JP2696827B2 - Driving method of electrochromic device - Google Patents

Driving method of electrochromic device

Info

Publication number
JP2696827B2
JP2696827B2 JP62042248A JP4224887A JP2696827B2 JP 2696827 B2 JP2696827 B2 JP 2696827B2 JP 62042248 A JP62042248 A JP 62042248A JP 4224887 A JP4224887 A JP 4224887A JP 2696827 B2 JP2696827 B2 JP 2696827B2
Authority
JP
Japan
Prior art keywords
layer
voltage
coloring
ecd
electrochromic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62042248A
Other languages
Japanese (ja)
Other versions
JPS63208830A (en
Inventor
みゆき 山口
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62042248A priority Critical patent/JP2696827B2/en
Publication of JPS63208830A publication Critical patent/JPS63208830A/en
Application granted granted Critical
Publication of JP2696827B2 publication Critical patent/JP2696827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リークのあるエレクトロクロミック装置の
駆動方法に関するものである。 〔従来の技術〕 電圧を印加すると可逆的に電解酸化または還元反応が
起こり可逆的に着色する現象をエレクトロクロミズムと
言う。このような現象を示すエレクトロクロミック(以
下、ECと略称する)物質の薄膜を一対の電極層で挟持し
て、その電極層間に印加する電圧を操作することにより
着消色するEC装置(以下、ECDと略す)を作り、このECD
を光量制御素子(例えば、防眩ミラー)や7セグメント
を利用した数字表示素子に利用しようとする試みは、20
年以上前から行われている。 例えば、ガラス基板の上に透明電極層、三酸化タング
ステン薄膜と絶縁膜(例えば二酸化ケイ素)との2層膜
(順は不同)及び対向電極層を順次積層してなるECD
(特公昭52−46098参照)が全固体型ECDとして知られて
いる。このECDに着色電圧Vcを印加すると三酸化タング
ステン(WO3)薄膜が青色に着色する。その後、このECD
に逆極性の消色電圧Vbを印加すると、WO3薄膜の青色が
消えて無色になる。 この着色・消色する機構は詳しく解明されていない
が、WO3薄膜および絶縁膜(イオン導電層)中に含まれ
る少量の水分がWO3の着色・消色を支配していると理解
されている。着色の反応式は下記のように推定されてい
る。 ところで、EC層を直接又は間接的に挟む一対の電極層
は、EC層の着消色を外部に見せるために少なくとも一方
は透明でなければならない。特に透過型のECDの場合に
は両方とも透明でなければならない。透明な電極材料と
しては、現在のところSnO2、In2O3、ITO(SnO2とIn2O3
との混合物)、ZnOなどが知られているが、これらの材
料は比較的透明度が悪いために薄くせねばならず、この
理由及びその他の理由からECDは基板例えばガラス板や
プラスチック板の上に形成するのが普通であり、このよ
うなECDの構造の一例を第4図に示す。 第4図に於いて、2は下部透明電極(例えば、IT
O)、3は可逆的電解酸化層又は酸化着色性EC層(例え
ば酸化又は水酸化イリジウム)、4はイオン導電層(例
えば五酸化タンタル)、5は還元着色性EC層(例えばWO
3)、6は上部電極兼反射層(例えばAl)をそれぞれ示
し、基本的にはこの2〜6の積層構造だけでECDが構成
されるが、前述のとおり、これらのECDは基板(例えば
ガラス板)1上に形成される。 7はECDの封止材例えばエポキシ樹脂であり、8は保
護用の封止ガラス板である。 ところで、先の反応式からも理解されるように、EC層
は一種のコンデンサーと見ることができ、着色状態は電
荷が溜まっている状態、消色状態は電荷が空の状態と見
ることができる。 従って、一旦ECDを消色すれば、もはや消色電圧を印
加しても電流は流れないはずである。そのため、従来の
駆動方法は、第2図に示すように、着色電圧Vcを所定時
間Tc例えば2〜10秒の間印加し、その後は一対の電極層
間を開放状態にするものであった。 しかし、このようなECDも製造上の問題で、ECDによっ
ては、(1)本来電子絶縁性であるイオン導電層が多少
電子を通すこと、(2)一対の電極層間で多少の短絡状
態が存在することなどの原因で、一旦ECDを消色すれ
ば、もはや消色電圧を印加しても電流は流れないはずに
もかかわらず、実際には流れる(このことをリークがあ
ると呼び、その電流値を消色電圧で割った商をリーク量
と呼ぶ)ECDが多い。 そのため、何が起きるかというと、ECDを着色させた
後、着色電圧の印加をやめても、本来は着色状態が保持
される(メモリー性があるという)はずにもかかわら
ず、比較的速やかに自然に消色してしまう(メモリー性
がない)という問題点があった。 そこで、従来でも第3図に示すように、所定の着色電
圧Vcを所定時間Tc例えば2〜10秒の間印加して所定の着
色状態とした後、前記Vcと同一か又はそれより弱い着色
電圧Vccを印加し続けることにより一定の着色状態を維
持する駆動方法が提案された。 しかし、この提案された駆動方法は、ECDを早めに劣
化させ寿命を短くするという新たな問題点を発生させ
た。 従って、本発明の目的は、リークのあるECDについて
もメモリー性があるように見せ掛け、しかもECDの寿命
を短くしない駆動方法を提供することにある。 〔問題点を解決する為の手段〕 上記問題点の解決のため、本発明は「少なくともエレ
クトロクロミック層を一対の電極層で挟持してなり、リ
ークを有するエレクトロクロミック装置の一対の電極層
間に、所定の着色電圧Vcを印加して所定の着色状態とし
た後、該電極層間を所定時間toffの間開放する開放状態
と、該電極層間に前記着色電圧Vcと同一か或いはやや弱
い着色電圧Vccを所定時間tonの間印加する印加状態とを
繰り返すことにより、一定の着色状態を保持するエレク
トロクロミック装置の駆動方法において、 前記エレクトロクロミック装置を所定の着色状態とす
るまでに注入される電荷量Q(単位:クローン)、前記
着色電圧Vcとは逆極性の消色電圧Vb(単位:ボルト)を
10秒間印加した後における前記エレクトロクロミック装
置のリーク量をL(単位:アンペア)とするとき、前記
所定時間toffと前記所定時間tonが 式1:toff×L/Q<3/100 式2:1/100<ton/toff<1/3 を満足することを特徴とするエレクトロクロミック装置
の駆動方法。」を提供する。なお、ton/(ton+toff
をduty比と呼ぶ。 〔作用〕 本発明に於けるECDの積層構造は、特にどれと限定さ
れるものではないが、固体型ECDの構造としては、例え
ば電極層/EC層/イオン導電層/電極層のような4層
構造、電極層/還元着色性EC層/イオン導電層/可逆
的電解酸化層ないし酸化着色性EC層/電極層のような5
層構造があげられる。 透明電極の材料としては、例えばSnO2、In2O3、ITOな
どが使用される。このような電極層は、一般には真空蒸
着、イオンプレーティング、スパッタリングなどの真空
薄膜形成技術で形成される。(還元着色性)EC層として
は一般にWO3、MoO3などが使用される。 イオン導電層としては、例えば酸化ケイ素、酸化タン
タル、酸化チタン、酸化アルミニウム、酸化ニオブ、酸
化ジルコニウム、酸化ハフニウム、酸化ランタン、フッ
化マグネシウムなどが使用される。これらの物質薄膜は
製造方法により電子に対して絶縁体であるが、プロトン
(H+)およびヒドロキシイオン(OH-)に対しては良導
体となる。EC層の着色消色反応にはカチオンが必要とさ
れ、H+やLi+イオンをEC層その他に含有させる必要があ
る。H+イオンは初めからイオンである必要はなく、電圧
が印加されたときにH+イオンが生じればよく、従ってH+
イオンの代わりに水を含有させてもよい。この水は非常
に少なくて十分であり、しばしば、大気中から自然に侵
入する水分でも着消色する。 EC層とイオン導電層とは、どちらを上にしても下にし
てもよい。さらにEC層に対して間にイオン導電層を挟ん
で可逆的電解酸化層(ないし酸化着色型EC層)又は触媒
層を配設してもよい。このような層としては、例えば酸
化ないし水酸化イリジウム、同じくニッケル、同じくク
ロム、同じくバナジウム、同じくルテニウム、同じくロ
ジウムなどがあげられる。これらの物質は、イオン導電
層又は透明電極層を構成する物質例えば酸化ケイ素、酸
化タンタル、酸化チタン、酸化アルミニウム、酸化ニオ
ブ、酸化ジルコニウム、酸化ハフニウム、酸化ランタ
ン、フッ化マグネシウムや酸化スズ、酸化インジウム、
ITOなどに分散されていてもよい。 不透明な電極層は、反射層と兼用していてもよく、例
えば金、銀、アルミニウム、クロム、スズ、亜鉛、ニッ
ケル、ルテニウム、ロジウム、ステンレスなどの金属が
使用される。 以下、実施例により本発明を具体的に説明するが、本
発明はこれに限定されるものではない。 〔実施例〕 縦8cm×横15cm×厚さ1mmのガラス基板1を用意し、こ
れにITO電極層を形成し、次にホトエッチング又はレー
ザーカッティングにより上部電極6用の取出し部6aと下
部電極層2との間に溝を形成した。これにより取出し部
6aと下部電極層2とそれに連続して続く下部電極の取出
し部を形成した。 なお、ITOをマスク蒸着することにより直接にこれら
のパターンを形成してもよい。 次に酸化イリジウムと酸化スズとの混合物からなる酸
化着色性層3、イオン導電層4としての酸化タンタル層
及び還元着色性EC層5として酸化タングステン層を順に
形成した。 次に上部電極層6としてAlを蒸着した。このときAlは
既に基板1上に形成された取出し部6aと一端が接触する
ようにする。 最後に封止用ガラス板8にエポキシ樹脂封止材7を多
めに塗布しこれをECDに張り合わせ、そして放置するこ
とによりエポキシ樹脂を硬化させ、第4図に示すECDを
作製した。第4図は、一部をデホルメしてあり、正確な
寸法比を有しない。 このECDは、上部電極層6がAlで反射層を兼用してい
ることから基板1側から入射した光(L)は上部電極層
6で反射されるので、消色電圧Vb=−1.0Vを印加したと
ころ、約1秒で消色状態となり、反射率Rを測定したと
ころR=60%で、それ以上消色電圧Vbを印加し続けても
Rに変化はなかった。 それに対しEC層を着色させると、反射光は、途中で第
1EC層5と第2EC層3をそれぞれ2度透過するので吸収さ
れて反射光量が減少し、その結果反射率Rが低下する。 そこで、このECDに駆動電源(Su)から着色電圧Vc=
+1.35Vを印加すると、約3秒でR=16%に低下し、そ
れ以上着色電圧Vcを印加し続けても、Rに変化はなかっ
た。 R=16%とした後、消色電圧VB=−1.0Vを印加する
と、約1秒でR=60%に戻ったが、Vbを印加してから10
秒後に電流を測定したところ、0.6mA/Vの電流が流れ続
けており、これは1時間後に測定しても同一であった。
そこで、消色電圧Vbを印加してから10秒後に測定した電
流値(ここでは0.6mA/V)をリーク量Lと定義した。 同様にECDを100枚製造し、各ECDのリーク量Lを測定
した。その中からリーク量Lが、 0.6mA/Vのもの:第1グループ 1 mA/Vのもの:第2グループ 2 mA/Vのもの:第3グループ 3 mA/Vのもの:第4グループ 4 mA/Vのもの:第5グループ を各グループとも5枚選択した。 反射率Rは±5%変化すると、人間の目には大きく変
化したと感じるので、選択したECDについて初期値R=1
6%とした後、反射率Rが5%増加するまでの時間(リ
ーク量Lに依存する)を調べた。この結果を第1表に示
す。 この結果から、リーク量L=1mA/V以下のECDを問題な
しとし、リーク量L=2mA/V以上のものをリークがある
と判定して、リーク量L=2mA/Vのものについて各種の
駆動方法を試みた。 まず、このリーク量L=2mA/V=0.002A/VのECDについ
て、EC層に注入・排出される電荷量Qを測定したとこ
ろ、Q=0.7クローンであった。そこで、前記式1、式
2を計算したところ、 であったので、ここではtoff及びtonのように設定し
た。 次に、比較試験のため、リーク量=2mA/VのECDを3グ
ループ用意し、それらについて、 グループA :第2図に示すように着色電圧Vc=+1.35
Vを5秒印加した後、降圧してゼロとする駆動方法、 グループB :第3図に示すように着色電圧Vc=+1.35
Vを5秒印加した後、降圧してVcc=+1.2Vを印加し続け
る駆動方法、 グループC :第1図に示すように着色電圧Vc=+1.35
Vを5秒印加した後、降圧してVcc=+1.2Vを第2表の各
実施態様に従いtonの間印加する印加状態とtoffの間一
対の電極間を開放する開放状態を繰り返す駆動方法 をそれぞれ長期間試みた。 なお、上記試験の途中でQCDの劣化状態を見るため、
駆動開始から5時間後、10時間後、1日後、2日後、7
日後、14日後、1ヵ月後、2ヵ月後、6ヵ月後にそれぞ
れ反射率Rc(着色状態)と、一旦消色電圧Vb=−1.0ボ
ルトを5秒間印加して消色状態にしたときの反射率Rbを
測定した。 この結果、反射率Rc(着色状態)が当初の16%であれ
ばメモリー性がありと判定して合格とし、反射率Rc(着
色状態)が当初の16%より5%以上向上していればメモ
リー性なしと判定して不合格とし、反射率Rb(消色状
態)が当初の60%であればECDの劣化はないと判断して
合格とし、反射率Rb(消色状態)が当初の60%より5%
以上小さければEC層が着色状態のまま固定されECDが劣
化したと判断し、不合格とした。前者をメモリー性、後
者を寿命として次の第3表に「初めて不合格になるまで
の試験開始からの経過時間」を示す。 〔発明の効果〕 以上のように、本発明によれば、リークのあるECDで
あっても、着色状態とした後、一対の電極間を所定時
間toffの間開放する開放状態と、該電極間に着色電圧
Vcと同一か又はやや弱い着色電圧Vccを所定時間Tonの間
印加する印加状態とを、繰り返すことにより、メモリー
性があるように見せ掛けることができ、しかもECDの寿
命を短くしないで済む。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a leaky electrochromic device. [Prior Art] A phenomenon in which a voltage is applied to cause a reversible electrolytic oxidation or reduction reaction to cause reversible coloring is called electrochromism. An EC device (hereinafter, referred to as an EC) that sandwiches a thin film of an electrochromic (hereinafter abbreviated as EC) material exhibiting such a phenomenon between a pair of electrode layers and operates a voltage applied between the electrode layers to perform color erasure. ECD)
Attempts to use a light emitting element for a light amount control element (for example, an anti-glare mirror) or a numerical display element using 7 segments have been reported.
It has been done for over a year. For example, an ECD in which a transparent electrode layer, a two-layer film of a tungsten trioxide thin film and an insulating film (for example, silicon dioxide) (in any order) and a counter electrode layer are sequentially laminated on a glass substrate
(See Japanese Patent Publication No. 52-46098) is known as an all-solid-state ECD. When a coloring voltage Vc is applied to this ECD, the tungsten trioxide (WO 3 ) thin film is colored blue. Then this ECD
When a decoloring voltage Vb of the opposite polarity is applied to the WO 3 thin film, the blue color of the WO 3 thin film disappears and the WO 3 thin film becomes colorless. Although the mechanism of this coloring and decoloring is not elucidated in detail, it is understood that a small amount of water contained in the WO 3 thin film and the insulating film (ion conductive layer) controls the coloring and decoloring of WO 3. I have. The coloring reaction formula is estimated as follows. By the way, at least one of the pair of electrode layers directly or indirectly sandwiching the EC layer must be transparent in order to make the discoloration of the EC layer visible to the outside. In particular, in the case of a transmissive ECD, both must be transparent. Currently, transparent electrode materials include SnO 2 , In 2 O 3 , and ITO (SnO 2 and In 2 O 3
And ZnO, etc., are known, but these materials have to be thin because of their relatively poor transparency, and for this and other reasons, the ECD is placed on a substrate such as a glass or plastic plate. An example of such an ECD structure, which is usually formed, is shown in FIG. In FIG. 4, reference numeral 2 denotes a lower transparent electrode (for example, IT
O), 3 is a reversible electrolytic oxide layer or an oxidative coloring EC layer (for example, iridium oxide or hydroxide), 4 is an ion conductive layer (for example, tantalum pentoxide), and 5 is a reducing coloring EC layer (for example, WO)
3 ) and 6 denote an upper electrode and a reflection layer (for example, Al), respectively. Basically, an ECD is composed only of the laminated structure of 2 to 6, but as described above, these ECDs are made of a substrate (for example, Plate 1). Reference numeral 7 denotes a sealing material for the ECD, for example, an epoxy resin, and reference numeral 8 denotes a sealing glass plate for protection. By the way, as can be understood from the above reaction equation, the EC layer can be regarded as a kind of capacitor, the colored state can be regarded as a state where electric charge is accumulated, and the decolored state can be regarded as a state where the electric charge is empty . Therefore, once the ECD is erased, no current should flow even if the erase voltage is applied. Therefore, in the conventional driving method, as shown in FIG. 2, the coloring voltage Vc is applied for a predetermined time Tc, for example, for 2 to 10 seconds, and thereafter, the pair of electrode layers is opened. However, such an ECD is also a manufacturing problem, and depending on the ECD, (1) the ionic conductive layer, which is originally electronically insulating, allows some electrons to pass, and (2) a slight short-circuit state exists between a pair of electrode layers. For example, once the ECD is decolored, the current does not flow even if the decoloring voltage is applied, but the current actually flows (this is called leakage, The quotient of the value divided by the decoloring voltage is called the leak amount.) There are many ECDs. Therefore, what happens is that even if the application of the coloring voltage is stopped after the ECD is colored, the colored state is originally maintained (it is said to have a memory property), but the natural state is relatively quick. There was a problem that the color was erased (there was no memory property). Therefore, conventionally, as shown in FIG. 3, a predetermined coloring voltage Vc is applied for a predetermined time Tc, for example, for 2 to 10 seconds to obtain a predetermined coloring state, and then a coloring voltage equal to or weaker than Vc. A driving method for maintaining a constant colored state by continuously applying Vcc has been proposed. However, the proposed driving method has a new problem in that the ECD is quickly deteriorated and its life is shortened. Accordingly, it is an object of the present invention to provide a driving method that makes a leaky ECD seem to have a memory property and does not shorten the life of the ECD. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a method for manufacturing an electrochromic device having at least an electrochromic layer sandwiched between a pair of electrode layers, and a pair of electrode layers of an electrochromic device having a leak. after a predetermined colored state by applying a predetermined coloring voltage V c, and an open state to open between the electrode layers a predetermined time t off, the coloring voltage V c of the same or slightly weak coloration to the electrode layers In the method for driving an electrochromic device that maintains a constant colored state by repeating the application state in which the voltage Vcc is applied for a predetermined time t on , the injection is performed until the electrochromic device is brought into a predetermined colored state. that the charge amount Q (unit: clone), the coloring voltage V and c of opposite polarity decoloration voltage V b (unit: volt) of
The electrochromic device of the leakage amount of L (amperes) in the after applied 10 seconds when a, wherein the predetermined time t off the predetermined time t on the formula 1: t off × L / Q <3/100 formula 2: A driving method of an electrochromic device, wherein 1/100 <t on / t off <1/3 is satisfied. "I will provide a. Note that t on / (t on + t off )
Is called a duty ratio. [Effect] The laminated structure of the ECD according to the present invention is not particularly limited, but the structure of the solid-type ECD may be, for example, an electrode layer / EC layer / ion conductive layer / electrode layer. 5 such as layer structure, electrode layer / reducing coloring EC layer / ion conductive layer / reversible electrolytic oxidation layer or oxidizing coloring EC layer / electrode layer
The layer structure is mentioned. As a material of the transparent electrode, for example, SnO 2 , In 2 O 3 , ITO, or the like is used. Such an electrode layer is generally formed by a vacuum thin film forming technique such as vacuum deposition, ion plating, and sputtering. (Reduction coloring) WO 3 , MoO 3 and the like are generally used as the EC layer. As the ion conductive layer, for example, silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, magnesium fluoride, and the like are used. Although these material thin films are insulators for electrons depending on the manufacturing method, they are good conductors for protons (H + ) and hydroxy ions (OH ). A cation is required for the color decoloring reaction of the EC layer, and it is necessary to include H + and Li + ions in the EC layer and the like. H + ions need not be ion from the beginning, it may be the H + ions when a voltage is applied Shojire, therefore H +
Water may be contained instead of ions. This water is very small and sufficient, and often discolors even water that naturally enters from the atmosphere. Either the EC layer or the ionic conductive layer may be on the upper side or the lower side. Further, a reversible electrolytic oxidation layer (or an oxidative coloring type EC layer) or a catalyst layer may be provided on the EC layer with an ion conductive layer interposed therebetween. Examples of such a layer include iridium oxide or hydroxide, nickel, chromium, vanadium, ruthenium, rhodium, and the like. These substances are substances constituting an ion conductive layer or a transparent electrode layer, such as silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, magnesium fluoride, tin oxide, and indium oxide. ,
It may be dispersed in ITO or the like. The opaque electrode layer may also serve as the reflection layer, and for example, a metal such as gold, silver, aluminum, chromium, tin, zinc, nickel, ruthenium, rhodium, and stainless steel is used. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. [Example] A glass substrate 1 having a length of 8 cm × a width of 15 cm × a thickness of 1 mm was prepared, an ITO electrode layer was formed thereon, and then an extraction portion 6 a for the upper electrode 6 and a lower electrode layer were formed by photoetching or laser cutting. 2 and a groove was formed. This takes out the unit
6a, the lower electrode layer 2, and a portion for taking out the lower electrode continued from the lower electrode layer 2 were formed. Note that these patterns may be directly formed by depositing ITO using a mask. Next, an oxide coloring layer 3 made of a mixture of iridium oxide and tin oxide, a tantalum oxide layer as an ion conductive layer 4 and a tungsten oxide layer as a reduction coloring EC layer 5 were sequentially formed. Next, Al was deposited as the upper electrode layer 6. At this time, Al is made to contact one end with the extraction portion 6a already formed on the substrate 1. Finally, a relatively large amount of the epoxy resin sealing material 7 was applied to the sealing glass plate 8, this was adhered to the ECD, and the epoxy resin was cured by leaving it to stand, thereby producing the ECD shown in FIG. FIG. 4 is partially deformed and does not have an exact dimensional ratio. In this ECD, the light (L) incident from the substrate 1 side is reflected by the upper electrode layer 6 because the upper electrode layer 6 also serves as a reflection layer of Al, so that the decoloring voltage Vb = −1.0 V is applied. When the voltage was applied, the color was decolored in about 1 second. When the reflectance R was measured, R was 60%. Even when the decoloring voltage Vb was further applied, R did not change. On the other hand, if the EC layer is colored, the reflected light
Since the light passes through the 1EC layer 5 and the second EC layer 2 twice, it is absorbed and the amount of reflected light decreases, and as a result, the reflectance R decreases. Then, the coloring voltage Vc =
When +1.35 V was applied, R was reduced to 16% in about 3 seconds. Even if the coloring voltage Vc was further applied, R was not changed. When the decoloring voltage VB = -1.0 V was applied after setting R = 16%, the value returned to R = 60% in about 1 second.
When the current was measured two seconds later, a current of 0.6 mA / V continued to flow, which was the same even after one hour.
Therefore, the current value (0.6 mA / V in this case) measured 10 seconds after the application of the decoloring voltage Vb was defined as the leak amount L. Similarly, 100 ECDs were manufactured, and the leakage amount L of each ECD was measured. Among them, the leak amount L is 0.6 mA / V: 1st group 1 mA / V: 2nd group 2 mA / V: 3rd group 3 mA / V: 4th group 4 mA / V: The fifth group was selected for each group. When the reflectance R changes by ± 5%, the human eye feels that it has changed greatly. Therefore, the initial value R = 1 for the selected ECD.
After 6%, the time until the reflectance R increased by 5% (depending on the leak amount L) was examined. Table 1 shows the results. From this result, it is determined that there is no problem with the ECD having the leak amount L = 1 mA / V or less, and it is determined that there is a leak when the leak amount L is 2 mA / V or more. The driving method was tried. First, with respect to the ECD having the leak amount L = 2 mA / V = 0.002 A / V, the charge amount Q injected and discharged into the EC layer was measured, and it was found that Q = 0.7 clone. Therefore, when Equations 1 and 2 were calculated, Therefore, here, t off and t on were set. Next, for comparison, three groups of ECDs each having a leak amount of 2 mA / V were prepared, and the group A: coloring voltage Vc = + 1.35 as shown in FIG.
A drive method in which V is applied for 5 seconds and then the voltage is reduced to zero. Group B: As shown in FIG. 3, coloring voltage Vc = + 1.35
A driving method in which after V is applied for 5 seconds, the voltage is stepped down and Vcc = + 1.2 V is continuously applied, Group C: coloring voltage Vc = + 1.35 as shown in FIG.
After the V is applied for 5 seconds, driving repeating open state to open the inter buck to Vcc = + 1.2V pair between the application state and t off is applied between t on in accordance with the embodiment of Table 2 electrode Each method was tried for a long time. In order to check the deterioration of QCD during the above test,
5 hours, 10 hours, 1 day, 2 days, 7
Day, 14 days, 1 month, 2 months, and 6 months later, the reflectance Rc (colored state) and the reflectance when the color was erased by applying a decoloring voltage Vb = -1.0 volt for 5 seconds. Rb was measured. As a result, if the reflectivity Rc (colored state) is 16% of the initial value, it is determined that there is a memory property, and it is judged as pass. If the reflectivity Rc (colored state) is improved by 5% or more from the initial 16%. If there is no memory property, it is rejected. If the reflectance Rb (decolored state) is 60% of the initial value, it is judged that there is no deterioration of the ECD, and the result is passed. The reflectance Rb (decolored state) is the initial value. 5% from 60%
If it is smaller than the above, it was judged that the EC layer was fixed in the colored state and the ECD was deteriorated, and was rejected. Table 3 below shows “elapsed time from the start of the test until the first failure”, with the former being the memory property and the latter being the life. [Effects of the Invention] As described above, according to the present invention, even in the case of an ECD having a leak, after being in a colored state, an open state in which a pair of electrodes is opened for a predetermined time t off , Coloring voltage between
By repeating the application state in which the same or slightly weaker coloring voltage Vcc as Vc is applied for a predetermined time T on , it is possible to make it appear that there is a memory property, and it is not necessary to shorten the life of the ECD.

【図面の簡単な説明】 第1図は、本発明の1実施例にかかる駆動方法を説明す
る着色電圧のタイムチャートである。 第2〜3図は、従来の駆動方法を説明する着色電圧のタ
イムチャートである。 第4図は、本発明の1実施例に使用したECDの垂直断面
を示す概念図である。 〔主要部分の符号の説明〕 1……ガラス基板 2……下部透明電極層 3……酸化着色性EC層 4……イオン導電層 5……還元着色性EC層 6……上部電極層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a time chart of a coloring voltage for explaining a driving method according to an embodiment of the present invention. 2 and 3 are time charts of a coloring voltage for explaining a conventional driving method. FIG. 4 is a conceptual diagram showing a vertical cross section of an ECD used in one embodiment of the present invention. [Description of Signs of Main Parts] 1 ... Glass substrate 2 ... Lower transparent electrode layer 3 ... Oxidative coloring EC layer 4 ... Ion conductive layer 5 ... Reduction coloring EC layer 6 ... Top electrode layer

Claims (1)

(57)【特許請求の範囲】 1.少なくともエレクトロクロミック層を一対の電極層
で挟持してなり、リークを有するエレクトロクロミック
装置の一対の電極層間に、所定の着色電圧Vcを印加して
所定の着色状態とした後、該電極層間を所定時間toff
間開放する開放状態と、該電極層間に前記着色電圧Vc
同一か或いはやや弱い着色電圧Vccを所定時間tonの間印
加する印加状態とを繰り返すことにより、一定の着色状
態を保持するエレクトロクロミック装置の駆動方法にお
いて、 前記エレクトロクロミック装置を所定の着色状態とする
までに注入される電荷量Q(単位:クーロン)、前記着
色電圧Vcとは逆極性の消色電圧Vb(単位:ボルト)を10
秒間印加した後における前記エレクトロクロミック装置
のリーク量をL(単位:アンペア)とするとき、前記所
定時間toffと前記所定時間tonが 式1:toff×L/Q<3/100 式2:1/100<ton/toff<1/3 を満足することを特徴とするエレクトロクロミック装置
の駆動方法。
(57) [Claims] It is sandwiched between at least the electrochromic layer in the pair of electrode layers, a pair of electrode layers of the electrochromic device having a leak after a predetermined colored state by applying a predetermined coloring voltage V c, the electrode layers By repeating an open state of opening for a predetermined time t off and an application state of applying a coloring voltage V cc that is the same as or slightly weaker than the coloring voltage V c between the electrode layers for a predetermined time t on , the method of driving an electrochromic device holding colored state, the electrochromic Mick device is injected until a predetermined colored state charge amount Q (unit: coulomb), decoloration of opposite polarity from that of the colored voltage V c Voltage V b (unit: volt) is 10
Leakage quantity L (unit: ampere) of the electrochromic device in after applying seconds when the said predetermined time t off and the predetermined time t on the formula 1: t off × L / Q <3/100 Equation 2 : A method for driving an electrochromic device, wherein 1/100 <t on / t off <1/3 is satisfied.
JP62042248A 1987-02-25 1987-02-25 Driving method of electrochromic device Expired - Fee Related JP2696827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042248A JP2696827B2 (en) 1987-02-25 1987-02-25 Driving method of electrochromic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042248A JP2696827B2 (en) 1987-02-25 1987-02-25 Driving method of electrochromic device

Publications (2)

Publication Number Publication Date
JPS63208830A JPS63208830A (en) 1988-08-30
JP2696827B2 true JP2696827B2 (en) 1998-01-14

Family

ID=12630724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042248A Expired - Fee Related JP2696827B2 (en) 1987-02-25 1987-02-25 Driving method of electrochromic device

Country Status (1)

Country Link
JP (1) JP2696827B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US20130271813A1 (en) 2012-04-17 2013-10-17 View, Inc. Controller for optically-switchable windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US10690540B2 (en) 2015-10-06 2020-06-23 View, Inc. Multi-sensor having a light diffusing element around a periphery of a ring of photosensors
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11054792B2 (en) 2012-04-13 2021-07-06 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US8705162B2 (en) 2012-04-17 2014-04-22 View, Inc. Controlling transitions in optically switchable devices
WO2013059674A1 (en) 2011-10-21 2013-04-25 View, Inc. Mitigating thermal shock in tintable windows
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
EP3223532B1 (en) 2012-04-13 2019-10-09 View, Inc. Applications for controlling optically switchable devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
CA3156883A1 (en) 2014-03-05 2015-09-11 View, Inc. Monitoring sites containing switchable optical devices and controllers
JP6696287B2 (en) * 2015-05-25 2020-05-20 株式会社リコー Driving method of electrochromic device and electrochromic device
TWI823168B (en) 2015-07-07 2023-11-21 美商唯景公司 Viewcontrol methods for tintable windows
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
WO2017189307A2 (en) 2016-04-29 2017-11-02 View, Inc. Calibration of electrical parameters in optically switchable windows
US11493819B2 (en) 2017-04-26 2022-11-08 View, Inc. Displays for tintable windows
TW202206925A (en) 2020-03-26 2022-02-16 美商視野公司 Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
CN114326243B (en) * 2021-11-30 2023-04-07 惠州市广麟材耀科技有限公司 Electrochromic aluminum-plastic film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104530B2 (en) * 1987-02-05 1995-11-13 株式会社村上開明堂 EC antiglare mirror driving method and driving circuit thereof

Also Published As

Publication number Publication date
JPS63208830A (en) 1988-08-30

Similar Documents

Publication Publication Date Title
JP2696827B2 (en) Driving method of electrochromic device
US5148306A (en) Electrochromic device with specific resistances
US4824221A (en) Electrochromic device
WO2000017701A2 (en) Electrochromic device comprising tandem layers of cathodic/anodic materials
JPH0728099A (en) Fully solid state type electrochromic element and its production
EP0818706A2 (en) Switchable devices with an optical cavity
JPH0693067B2 (en) Dimmer
JPH04318525A (en) Reflection type electrochromic element
JPH0820648B2 (en) EC device with extraction electrodes on the end face
JP2567786Y2 (en) Electrochromic device
JP2701578B2 (en) Manufacturing method of resin sealing element
JPH07175090A (en) Electrochromic ophthalmic lens
JPS6186733A (en) Electrochromic element
JP2722505B2 (en) Method for manufacturing sealed electrochromic device
JP2725352B2 (en) Electrochromic device
JP2650258B2 (en) Electrochromic device having sealing structure
JP2505006Y2 (en) Electrochromic device
JP2600830B2 (en) Electrochromic element with increased weather resistance
JP2569439B2 (en) Manufacturing method of reflective electrochromic device
JPH02208638A (en) Uniformly colored electrochromic device
JPH06289435A (en) Electrochromic element
JPH11242246A (en) Electrochromic element and its production
JPS63280223A (en) Method for serial driving of plural ec elements
JPH10197907A (en) Electrochromic element
JP2936185B2 (en) Method for manufacturing electrochromic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees