722A (en
Inventor
Seiichi Nozato
Takeshi Hasegawa
Kikuo Sumyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP57169822A priority Critical patent/JPS5962722A/en
Publication of JPS5962722A publication Critical patent/JPS5962722A/en
Publication of JPS633167B2 publication Critical patent/JPS633167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/045Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/66Acetals, e.g. polyoxymethylene [POM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は外周面に凸球面部を有する熱可塑性合
成樹脂内輪と補強充填材入り熱可塑性合成樹脂外
輪とを一体成形により形成した自動調芯軸受の製
造方法に関するものである。 従来より、合成樹脂を使用した自動調芯軸受と
しては、たとえば外周面に凸球面部を有する内輪
と円筒状内輪とを金型内に設置し、該内輪外周面
と外輪内周面との間隙部に合成樹脂を成形して両
者間に合成樹脂摺動層を形成して該内輪外周面と
該摺動層間で自動調芯させるようにしたもの、あ
るいは内周面に凹球面部を有する外輪を金型内に
設置し、該凹球面部に合成樹脂を成形して合成樹
脂内輪を形成し、該外輪内周面と内輪外周面間で
自動調芯させるようにしたもの(たとえば実公昭
37―6714号)などがある。 ここで、後者を図面に示せばつぎのとおりであ
る。 第1図および第2図において、1は内型1aと
外型1bとからなる金型、2は該金型1内に設置
されその内周面に凹球面部3を有する外輪、4は
該外輪2の内周面に挿入された内環、5は該内環
4を固定した軸、6は該外輪2の凹球面部3と内
環4の外周面との間に形成された隙間、7は該外
型1bに形成された注入口で、その一端が該隙間
6に開口している。 そして該注入口7から溶融した合成樹脂、たと
えばポリアミド樹脂を成形して凸球面部8を有す
る合成樹脂内輪9を形成するものである。 上述した方法においては、外輪2の凹球面部3
と合成樹脂内輪9の凸球面部8との間の軸受すき
まは、該合成樹脂内輪9の成形収縮を利用して得
るものである。 しかしながら、軸受すきまを合成樹脂の成形収
縮を利用して得る方法においては、合成樹脂の成
形収縮量が非常に大きいことから適正な軸受すき
まを得るのは非常に難しいことである。 たとえば、内輪を形成する合成樹脂にポリアミ
ド樹脂を使用した場合、ポリアミド樹脂の成形収
縮率が0.9〜1.0%であることから、外輪凹球面部
の最大内径を30mmとすると、そこに成形された合
成樹脂内輪の凸球面部の最大外径は成形収縮によ
り0.27mm〜0.30mm減少し、この減少分が外輪内周
面と内輪外周面との間に軸受すきまとして生ずる
ことになる。 一般に合成樹脂を使用した自動調芯軸受におけ
る適正な軸受すきまは、内輪の最大外径Dの15/1
0000×D〜30/10000×Dmmであることから、上述
した方法で得られた軸受すきまは適正であるとは
言い難い。 本発明は前述した後者の方法の改良に係わるも
ので、外周面に凸球面部を有する熱可塑性合成樹
脂内輪と補強充填材入り熱可塑性合成樹脂外輪と
を一体成形により形成し、両者間に適正な軸受す
きまを有する自動調芯軸受を得ることをその技術
的課題とするものである。 上述した技術的課題を達成すべく本発明の構
成、すなわち技術的手段はつぎのとおりである。 内部に中空部を有する金型内に外周面に凸球面
部を有する熱可塑性合成樹脂内輪を加熱膨張させ
て設置し、ついで該中空部に補強充填材入り熱可
塑性合成樹脂を成形して外輪を一体に形成したの
ち冷却し、該内輪の収縮および該外輪の成形収縮
により内、外輪間に軸受すきまを形成させてなる
ものである。 本発明において、熱可塑性合成樹脂内、外輪間
の軸受すきまは、該内輪の一定量の熱膨張後の収
縮量と外輪の成形収縮量により得るものである。 また、内、外輪は組合わされてそこに摺動面を
形成するものである。 したがつて、内、外輪を形成する熱可塑性合成
樹脂の組合わせについては、つぎの条件が必要と
される。 内輪を形成する熱可塑性合成樹脂の熱膨張量
は外輪を形成する熱可塑性合成樹脂の成形収縮
量よりも大きいこと。 内、外輪は組合わされてそこに摺動面を形成
するため、摩擦摩耗特性にすぐれた熱可塑性合
成樹脂を選択すること。 内、外輪が一体成形により互に融着しないこ
と。 外輪の成形時に内輪が変形しないこと。 上記条件を満足する内、外輪の組合わせの一例
を示すと第1表のとおりである。
The present invention relates to a method for manufacturing a self-aligning bearing in which a thermoplastic synthetic resin inner ring having a convex spherical surface on the outer peripheral surface and a thermoplastic synthetic resin outer ring containing a reinforcing filler are integrally formed. Conventionally, self-aligning bearings using synthetic resin have been constructed by installing an inner ring having a convex spherical surface on the outer circumferential surface and a cylindrical inner ring in a mold, and forming a gap between the outer circumferential surface of the inner ring and the inner circumferential surface of the outer ring. A synthetic resin is molded into the inner ring and a synthetic resin sliding layer is formed between the inner ring and the sliding layer so that self-alignment is achieved between the outer peripheral surface of the inner ring and the sliding layer, or an outer ring that has a concave spherical surface on the inner peripheral surface. is placed in a mold, a synthetic resin is molded onto the concave spherical surface to form a synthetic resin inner ring, and the inner circumferential surface of the outer ring and the outer circumferential surface of the inner ring are automatically aligned (for example, Jikkosho
37-6714). Here, the latter is shown in the drawings as follows. In FIGS. 1 and 2, 1 is a mold consisting of an inner mold 1a and an outer mold 1b, 2 is an outer ring installed in the mold 1 and has a concave spherical surface portion 3 on its inner peripheral surface, and 4 is a mold made of an inner mold 1a and an outer mold 1b. An inner ring inserted into the inner peripheral surface of the outer ring 2; 5 is a shaft to which the inner ring 4 is fixed; 6 is a gap formed between the concave spherical surface portion 3 of the outer ring 2 and the outer peripheral surface of the inner ring 4; Reference numeral 7 denotes an injection port formed in the outer mold 1b, one end of which opens into the gap 6. A synthetic resin inner ring 9 having a convex spherical surface portion 8 is formed by molding the melted synthetic resin, such as polyamide resin, from the injection port 7. In the method described above, the concave spherical surface portion 3 of the outer ring 2
The bearing clearance between the convex spherical surface portion 8 of the synthetic resin inner ring 9 is obtained by utilizing the molding shrinkage of the synthetic resin inner ring 9. However, in the method of obtaining a bearing clearance using molding shrinkage of a synthetic resin, it is very difficult to obtain an appropriate bearing clearance because the amount of molding shrinkage of the synthetic resin is very large. For example, when polyamide resin is used as the synthetic resin forming the inner ring, the molding shrinkage rate of polyamide resin is 0.9 to 1.0%, so if the maximum inner diameter of the concave spherical part of the outer ring is 30 mm, The maximum outer diameter of the convex spherical surface portion of the resin inner ring is reduced by 0.27 mm to 0.30 mm due to molding shrinkage, and this reduction occurs as a bearing clearance between the inner circumferential surface of the outer ring and the outer circumferential surface of the inner ring. In general, the appropriate bearing clearance for self-aligning bearings using synthetic resin is 15/1 of the maximum outer diameter D of the inner ring.
0,000×D to 30/10,000×Dmm, it is difficult to say that the bearing clearance obtained by the above method is appropriate. The present invention relates to an improvement of the latter method described above, in which an inner ring of thermoplastic synthetic resin having a convex spherical surface on the outer peripheral surface and an outer ring of thermoplastic synthetic resin containing reinforcing filler are integrally formed, and an appropriate distance between the two is formed. The technical objective is to obtain a self-aligning bearing with a bearing clearance of 1. The configuration of the present invention, that is, the technical means for achieving the above-mentioned technical problems, is as follows. A thermoplastic synthetic resin inner ring having a convex spherical surface on the outer peripheral surface is heated and expanded in a mold having a hollow part inside, and then a thermoplastic synthetic resin containing reinforcing filler is molded into the hollow part to form an outer ring. After they are formed integrally, they are cooled, and a bearing gap is formed between the inner and outer rings by shrinkage of the inner ring and molding shrinkage of the outer ring. In the present invention, the bearing clearance between the inside of the thermoplastic synthetic resin and the outer ring is obtained by the amount of shrinkage of the inner ring after a certain amount of thermal expansion and the amount of molding shrinkage of the outer ring. Furthermore, the inner and outer rings are combined to form a sliding surface there. Therefore, the following conditions are required for the combination of thermoplastic synthetic resins forming the inner and outer rings. The amount of thermal expansion of the thermoplastic synthetic resin forming the inner ring is greater than the amount of molding contraction of the thermoplastic synthetic resin forming the outer ring. Since the inner and outer rings are combined to form a sliding surface, a thermoplastic synthetic resin with excellent friction and wear characteristics should be selected. The inner and outer rings are integrally molded so that they do not fuse together. The inner ring should not be deformed when forming the outer ring. Table 1 shows examples of outer ring combinations that satisfy the above conditions.

【表】 ものが好適である。
内輪に含油ポリアセタール樹脂を使用した場合
には、内、外輪間の摺動面に潤滑油の被膜が自動
的に形成されるため、摩擦摩耗の観点からはとく
に有効である。 また、外輪に補強充填材入り熱可塑性合成樹脂
を使用したのは、外輪において取付部材に固定す
るため、該外輪の強度向上を計る目的と成形収縮
を減少させる目的からである。 これらの目的は補強充填材、たとえばガラス繊
維を多量に充填することにより達成されるが、内
輪との摩擦摩耗を考慮すると、その充填量は30重
量%程度が好ましい。 上表に示した内、外輪の組合わせにおいて、内
輪の最大外径を24mmとし、該内輪を80℃に加熱し
て一定量膨張させ、ついで補強充填材入り熱可塑
性合成樹脂を一体成形して外輪を形成した後、冷
却して得られる内、外輪間の軸受すきまは第2表
に示すとおりである。
[Table] Preferably.
When an oil-impregnated polyacetal resin is used for the inner ring, a film of lubricating oil is automatically formed on the sliding surface between the inner and outer rings, which is particularly effective from the viewpoint of friction and wear. Furthermore, the reason why a thermoplastic synthetic resin containing a reinforcing filler is used for the outer ring is to improve the strength of the outer ring and to reduce mold shrinkage since the outer ring is fixed to a mounting member. These objectives can be achieved by filling a large amount of reinforcing filler, such as glass fiber, but in consideration of friction and wear with the inner ring, the filling amount is preferably about 30% by weight. In the combination of inner and outer rings shown in the table above, the maximum outer diameter of the inner ring is 24 mm, the inner ring is heated to 80°C to expand a certain amount, and then thermoplastic synthetic resin containing reinforcing filler is integrally molded. After forming the outer ring, the bearing clearance between the inner and outer rings obtained by cooling is as shown in Table 2.

【表】 一定温度に加熱膨張させた内輪に対して一体に
成形される外輪の補強充填材入り熱可塑性合成樹
脂の融点は該内輪に使用される熱可塑性合成樹脂
の融点よりも高いが、成形後ただちに冷却される
ため、内輪と外輪との融着は起らず、上表に示す
結果が得られた。 上表の結果から、前述したように適正な軸受す
きまは内輪最大外径Dの15/10000×D〜30/10000
Dmmであることから、本発明によつて得られる
内・外輪間の軸受すきまは適正であることがわか
る。上述した技術的手段をとることにより、内輪
に使用する熱可塑性合成樹脂の熱膨張量および外
輪に使用する熱可塑性合成樹脂の成形収縮量を把
握するだけで、所望の寸法に応じて適正な軸受す
きまをもつた自動調芯軸受を得ることができる。 また、本発明によつて得られる自動調芯軸受は
内・外輪とも熱可塑性合成樹脂で形成されるため
非常に軽量であるとともにその取扱いがきわめて
容易である。 以下、本発明の実施例を図面にもとずき詳細に
説明する。 第3図は本発明自動調芯軸受を製造する金型を
示すもので、図において、10は下型、20は上
型であり、該下型10および上型20は組合わさ
れてその内部に中空部30が形成される。 40は熱可塑性合成樹脂の注入口、50は予め
成形された熱可塑性合成樹脂からなる外周面に凸
球面部を有する内輪60を嵌挿保持した軸で、該
軸50は該内輪60を前記金型の中空部30に位
置させて金型内に設置される。 この状態で金型を加熱して該内輪60を一定量
(第4図符号δで示す。)膨張させる。 なお、内輪60を膨張させるにあたつては軸5
0に嵌挿保持させる前に予め加熱して膨張させ、
これを軸50に嵌挿して金型内に設置する方法を
とることもできる。 ついで、該金型の注入口40から溶融した補強
充填材入り熱可塑性合成樹脂を注入して外輪70
を成形し、冷却する。 これにより、膨張した内輪60は収縮してその
外径を減少させ、また外輪70は成形収縮により
その内径を内輪外周面側に減少させることにな
り、この互の減少量の差が内.外輪間の軸受すき
まS(第5図)を形成する。 さらに詳しい具体例を示せばつぎのとおりであ
る。 熱可塑性合成樹脂として含油ポリアセタール樹
脂(熱膨張率:8.45×10-5/℃)を使用して、最
大外径24.0mmの凸球面部を有する内輪を作成し
た。 この内輪を軸に嵌挿保持させたのち、80℃の温
度に加熱してその最大外径を24.132mmに膨張させ
た。 (24.0mm×8.45×10×(80℃−15℃(室温)=
0.132mm)(膨張量:δ) これを80℃の温度に加熱された金型内に設置
し、金型注入口から補強充填材としてガラス繊維
を30重量%充填したポリブチレンテレフタレート
樹脂を注入して外輪を成形した。 ついで、これを室温まで冷却した後、金型から
取り出し自動調芯軸受を得た。 このとき、外輪の最大内径は成形収縮により
0.072mm(24.132mm×0.3%(成形収縮率)=0.072
mm)内輪外径側に減少し、前述した内輪の膨張量
δ=0.132mmと外輪の成形収縮量0.072mmの差、す
なわち0.132mm−0.072mm=0.09mmが内.外輪間に
軸受すきまとして形成された。
[Table] The melting point of the reinforcing filler-containing thermoplastic synthetic resin for the outer ring, which is molded integrally with the inner ring that has been heated and expanded to a certain temperature, is higher than the melting point of the thermoplastic synthetic resin used for the inner ring. Since the inner ring and outer ring were cooled immediately after that, no fusion occurred between the inner ring and the outer ring, and the results shown in the table above were obtained. From the results in the table above, as mentioned above, the appropriate bearing clearance is 15/10000 x D to 30/10000 of the maximum outer diameter of the inner ring.
Dmm, it can be seen that the bearing clearance between the inner and outer rings obtained by the present invention is appropriate. By taking the above-mentioned technical measures, you can create an appropriate bearing according to the desired dimensions by simply knowing the amount of thermal expansion of the thermoplastic synthetic resin used for the inner ring and the amount of molding shrinkage of the thermoplastic synthetic resin used for the outer ring. A self-aligning bearing with a clearance can be obtained. Furthermore, since both the inner and outer rings of the self-aligning bearing obtained by the present invention are made of thermoplastic synthetic resin, it is extremely lightweight and extremely easy to handle. Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 3 shows a mold for manufacturing the self-aligning bearing of the present invention. In the figure, 10 is a lower mold, 20 is an upper mold, and the lower mold 10 and upper mold 20 are combined to form a mold inside. A hollow portion 30 is formed. Reference numeral 40 indicates an injection port for thermoplastic synthetic resin, and 50 indicates a shaft in which an inner ring 60 made of pre-molded thermoplastic synthetic resin and having a convex spherical surface on the outer peripheral surface is inserted and held. It is placed in the mold by being located in the hollow part 30 of the mold. In this state, the mold is heated to expand the inner ring 60 by a certain amount (indicated by the symbol δ in FIG. 4). Note that when expanding the inner ring 60, the shaft 5
0. Before inserting and holding, heat and expand it in advance.
It is also possible to fit this into the shaft 50 and install it in a mold. Next, the molten thermoplastic synthetic resin containing reinforcing filler is injected from the injection port 40 of the mold to form the outer ring 70.
Shape and cool. As a result, the expanded inner ring 60 contracts and reduces its outer diameter, and the outer ring 70 reduces its inner diameter toward the inner ring's outer circumferential surface due to molding contraction, and the difference in the amount of reduction between them is the difference between the inner and outer rings. Form a bearing clearance S (Fig. 5) between the outer rings. A more detailed example is as follows. An inner ring having a convex spherical portion with a maximum outer diameter of 24.0 mm was prepared using an oil-impregnated polyacetal resin (coefficient of thermal expansion: 8.45×10 -5 /°C) as a thermoplastic synthetic resin. After this inner ring was inserted and held on the shaft, it was heated to a temperature of 80°C to expand its maximum outer diameter to 24.132 mm. (24.0mm×8.45×10×(80℃−15℃(room temperature)=
0.132mm) (Amount of expansion: δ) This was placed in a mold heated to 80℃, and polybutylene terephthalate resin filled with 30% by weight glass fiber was injected as a reinforcing filler through the mold injection port. Then, the outer ring was formed. Then, after cooling it to room temperature, it was taken out from the mold to obtain a self-aligning bearing. At this time, the maximum inner diameter of the outer ring is due to molding shrinkage.
0.072mm (24.132mm x 0.3% (molding shrinkage rate) = 0.072
mm) decreases toward the outer diameter of the inner ring, and the difference between the expansion amount δ of the inner ring described above = 0.132 mm and the molding shrinkage amount of the outer ring 0.072 mm, that is, 0.132 mm − 0.072 mm = 0.09 mm. It is formed as a bearing clearance between the outer rings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動調芯軸受の製造方法の従来技術を
示す断面図、第2図は第1図に示す製造方法によ
つて得られる自動調芯軸受を示す断面図、第3図
は本発明自動調芯軸受の製造方法を示す断面図、
第4図は製造工程を示す一部拡大断面図、第5図
は本発明の製造方法によつて得られた自動調芯軸
受を示す一部拡大断面図である。 10:下型、20:上型、30:中空部、6
0:内輪、70:外輪。
FIG. 1 is a cross-sectional view showing a conventional method for manufacturing a self-aligning bearing, FIG. 2 is a cross-sectional view showing a self-aligning bearing obtained by the manufacturing method shown in FIG. 1, and FIG. 3 is a cross-sectional view showing the present invention. A cross-sectional view showing the manufacturing method of a self-aligning bearing,
FIG. 4 is a partially enlarged cross-sectional view showing the manufacturing process, and FIG. 5 is a partially enlarged cross-sectional view showing a self-aligning bearing obtained by the manufacturing method of the present invention. 10: Lower mold, 20: Upper mold, 30: Hollow part, 6
0: Inner ring, 70: Outer ring.

Claims (1)

【特許請求の範囲】 1 内部に中空部を有する金型内に外周面に凸球
面部を有する熱可塑性合成樹脂内輪を加熱膨張さ
せて設置し、ついで該中空部に補強充填材入り熱
可塑性合成樹脂を成形して外輪を一体に形成した
のち冷却し、該内輪の収縮および該外輪の成形収
縮により内.外輪間に軸受すきまを形成させるこ
とを特徴とする自動調芯軸受の製造方法。 2 熱可塑性合成樹脂内輪の熱膨張量は補強充填
材入り熱可塑性合成樹脂外輪の成形収縮量よりも
大きいことを特徴とする特許請求の範囲第1項記
載の自動調芯軸受の製造方法。
[Claims] 1. A thermoplastic synthetic resin inner ring having a convex spherical surface on the outer peripheral surface is heated and expanded in a mold having a hollow part inside, and then a thermoplastic synthetic resin containing reinforcing filler is placed in the hollow part. After the outer ring is integrally formed by molding resin, it is cooled, and the inner ring shrinks due to shrinkage of the inner ring and molding shrinkage of the outer ring. A method of manufacturing a self-aligning bearing characterized by forming a bearing clearance between outer rings. 2. The method for manufacturing a self-aligning bearing according to claim 1, wherein the amount of thermal expansion of the thermoplastic synthetic resin inner ring is greater than the amount of molding shrinkage of the reinforcing filler-containing thermoplastic synthetic resin outer ring.
JP57169822A 1982-09-30 1982-09-30 Method for manufacturing self-aligning bearing Granted JPS5962722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169822A JPS5962722A (en) 1982-09-30 1982-09-30 Method for manufacturing self-aligning bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169822A JPS5962722A (en) 1982-09-30 1982-09-30 Method for manufacturing self-aligning bearing

Publications (2)

Publication Number Publication Date
JPS5962722A JPS5962722A (en) 1984-04-10
JPS633167B2 true JPS633167B2 (en) 1988-01-22

Family

ID=15893539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169822A Granted JPS5962722A (en) 1982-09-30 1982-09-30 Method for manufacturing self-aligning bearing

Country Status (1)

Country Link
JP (1) JPS5962722A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615967A (en) * 1994-06-03 1997-04-01 Maclean-Fogg Company Ball joint link
US5609433A (en) * 1995-08-01 1997-03-11 Maclean-Fogg Company Ball joint link and method of producing same
US5713689A (en) * 1996-04-12 1998-02-03 Maclean-Fogg Company Ball joint link
DE10239966B3 (en) * 2002-08-30 2004-06-09 Integrated Electronic Systems !Sys Consulting Gmbh Plastic joint and process for its manufacture
FR3087510B1 (en) * 2018-10-22 2021-12-31 Skf Aerospace France Sas Flanged Bearing Outer Ring Unit
FR3095767B1 (en) * 2019-05-07 2022-09-09 Psa Automobiles Sa DRAWING PRESS WITH ROTARY COUNTERFORM AND METHOD FOR MANUFACTURING SUCH A PRESS

Also Published As

Publication number Publication date
JPS5962722A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
KR910004976B1 (en) Spherical bearing and its manufacturing method
KR890000224B1 (en) Process for the production of a ball and socket joint
US4691422A (en) Method and apparatus for making ball and socket joints incorporating a slip liner
US4080015A (en) Bearing and method for manufacturing same
US3085312A (en) Method of making bearings
US2904874A (en) Method of manufacturing connecting rod bearings
US20090003927A1 (en) Ball-and-socket joint ball pin with injection molded metal ball
US4439909A (en) Ball joint manufacture
JPS633167B2 (en)
US4065190A (en) Self adjusting elevating temperature bearing and housing
US3782797A (en) Sliding bearing particularly for universal joints in shifting and steering mechanisms of motor vehicles
US3363300A (en) Method of making gas lubricated bearings
JP4530554B2 (en) Sliding bearing manufacturing method
SE501855C2 (en) Castings with molded reinforcement, and method of making such castings
CN111059157B (en) Manufacturing method of external spherical bearing with seat
JPH02286916A (en) Dynamic pressure form bearing and spindle unit
JPH0531681B2 (en)
US3733668A (en) Method for producing a sliding bearing for a universal joint
JPS62215123A (en) Sliding bearing and its process
US3220093A (en) Method of making a ball joint bearing
KR0123923B1 (en) Rotary head cylinder and the manufacturing method
JPS59220321A (en) Manufacture of dynamic pressure type slide bearing made of synthetic resin
JPH07118890B2 (en) Method of manufacturing resin motor casing
JPS6327573B2 (en)
JPH09264327A (en) Slide bearing device