JP2677940B2 - Highly fatigue and corrosion resistant duplex stainless steel wire rope - Google Patents

Highly fatigue and corrosion resistant duplex stainless steel wire rope

Info

Publication number
JP2677940B2
JP2677940B2 JP5027729A JP2772993A JP2677940B2 JP 2677940 B2 JP2677940 B2 JP 2677940B2 JP 5027729 A JP5027729 A JP 5027729A JP 2772993 A JP2772993 A JP 2772993A JP 2677940 B2 JP2677940 B2 JP 2677940B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel wire
wire rope
duplex stainless
rope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5027729A
Other languages
Japanese (ja)
Other versions
JPH06240410A (en
Inventor
幸男 山岡
鬼子雄 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP5027729A priority Critical patent/JP2677940B2/en
Priority to CA002093090A priority patent/CA2093090C/en
Priority to TW082102399A priority patent/TW259820B/zh
Priority to KR1019930005273A priority patent/KR960005602B1/en
Priority to EP93107297A priority patent/EP0576802B1/en
Priority to DE69311636T priority patent/DE69311636T2/en
Priority to ES93107297T priority patent/ES2105001T3/en
Priority to AU39959/93A priority patent/AU662059C/en
Publication of JPH06240410A publication Critical patent/JPH06240410A/en
Priority to US08/357,994 priority patent/US5545482A/en
Application granted granted Critical
Publication of JP2677940B2 publication Critical patent/JP2677940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高疲労強度および高耐
蝕性を持つ2相ステンレス鋼ワイヤロープに関する。
FIELD OF THE INVENTION The present invention relates to a duplex stainless steel wire rope having high fatigue strength and high corrosion resistance.

【0002】[0002]

【従来の技術】従来より、ワイヤロープの分野におい
て、SUS304,SUS316で知られているステン
レス鋼製ワイヤロープは、疲労強度が低くて繰り返し曲
げなどを頻繁に受けるような場合は、短期間に断線が発
生して寿命が短いため、その高耐蝕という特長が活かし
切れなく、所謂、動索での使用には適しないとして、単
に物を吊るための静索に限られて適用分野が極めて限定
されていた。
2. Description of the Related Art Conventionally, in the field of wire ropes, stainless steel wire ropes known as SUS304 and SUS316 are broken in a short period of time when fatigue strength is low and repeated bending is frequently performed. Since it has a short life and its high corrosion resistance cannot be fully utilized, it is not suitable for use in so-called moving ropes, and its application field is extremely limited only to static ropes for hanging objects. Was there.

【0003】[0003]

【発明が解決しようとする課題】一方、このステンレス
鋼製ワイヤロープに対して、高炭素鋼製のワイヤロープ
は、疲労強度が高く繰り返し曲げに対しても寿命が長い
ので静索はもとより、動索にも多用されており、人命を
預かるエレベータ用ロープなどの重要保安部材でさえ
も、この高炭素鋼製のワイヤロープの独占的使用が法的
に規定されている。しかし高炭素鋼製のワイヤロープ
は、ステンレス鋼製ワイヤロープとは対照的に耐蝕性が
劣るという欠点を有していて、防蝕が十分でないと大気
中でも腐食ピットが発生し、疲労強度が大きく低下する
場合がある。
On the other hand, in contrast to this stainless steel wire rope, the wire rope made of high carbon steel has high fatigue strength and long life even after repeated bending. It is also widely used for ropes, and even for important safety members such as elevator ropes that save human life, the exclusive use of this high carbon steel wire rope is legally prescribed. However, the wire rope made of high carbon steel has the drawback of being inferior in corrosion resistance to the wire rope made of stainless steel.If corrosion resistance is not sufficient, corrosion pits will occur even in the atmosphere and fatigue strength will be greatly reduced. There is a case.

【0004】上述するように、ステンレス鋼製ワイヤロ
ープは耐蝕性は良いが、疲労寿命が短く、一方、高炭素
鋼製ワイヤロープは疲労寿命は長いが耐蝕性に劣ると言
う互いに長所短所を相反していることは良く知られると
ころであって、かかる現状に鑑みて本発明は完成される
に至ったものであって、本発明の目的とするところは、
疲労寿命および耐蝕性の両面で格段に優れてなる長寿命
が図れるステンレス鋼ワイヤロープを提供することによ
って、動索に対する安全性、品質保証性能の倍加に資せ
しめようとする点にある。
As described above, the stainless steel wire rope has good corrosion resistance, but has a short fatigue life. On the other hand, the high carbon steel wire rope has a long fatigue life but poor corrosion resistance. It is well known that the present invention has been completed in view of the current situation, and the object of the present invention is to
By providing a stainless steel wire rope that has a significantly long fatigue life and corrosion resistance and a long service life, it is possible to contribute to safety for moving ropes and double quality assurance performance.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明は、C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、P:0.04%以下、S:
0.03%以下、Cr18.0〜30.0%、Ni3.
0〜8.0%、Mo0.1〜3.0%、残部がFeであ
って、フェライト量を30.0〜80.0%としてなる
2相ステンレス鋼線を伸線加工度40〜97%に抑えて
平均細長比(MR 値)が4〜20にコントロールされ、
更に150〜600℃の時効処理が与えられてなること
を特徴とする高耐疲労・耐蝕性の2相ステンレス鋼ワイ
ヤロープである。
The present invention has the following configuration to achieve the above object. That is, in the present invention, C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.04% or less, S:
0.03% or less, Cr18.0 to 30.0%, Ni3.
0-8.0%, Mo 0.1-3.0%, the balance is Fe, and a duplex stainless steel wire having a ferrite content of 30.0-80.0% has a wire drawing workability of 40-97%. And the average slenderness ratio (M R value) is controlled to 4 to 20,
Further, it is a high-fatigue / corrosion-resistant duplex stainless steel wire rope characterized by being subjected to an aging treatment at 150 to 600 ° C.

【0006】[0006]

【作用】本発明に従えば、上述の如き化学成分範囲の2
相ステンレス鋼線を伸線加工して、所定の線径に仕上げ
たものを撚り線し、更に時効処理を行うことによって製
作したワイヤロープであって、その繰り返し曲げ疲労強
度が、2相ステンレス鋼線のフェライト相とオーステナ
イト相の含有比率で示される相バランスおよびそれぞれ
の相の細長比で示される延伸度合並びに時効硬化に密接
に関係しているという、従来知られていなかった新規な
知見に基づいて本発明はここに完成されるに至ったもの
である。
According to the present invention, the chemical composition range of 2 as described above is used.
A wire rope produced by drawing a duplex stainless steel wire to a predetermined wire diameter, twisting it, and then subjecting it to an aging treatment, the duplex bending fatigue strength of which is duplex stainless steel. Based on a novel hitherto unknown fact that is closely related to the phase balance indicated by the content ratio of the ferrite phase and austenite phase of the wire and the stretching degree indicated by the slenderness ratio of each phase and age hardening. The present invention has been completed here.

【0007】図1は、2相ステンレス鋼線の組織を示す
拡大図である。オーステナイト相とフェライト相が混合
した図1の如き2相組織において、各相の細長比とは、
オーステナイトの細長比γR が、γR =γL /γW で、
フェライトの細長比αR が、αR =αL /αW でそれぞ
れ表される。各相は相互に混在した2相組織であるか
ら、材料全体として現れる特性は、これらの平均的なも
のに関係すると当然考えられるので、平均細長比MR
しては、MR =Vr ・γR +Vα・αR で表すことがで
きる。ここで、Vr はオーステナイトの体積率、Vαは
フェライトの体積率である。
FIG. 1 is an enlarged view showing the structure of a duplex stainless steel wire. In the two-phase structure as shown in FIG. 1 in which the austenite phase and the ferrite phase are mixed, the slenderness ratio of each phase is
The austenite slenderness ratio γ R is given by γ R = γ L / γ W ,
The slenderness ratio α R of the ferrite is expressed by α R = α L / α W. Since each phase has a two-phase structure mixed with each other, the characteristics appearing as the whole material are naturally considered to be related to these averages, so that the average slenderness ratio M R is M R = V r · γ It can be represented by R + Vα · α R. Here, V r is the volume ratio of austenite, and V α is the volume ratio of ferrite.

【0008】図2には、2相ステンレス鋼線の伸線加工
度(%)と平均細長比MR との関係がグラフで示され
る。また、図3には、フェライト量(体積率:α)が5
0%の組織を持つ2相ステンレス鋼線の時効硬化特性が
グラフで示される。図2に図示のように平均細長比MR
は、伸線加工前は等軸晶のため1であるが、伸線加工と
共に各相が伸線方向に細長く引き伸ばされるので大きく
なり、ほぼ直線的に増大する。一方、図3に示すよう
に、150〜600℃の範囲の温度処理で特に強度(耐
力)上昇が著しく、しかも伸線加工度は40%以上は必
要なことが判る。この傾向は、フェライト体積率:αの
大小にかかわらず同じである。
FIG. 2 is a graph showing the relationship between the wire drawing workability (%) of the duplex stainless steel wire and the average slenderness ratio M R. Further, in FIG. 3, the amount of ferrite (volume ratio: α) is 5
The age-hardening properties of a duplex stainless steel wire with 0% microstructure are shown graphically. As shown in FIG. 2, the average slenderness ratio M R
Is 1 because it is an equiaxed crystal before wire drawing, but becomes large because each phase is elongated in the wire drawing direction along with wire drawing, and increases almost linearly. On the other hand, as shown in FIG. 3, it can be seen that the strength (proof stress) is remarkably increased by the temperature treatment in the range of 150 to 600 ° C., and that the wire drawing workability is required to be 40% or more. This tendency is the same regardless of the ferrite volume ratio: α.

【0009】しかして本発明者等によって、繰り返し曲
げ疲労強度が、このMR およびフェライトの体積率並び
に時効温度との間に明白な関係があることを種々実験を
重ねた結果に基づいて見出した。図4には、ステンレス
鋼ワイヤロープの平均細長比MR と断線率が10%にな
るまでの繰り返し曲げ回数との関係が、フェライトの体
積率をパラメータとして時効処理有りと無しとの場合に
ついてグラフで示される。即ち、図4中には、SUS3
04オーステナイトステンレスロープおよび高炭素鋼ロ
ープの寿命レベルも比較示しているが、MR が4〜20
の値を示し、フェライト量が30から80%の組織を持
ち、更に、400℃で時効処理されたステンレス鋼ワイ
ヤロープは、疲労寿命が長いと言われている高炭素鋼ワ
イヤロープの値を上回っていることが判り、これは従来
見出されていない新たな知見である。なお、同図より明
らかなように、MR が4を下回り、または20を上回っ
ていて、フェライト量が30%を下回り、または80%
を上回っている条件では、寿命は短くなっている。
[0009] By Thus the present inventors, repeated bending fatigue strength was found on the basis of the result of various experiments that there is a clear relationship between the volume ratio and aging temperature of the M R and ferrite . FIG. 4 is a graph showing the relationship between the average slenderness ratio M R of the stainless steel wire rope and the number of repeated bendings until the disconnection rate becomes 10%, with and without the volume ratio of ferrite as a parameter. Indicated by. That is, in FIG. 4, SUS3
The life levels of 04 austenitic stainless steel rope and high carbon steel rope are also shown in comparison, but M R is 4 to 20.
The stainless steel wire rope that has a structure with a ferrite content of 30 to 80% and is aged at 400 ° C exceeds the value of the high carbon steel wire rope that is said to have a long fatigue life. This is a new finding that has not been found in the past. As is clear from the figure, M R is below 4 or above 20 and the ferrite amount is below 30% or 80%.
The life is shortened under the conditions above.

【0010】さらに、時効の結果としては、図3に対応
して強度上昇が小さい150℃以下及び軟化が始まる6
00℃以上は硬化がないことが判った。また、時効処理
時間としては、1分あれば時効硬化は充分である。余り
長くなると経済面でコスト上昇につながるため、1時間
を限度とすることが好ましい。
Further, as a result of the aging, corresponding to FIG.
It was found that there was no curing above 00 ° C. Also, as the aging treatment time is 1 minute, the age hardening is sufficient. If it is too long, the cost will increase economically, so it is preferable to limit it to one hour.

【0011】ところで、MR が4〜20で、疲労寿命が
長いということは、図2より伸線加工度も限定され、該
伸線加工度40〜97%に相当する。また、この2相ス
テンレス鋼ワイヤロープは、Cr を18〜30%、Mo
を0.1〜3.0%含有しているから、耐蝕性も優れて
いることは自明であり、従って、従来品では類を見ない
疲労寿命の長い高耐蝕ワイヤロープが実現可能となるも
のである。
By the way, the fact that M R is 4 to 20 and the fatigue life is long means that the wire drawing workability is also limited from FIG. 2 and corresponds to the wire drawing workability of 40 to 97%. Further, the two-phase stainless steel wire rope, 18 to 30% of C r, M o
Since it contains 0.1 to 3.0% of Al, it is obvious that it is also excellent in corrosion resistance. Therefore, it is possible to realize a highly corrosion-resistant wire rope with a long fatigue life, which is unmatched by conventional products. Is.

【0012】次いで、各成分についてみると、以下に述
べるとおりである。 C:Cが多いと1050℃からの急冷却中にも炭化物が
粒界に析出し易くなって耐蝕性を低下させるところか
ら、0.1%以下に留める必要がある。 Si :Si は脱酸元素であり、或る適量は必要である
が、多いと鋼質を脆化させるので、1%以下にする必要
がある。 Mn :Mn は脱硫元素であり、或る量は必要であるが、
多くなると、加工硬化が顕著になり、加工性を損なうの
で、1.5%以下とする。 P:通常の溶製上、経済的に低減できるレベルの0.0
4%以下とする。 S:Sも上記と同じ理由で0.03%以下とする。 Cr :Cr は18%以下では耐蝕性が劣るが、30%を
越えると熱間加工性が劣化し、経済性も悪くなり、ま
た、2相組織とするためにCr が多すぎると、その相バ
ランス上、Ni も多く添加する必要が生じ、この点でも
不利であるので、18〜30%と限定する。 Ni :2相組織とするために、上記のCr 量に対応して
i は3〜8%が必要である。 Mo :0.1%あれば耐蝕性は向上し、量が増加するに
つれて効果は著しくなるが、高価な元素であり、3%あ
れば十分である。
Next, the respective components will be described below. C: If the amount of C is large, carbides are likely to precipitate at the grain boundaries even during rapid cooling from 1050 ° C., which lowers the corrosion resistance, so it is necessary to keep it to 0.1% or less. S i : S i is a deoxidizing element, and a certain suitable amount is necessary, but if it is large, it causes embrittlement of the steel quality, so it must be 1% or less. Mn : Mn is a desulfurizing element, a certain amount is necessary,
If it increases, the work hardening becomes remarkable, and the workability is impaired. P: 0.0, which is a level that can be economically reduced on ordinary smelting.
4% or less. S: S is also 0.03% or less for the same reason as above. Cr : If Cr is less than 18%, the corrosion resistance is inferior, but if it exceeds 30%, the hot workability is deteriorated, the economical efficiency is deteriorated, and if the amount of Cr is too large to form a two-phase structure. , the phase balance on, N i much it is necessary to be added, since also in this respect is disadvantageous, to limit the 18-30%. N i: To a 2-phase structure, N i correspond to the C r of the is necessary 3-8%. Mo : If 0.1%, the corrosion resistance is improved, and the effect becomes remarkable as the amount increases, but it is an expensive element, and 3% is sufficient.

【0013】以上の点を総合すると、本発明は、C:
0.1%以下、Si:1.0%以下、Mn:1.5%以
下、P:0.04%以下、S:0.03%以下、Cr1
8.0〜30.0%、Ni3.0〜8.0%、Mo0.
1〜3.0%、残部がFeであって、フェライト量を3
0.0〜80.0%としてなる2相ステンレス鋼線を伸
線加工度40〜97%に抑えて平均細長比(MR 値)が
4〜20にコントロールされ、これをワイヤロープに成
形後、更に150〜600℃で時効処理される構成が必
須の要件となる。
Summarizing the above points, the present invention provides C:
0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.04% or less, S: 0.03% or less, Cr1
8.0-30.0%, Ni3.0-8.0%, Mo0.
1 to 3.0%, the balance is Fe, and the amount of ferrite is 3
By controlling the wire drawing workability of the duplex stainless steel wire of 0.0 to 80.0% to 40 to 97%, the average slenderness ratio (M R value) is controlled to 4 to 20, and this is formed into a wire rope. Further, the constitution that is aged at 150 to 600 ° C. is an essential requirement.

【0014】[0014]

【実施例】本発明に係る2相ステンレス鋼ワイヤロープ
の特有の効果を明らかにするべく、比較ロープとの特性
対比を行った。即ち、フェライト体積率が20〜85%
の間で異なる2相ステンレス鋼線5種を、圧延を経て
5.5mmの線材とし、中間伸線と中間焼鈍を繰り返し
て最終素線径0.33mmに仕上げ、その後、7×19
の構成のロープに撚り加工して外径5mmのワイヤロー
プに仕上げた。この場合、中間焼鈍および最終伸線前の
焼鈍温度は何れも1050℃とした。また、各鋼種毎に
伸線加工度を30,50,70,90,98.5%と変
化させてMR 値も変化させた。従って、各加工ごとに最
終伸線前の中間線径は異なっている。伸線加工はコーン
型の段車伸線機を用い、伸線加工度に応じて3〜20回
伸とし、伸線速度は100〜350m/分で行った。外
径5mmのワイヤロープは、続いて各々100℃,40
0℃,650℃で時効処理を行った。
EXAMPLE In order to clarify the unique effect of the duplex stainless steel wire rope according to the present invention, the characteristics of the wire rope were compared with those of the comparative rope. That is, the ferrite volume ratio is 20 to 85%
5 types of duplex stainless steel wires that differ between the above are rolled into 5.5 mm wire rods, and intermediate wire drawing and intermediate annealing are repeated to finish the final wire diameter of 0.33 mm, and then 7 × 19
The rope having the above structure was twisted to obtain a wire rope having an outer diameter of 5 mm. In this case, the annealing temperatures before the intermediate annealing and the final wire drawing were both 1050 ° C. Further, the wire drawing workability was changed to 30, 50, 70, 90, 98.5% for each steel type, and the M R value was also changed. Therefore, the intermediate wire diameter before the final wire drawing is different for each processing. The wire drawing was carried out by using a cone-type wheel drawing machine with 3 to 20 draws depending on the wire drawing degree, and the wire drawing speed was 100 to 350 m / min. The wire rope with an outer diameter of 5 mm is then 40 ° C and 40 ° C respectively.
Aging treatment was performed at 0 ° C and 650 ° C.

【0015】比較のための一般材のSUS304のロー
プについても同様な方法で最終素線径0.33mmと
し、7×19の構成のロープに撚り加工して外径5mm
のワイヤロープに仕上げた。SUS304の焼鈍温度は
1150℃である。一方、一般材の高炭素鋼線ロープは
中間伸線とソルトパテンティングを繰り返して、上記と
同様に最終素線径0.33mmに仕上げ、撚り加工して
7×19の構成の外径5mmのワイヤロープを製作し
た。これらのワイヤロープの成分、平均細長比(M
R 値)、破断荷重を下記[表1]に示す。
For comparison, a standard material of SUS304 raw material
With the same method, the final wire diameter is 0.33 mm.
Then, twist the rope into a 7 x 19 rope and have an outer diameter of 5 mm.
Finished into a wire rope. The annealing temperature of SUS304 is
It is 1150 ° C. On the other hand, the high carbon steel wire rope of general material
Repeat the intermediate wire drawing and salt patenting
Similarly, finish the final wire diameter to 0.33 mm and twist it.
We made a wire rope with an outer diameter of 5 mm and a structure of 7 × 19.
Was. Components of these wire ropes, average slenderness ratio (M
RValues) and breaking loads are shown in [Table 1] below.

【0016】これらのワイヤロープについて、さらに繰
り返し曲げ疲労テストを行った。この繰り返し曲げ疲労
テストは、試料の線に加える荷重(P)をロープ破断荷
重の20%として、D/d=40の試験シーブ部(但し
D:シーブ溝径、d:ロープ径)の約半周通過繰り返し
回数と、素線の断線数との関係を求め、ロープの総線数
の10%の断線数が現れるまでの繰り返し回数をそのロ
ープの寿命と定義した。その結果は、下記[表2]に示
される。なお、[表2]には[表1]における各種ロー
プに対応した疲労寿命および3%NaCl塩水噴霧テス
トによる赤錆発生までの時間がそれぞれ示される。 (以下次頁に続く)
Bending fatigue tests were repeated on these wire ropes. In this repeated bending fatigue test, the load (P) applied to the wire of the sample was set to 20% of the rope breaking load, and about half the circumference of the test sheave part (D: sheave groove diameter, d: rope diameter) with D / d = 40. The relationship between the number of repeated passages and the number of wire breakages was determined, and the number of repetitions until 10% of the total number of wire ropes appeared was defined as the life of the rope. The results are shown in [Table 2] below. [Table 2] shows the fatigue life corresponding to each rope in [Table 1] and the time until the occurrence of red rust by the 3% NaCl salt spray test. (Continued on next page)

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[表2]より明らかな通り、フェライト体
積率が30〜80%で、伸線加工度を40〜97%に限
定してMR 値を4〜20にコントロールし、更に、時効
処理を150〜600℃で行えば、10%断線疲労寿命
は、現在において該疲労寿命が最も長く信頼性が高いと
言われている高炭素鋼ワイヤロープの寿命を大幅に上回
る値が得られるばかりでなく、赤錆発生までの時間がS
US304よりも長くなって耐蝕性も非常に優れた2相
ステンレス鋼ワイヤロープが得られていることが判る。
[0019] [Table 2] than As apparent, a ferrite volume fraction of 30% to 80%, the M R value was controlled to 4 to 20 to limit the drawing of the 40 to 97%, further, aging treatment If it is carried out at 150 to 600 ° C., the 10% disconnection fatigue life is not only a value that is much longer than the life of the high carbon steel wire rope which is said to have the longest fatigue life and high reliability at present. No, the time until the occurrence of red rust is S
It can be seen that a duplex stainless steel wire rope that is longer than US 304 and has excellent corrosion resistance is obtained.

【0020】一方、フェライト体積率が30%未満のロ
ープA,85%のロープEの場合は、耐蝕性はSUS3
04と同等かまたは上回る値が得られるものの、疲労寿
命については、たとえMR 値が4〜20の範囲を示して
も高炭素鋼ワイヤロープの値より劣っていることが判
り、これは本発明の範囲に包含され得ない例であること
は明らかである。
On the other hand, in the case of the rope A having a ferrite volume ratio of less than 30% and the rope E having a ferrite volume ratio of 85%, the corrosion resistance is SUS3.
Although 04 and is equal to or greater than the value obtained for the fatigue life, it can be seen that the even M R value is inferior to the value of the high carbon steel wire rope even indicate the range of 4 to 20, which is the invention It is clear that this is an example that cannot be included in the range of.

【0021】[0021]

【発明の効果】以上説明した通り、本発明によれば、疲
労寿命が非常に長く、しかも高耐蝕を示すので、従来ス
テンレス系ロープでは使用が禁止されていたエレベータ
などの動索にも十分使用が可能である。このため、2相
ステンレス系ロープは、従来のステンレス系ロープと高
炭素鋼系ロープの両利用分野を包含した極めて広範な範
囲に亘って需要が喚起されることは疑いが無く、本発明
は、格別の効果を奏する優れた発明である。
As described above, according to the present invention, the fatigue life is extremely long and high corrosion resistance is exhibited. Therefore, the present invention can be sufficiently used for moving ropes such as elevators which are conventionally prohibited from being used with stainless steel ropes. Is possible. Therefore, there is no doubt that the demand for the two-phase stainless steel rope will be evoked over an extremely wide range including both conventional stainless steel ropes and high carbon steel ropes. It is an excellent invention that has a particular effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2相ステンレス鋼線の組織を示す拡大図であ
る。
FIG. 1 is an enlarged view showing the structure of a duplex stainless steel wire.

【図2】2相ステンレス鋼線の伸線加工度(%)と平均
細長比MR との関係図である。
2 is a relationship diagram of a drawing of the two-phase stainless steel wire with (%) Average and slenderness ratio M R.

【図3】フェライト体積率αが50%の2相ステンレス
鋼線の0.2%耐力と時効温度との関係を、伸線加工度
をパラメータとして示した線図である。
FIG. 3 is a diagram showing a relationship between a 0.2% proof stress and an aging temperature of a duplex stainless steel wire having a ferrite volume ratio α of 50%, using a wire drawing workability as a parameter.

【図4】ステンレス鋼ワイヤロープのフェライト体積率
をパラメータとする平均細長比MR と、断線率が10%
になるまでの繰り返し曲げ回数との関係を、時効処理の
有無で比較示した線図である。
[Figure 4] and the average slenderness ratio M R of the ferrite volume fraction of stainless steel wire rope and parameters, disconnection rate of 10%
It is the diagram which compared and showed the relationship with the frequency | count of repeated bending until it became.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.1%以下、Si:1.0%以
下、Mn:1.5%以下、P:0.04%以下、S:
0.03%以下、Cr18.0〜30.0%、Ni3.
0〜8.0%、Mo0.1〜3.0%、残部がFeであ
って、フェライト量を30.0〜80.0%としてなる
2相ステンレス鋼線を伸線加工度40〜97%に抑えて
平均細長比(MR 値)が4〜20にコントロールされ、
更に150〜600℃の時効処理が与えられてなること
を特徴とする高耐疲労・耐蝕性の2相ステンレス鋼ワイ
ヤロープ。
1. C: 0.1% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.04% or less, S:
0.03% or less, Cr18.0 to 30.0%, Ni3.
0-8.0%, Mo 0.1-3.0%, the balance is Fe, and a duplex stainless steel wire having a ferrite content of 30.0-80.0% has a wire drawing workability of 40-97%. And the average slenderness ratio (M R value) is controlled to 4 to 20,
Further, a high-fatigue / corrosion-resistant duplex stainless steel wire rope characterized by being subjected to an aging treatment at 150 to 600 ° C.
JP5027729A 1992-07-01 1993-02-17 Highly fatigue and corrosion resistant duplex stainless steel wire rope Expired - Fee Related JP2677940B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP5027729A JP2677940B2 (en) 1993-02-17 1993-02-17 Highly fatigue and corrosion resistant duplex stainless steel wire rope
TW082102399A TW259820B (en) 1992-07-01 1993-03-31
KR1019930005273A KR960005602B1 (en) 1992-07-01 1993-03-31 Dual-phase stainless steel wire rope having high fatigue resistance and corrosion resistance
CA002093090A CA2093090C (en) 1992-07-01 1993-03-31 Two-phase stainless steel wire rope having high fatigue resistance and corrosion resistance
EP93107297A EP0576802B1 (en) 1992-07-01 1993-05-05 Two-phase stainless steel wire rope having high fatigue resistance and corrosion resistance
DE69311636T DE69311636T2 (en) 1992-07-01 1993-05-05 Wire rope made of stainless duplex steel with high fatigue strength and corrosion resistance
ES93107297T ES2105001T3 (en) 1992-07-01 1993-05-05 TWO PHASE STAINLESS STEEL CABLE WITH HIGH RESISTANCE TO FATIGUE AND CORROSION.
AU39959/93A AU662059C (en) 1992-07-01 1993-06-01 Two-phase stainless steel wire rope having high fatigue resistance and corrosion resistance
US08/357,994 US5545482A (en) 1992-07-01 1994-12-16 Two-phase stainless steel wire rope having high fatigue resistance and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027729A JP2677940B2 (en) 1993-02-17 1993-02-17 Highly fatigue and corrosion resistant duplex stainless steel wire rope

Publications (2)

Publication Number Publication Date
JPH06240410A JPH06240410A (en) 1994-08-30
JP2677940B2 true JP2677940B2 (en) 1997-11-17

Family

ID=12229114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027729A Expired - Fee Related JP2677940B2 (en) 1992-07-01 1993-02-17 Highly fatigue and corrosion resistant duplex stainless steel wire rope

Country Status (1)

Country Link
JP (1) JP2677940B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783504B2 (en) * 1993-12-20 1998-08-06 神鋼鋼線工業株式会社 Stainless steel wire
JP4630848B2 (en) * 2005-10-28 2011-02-09 東京製綱株式会社 Energy absorption rope
JP6115935B2 (en) * 2013-01-25 2017-04-19 セイコーインスツル株式会社 Aging heat treated material made of duplex stainless steel, diaphragm, pressure sensor, diaphragm valve using the same, and method for producing duplex stainless steel
CN113944058B (en) * 2021-09-26 2023-06-16 江苏亚盛金属制品有限公司 Research method based on high-strength fatigue-resistant duplex stainless steel wire rope and steel wire rope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266558A (en) * 1985-05-20 1986-11-26 Shinko Kosen Kogyo Kk Two-phase stainless steel wire of high toughness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
歌川 寛「やさしい金属熱処理技術の基礎」(昭56−10−20)啓学出版p.62

Also Published As

Publication number Publication date
JPH06240410A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP2783504B2 (en) Stainless steel wire
KR910001324B1 (en) High strength and toughness steel bar rod and wire and the process of producing the same
JP2013510234A (en) Wire rod for wire drawing excellent in wire drawing workability, ultra-high strength steel wire, and manufacturing method thereof
KR960005602B1 (en) Dual-phase stainless steel wire rope having high fatigue resistance and corrosion resistance
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
EP1464718A1 (en) High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
JP2677940B2 (en) Highly fatigue and corrosion resistant duplex stainless steel wire rope
US5904830A (en) Process for finishing steelwire
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JPH0791621B2 (en) Highly fatigue and corrosion resistant duplex stainless steel wire rope
JPH05263183A (en) Carburizing case hardening steel excellent in delayed fracture resistance
JPS60152659A (en) Wire rod for hyperfine wire having superior workability
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JPH049860B2 (en)
JPH09202944A (en) High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JPH0371502B2 (en)
JPH11199980A (en) High strength extra fine steel wire
JPH0470388B2 (en)
JPS59123743A (en) Carburizing steel producing slight strain due to heat treatment
JPS5935655A (en) High-carbon steel wire rod for hyperfine drawn wire
JPS63241138A (en) Steel code
JP3216824B2 (en) High strength low thermal expansion alloy
JPH05105951A (en) Production of high strength steel wire
JPH0474822A (en) High strength stainless steel material excellent in spring characteristic and settling resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees