JPH0371502B2 - - Google Patents

Info

Publication number
JPH0371502B2
JPH0371502B2 JP62022569A JP2256987A JPH0371502B2 JP H0371502 B2 JPH0371502 B2 JP H0371502B2 JP 62022569 A JP62022569 A JP 62022569A JP 2256987 A JP2256987 A JP 2256987A JP H0371502 B2 JPH0371502 B2 JP H0371502B2
Authority
JP
Japan
Prior art keywords
less
wire
steel
inclusions
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62022569A
Other languages
Japanese (ja)
Other versions
JPS63192846A (en
Inventor
Masaaki Murakami
Hiroshi Sato
Shinichi Mogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2256987A priority Critical patent/JPS63192846A/en
Publication of JPS63192846A publication Critical patent/JPS63192846A/en
Publication of JPH0371502B2 publication Critical patent/JPH0371502B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はベルトコード、タイヤコード等ゴム内
補強材を用いる高強度で高靱性、高疲労強度を有
する極細鋼線用高張力鋼線材および該線材を出発
材とする極細鋼線の製造方法に関するものであ
る。 (従来の技術) ゴム内補強材としての極細線は、高炭素鋼を用
いて溶製→鋼片→熱間圧延線材→熱処理→伸線→
熱処理→メツキ→伸線の如き工程により所定線径
と強度を得る方法が通常採用されている。 従来、極細仕上り鋼線の高張力化のためには、
仕上り線径までの伸線加工歪み量を極力上げる方
法、さらに炭素含有量を増やした高炭素鋼による
伸線加工前の熱処理強度の増大による方法等が実
施されている。 しかし、これらの方法は仕上り線の引張強さは
比較的容易に増加出来るが、高張力化に伴なう著
しい靱性値の劣化は避けることが出来ず、特にス
チールコード素線における重要特性である撚り加
工性および疲労強度の維持は期待し難く、これが
高張力スチールコード用線材開発の課題であつ
た。 また、鋼線の高張力化と共に、特にタイヤコー
ド用の極細線において硬質の酸化物系非金属介在
財物は伸線加工時の断線起因となり、さらに撚り
加工断線の原因となることが知られている。これ
は材料の高張力化に伴つて非金属介在物を主とす
る材料欠陥に対する切欠感受性、疲労感受性が高
くなるためである。すなわち、従来許容されてい
た程度の大きさの非金属介在物であつても、材料
が高張力化されたために非金属介在物の大きさを
さらに小さくする必要がある。 一般に、酸化物系非金属介在物の内でも
Al2O3、SiO2、CaO、TiO2、MgO等の単組成の
介在物は硬度も高く塑性変形し難い。したがつ
て、伸線性の優れた極細鋼線用線材の製造のため
には、介在物を少なくすると共にこれら介在物の
低融点化と軟質化を図つて、熱間圧延による介在
物の断面縮小を行なうことが重要な課題となつて
いる。 従来高Si−Cr添加の高炭素鋼に関する特許発
明として特公昭59−47025号公報に「高強度高靱
性及び高伸線性を兼ねそなえた超高張力鋼線用過
共析低合金鋼」が開示されている。これは引張強
さを200Kg/mm2以上(同公報の第4表では270Kg/
mm2が限界)の超高張力鋼線を得るためREM添加
N、Oの規則及び高減面伸線加工を行う事を示し
ている。 しかしこれにはSi、Crの下限の組成限定、線
径0.4mm以下までの高減面伸線加工そしてそれに
必要な非金属介在物の規制について開示がない。
従つて引張強さも同公報第4表に示しているよう
に270Kg/mm2が限界と判断する。 また、高Si−Cr添加の高炭素鋼線材が特開昭
60−204865号公報により開示されている。 しかしながら、化学成分範囲において、Mn量
は0.3%未満と本発明と異なることと、高減面の
伸線加工による高張力極細線においては必須要件
となる非金属介在物の量あるいは組成のコントロ
ールについては、何ら記載がなく、スチールコー
ド用線材の如く、線径0.4mm以下に伸線され、且
つ撚り加工される材料としては適当ではないと考
えられる。 付言すれば、前記公報におけるSi含有量は0.15
〜1.00%とされているが、Si含有量の上限は、単
に極細線及びスチールコードの靱性、延性の低
下、溶接性の確保の点から指定したにすぎず、本
発明のように伸線性の獲得のために積極的にSiを
添加することを指向して決定されたものではな
い。ちなみに前記公報の実施例に示されているSi
含有量は最大0.23%である。したがつて、0.23%
以上のSi量については、実例がなく実績のない上
限規定となつている。 前記公報のSi含有範囲は、本発明の成分範囲と
一部重複する内容となつている。しかし、本発明
では、広範囲のSi量についての試験結果より、線
径0.4mm以下で引張強さ360Kg/mm2以上の極細鋼線
を高減面の伸線加工によつて得るためには第1図
に示すようにSi含有量の範囲をより幅狭にコント
ロールする必要があることが知見された。 また、Cr量については前記公報では「0.15%を
越えて0.50%以下」としているが、この場合も実
施例ではCr量の最大値は0.38%しか提示されてい
ない。これに対して、本発明では、線径0.4mm以
下において、360Kg/mm2以上の強度を達成するた
めには、熱処理後の強度は高炭素鋼の場合よりも
5〜10Kg/mm2以上の強度増を図る必要があり、そ
のため、Cr含有量は前記公報の範囲では不足で
あり、最大0.6%までの増量が必要であることが
判明した。すなわち、延性(絞り値)を確保しな
がら360Kg/mm2以上の強度を得るためのCr含有量
は第2図に示すように0.20〜0.60%の範囲にあ
り、Cr量の増加により、低伸線加工歪み量で高
張力化が達成され、その分延性劣化の度合が少な
いことを見出した。尚、Cr量0.6%までは、伸線
加工性および0.3mm線の延性は十分確保されてい
る。 又、鋼の清浄度を上げて非金属介在物の軟質化
を計る方法として、特公昭57−22969号公報、特
開昭55−24961号公報、および特開昭50−71507号
公報等に開示されており、これらはAl2O3−SiO2
−MnOの3元系の酸化物系非金属介在物の組成
制御を目的としている。 しかしながら、これら公知の方法の3元系非金
属介在物の改質は、安定した組成制御が困難であ
り、介在物量の低減が達成し難いため、伸線性及
び伸線後の耐疲労性の向上は必ずしも期待出来な
いものであり、品質の安定した高張力鋼線用線材
の供給が望まれていた。 (発明が解決しようとする問題点) 本発明は前述の問題点を解決するためのもので
延性が保持されかつ引張強さ360Kg/mm2以上の高
強度高靱性を有する冷間伸線加工極細鋼線、特に
ベルトコード、タイヤコード等ゴム内補強材に使
用される極細鋼線用高張力鋼線材および該線材を
出発材とする極細鋼線の製造方法を提供しようと
するにある。 (問題点を解決するための手段及び作用) 本発明者等は、この様な問題点を解決し、高強
度の極細線用線材を提供する目的で、伸線加工に
よる極細鋼線の機械特性を究明した結果、伸線材
高張力化における靱性確保のためには、パーライ
ト・ラメラー組織の微細化と共に、フエライト地
の強化が有効であり、また、高張力化した鋼線の
伸線加工性、撚り加工性の維持のためには、鋼中
の非金属介在物の組成量のコントロールが有効で
あることに着目したものである。 これらの手段の骨子とするところは、下記のと
おりである。 伸線材の高張力化における靱性確保のために
は、Crを0.2〜0.6%添加しパーライトのラメラ
ー間隔を微細にすると共にSiを0.4〜0.8%添加
することによつてフエライト地の強化を図る。
又、上記Cr、Siの適正組合せにより複合効果
を発揮させる。 高張力化した鋼線の伸線加工性、撚り加工性
の維持のためには鋼中の非金属介在物の組成、
量を適正にコントロールする。 線材を0.4mm以下の極細線に加工する際最終
伸線加工工程に於いて断面減少率で96%以上の
加工歪みを与える。 以上の骨子に基づき本発明の要旨とするところ
は下記のとおりである。 (1) 重量%で C:0.6〜1.0%、Mn:0.3〜0.7%、 P:0.025%以下、S:0.025%以下、残部鉄
及び不可避的不純物からなる炭素鋼線材におい
て以下の条件を満足することを特徴とする極細
鋼線用高張力鋼線材。 a Si:0.4〜0.8%、Cr:0.2〜0.6%を含有す
ること。 b 全酸素含有量が15〜50ppmであること。 c 非粘性介在物の80%以上がSiO2:25〜70
%、MnO:5〜40%、MgO:40%以下、
Al2O3:35%以下、CaO:25%以下の組成範
囲において、SiO2と MnOを主成分にしてAl2O3又はMgOの何
れか又は両方で5%以上、CaO2%以上、さ
らにTi、V、Ba、Zr、Naの添加に由来する
酸化物及び不可避的に混入する微量の酸化物
を総量で6%以下含む5元系以上の酸化物で
あること。 (2) 重量%で C:0.6〜1.0%、Mn:0.3〜0.7%、 P:0.025%以下、S:0.025%以下、残部鉄
及び不可避的不純物からなり、かつ以下の条件
を満足する極細鋼線用高張力鋼線材を0.4mm以
下の極細線に加工するにあたり、最終伸線加工
工程において断面減少率で96%以上の加工歪を
付与することを特徴とする極細鋼線の製造方
法。 a Si:0.4〜0.8%、Cr:0.2〜0.6%を含有す
ること。 b 全酸素含有量が15〜50ppmであること。 c 非粘性介在物の80%以上がSiO2:25〜70
%、MnO:5〜40%、MgO:40%以下、
Al2O3:35%以下、CaO:25%以下の組成範
囲において、SiO2と MnOを主成分にしてAl2O3又はMgOの何
れか又は両方で5%以上、CaO2%以上、さ
らにTi、V、Ba、Zr、Naの添加に由来する
酸化物及び不可避的に混入する微量の酸化物
を総量で6%以下含む5元系以上の酸化物で
あること。 次にこれらの技術思想の詳細及び作用そしてそ
れぞれの限定理由を説明する。 本発明者は、線径0.4mm以下の極細鋼線におい
て引張強さ360Kg/mm2以上で、かつ、伸線加工性、
撚り加工性が確保されるためには、特公昭59−
47025号公報に規定の成分量は適合せず、別の適
正成分範囲があることを見出した。すなわち、伸
線加工による高張力極細鋼線のためには、C量、
Si量、Mn量の上限値は、特公昭59−47025号公報
記載のものより全て低値でなければならない。又
Cr、Siの複合添加が有効であることを見い出し
た。さらに極細線の高張力に伴う伸線加工性、撚
り加工性確保のためには上記の成分範囲の他に非
金属介在物のコントロールが必要であるがこれに
ついて何ら規制もなく高減面伸線の極細線用とし
ては不適合である事が判つた。これらのCr、Si
の作用を以下に示す。 Cr添加により恒温変態でのノーズ温度は上昇
するが、パーライトのラメラー間隔は微細にな
る。このことは高炭素鋼においても有効であり、
パテンテイング処理後の高強度化に有用な元素で
ある。 またSiは、含有量の増加と共に少しづつ延性を
減少させながら強度を上昇させる元素として知ら
れている。Si添加の金属組織上への作用はフエラ
イト中への固溶によるフエライト値の硬化と考え
られる。 そして冷間伸線加工における極細線までの加工
限の向上および強度上昇を図るためには、パーラ
イトラメラーの微細化と共に、軟質母地のフエラ
イト硬質層のセメンタイトの強度差を適正範囲に
することが有効であると考えた。すなわち、ラメ
ラー間隔の微細化と共に、母地のフエライトをSi
添加の固溶強化によりセメンタイトの強度にバラ
ンスさせたものにすることによつて、伸線加工の
際、組織的に均一な変形が確保される。そして、
Cr添加によるラメラー微細化とSi添加によるフ
エライト強化の伸線加工性に対する複合効果を見
い出した。そして、これらCrおよびSi添加の伸
線加工性に対する複合効果にはCr量とSi量の適
正組合せが存在することを見出した。そして、高
炭素鋼にこれらCr、Siを適正量添加した低合金
系線材を、0.4mm以下の極細線に加工する際最終
伸線加工工程で、断面減少率で96%以上の加工歪
みを与えることで引張強さ360Kg/mm2以上の高張
力極細鋼線が得られることを確認した。 一方、上記の如き、高張力極細鋼線においては
非変形介在物は伸線加工時あるいは撚り加工時の
断線、そして疲労強度特性に対して、より感受性
が高く、従来線材よりもさらに厳しい非金属介在
物のコントロールが必須な条件となる。 酸化物系非金属介在物の可塑性を考えた場合、
単組成又は特定の酸化物が著しく高含有である場
合は硬質であつて可塑性が劣ることは知られてい
るが、本発明者は高張力極細鋼線に見合う酸化物
系非金属介在物の組成、および全非金属介在物に
占める割合の最適値を見出した。 これらの非金属介在物コントロールの問題を解
決するための手段の骨子は、(1)全酸素量を一定範
囲に規定して非金属介在物の量および組成を制御
すること、(2)非変形介在物の量および大きさを低
下させ、伸線加工性および疲労特性に対して害の
少ない状態にすること、線材中に含有する非粘性
の非金属介在物を特定組成範囲の多元系介在物と
し該介在物の軟質化と非金属介在物指数の低下を
図ることにある。 即ち、線材中に含有する非粘性の非金属介在物
の80%以上がSiO2:25〜70%、 MnO:5〜40%、MgO:40%以下、 Al2O3:35%以下、CaO:25%以下の組成範囲
において、SiO2とMnOを主成分に、Al2O3又は
MgOの何れか又は両方で5%以上、CaO2%以
上、さらにTi、V、Ba、Zr、Naの添加に由来す
る酸化物及び不可避的に混入する微量の酸化物を
総量で6%以下含む5元系以上の酸化物。 各組成の組合せについて組成毎の限定理由を説
明するが、本発明の如き多元系の該介在物の個々
の組成で技術を展開する事は困難である。本発明
においては、永年に亘る研究データーよりその上
限、限定を設定した。 まず第1にSiO2とMnOを必ず含み、それに
Al2O又はMgOのいずれか又は両方を含み、それ
にCaOを含み、さらに之等の酸化物のほかに、
Ti、V、Ba、Zr、Naの添加に由来する酸化物及
び不可避的に混入する微量の酸化物の総量(以下
の文章では「その他の酸化物」と呼称する)の6
%以下含有せしめたときは、非粘性介在物のより
一そうの軟質化に寄与することが永年の研究の結
果より判明した。 非粘性介在物の組成が本発明に従つていずれの
組合せであつても良い。 これらの組合せを具体的に示すと以下の通りと
なる。 本発明における介在物組成の組合せは以下の6
通りである。 (1) SiO2+MnO+Al2O3+MgO+CaO +その他の酸化物 (2) SiO2+MnO+Al2O3 +その他の酸化物 (3) SiO2+MnO+Al2O3+CaO +その他の酸化物 (4) SiO2+MnO+MgO+CaO +その他の酸化物 (5) SiO2+MnO+MgO +その他の酸化物 (6) SiO2+MnO+Al2O3+MgO +その他の酸化物 以下、本発明で規定する成分元素の限定理由に
ついて説明する。 一般に、伸線加工による鋼線の引張強さは炭素
含有量と共に増加するので炭素含有量は出来るだ
け増量することが望ましい。ゴム補強用でかつ高
張力の極細鋼線としては炭素量0.6%以上が必要
である。一方、炭素含有量は1.0%を越えるとCr、
Mn含有量の多少によらず溶製上不可避な程度の
偏析部分で初析セメンタイトの発生がみられ伸線
加工性を著しく阻害する。したがつて炭素含有量
の範囲を0.6〜1.0%とした。 Siは本発明において特徴とする添加元素であ
り、Cr含有量の組合せで含有量は決定される。
伸線性確保を目的としたフエライト地硬化のため
少なくともSi量は0.4%以上が必要である。しか
し、0.80%以上、1.00%までは、線材での強度・
延性を高位保持するもののSi量が0.8%を越える
と伸線加工後の鋼線では著しく延性が劣化する。
したがつて伸線加工鋼線の延性確保のために、Si
含有量は0.4%以上、0.8%以下とした。0.4%未
満、0.8%超では第1図に示すように捻回値が悪
くなる。 Cr量は伸線加工線のパテンテイング強度を上
げるため、ラメラー間隔の微細化を目的に添加さ
れるが、Cr無添加の高炭素鋼の場合のパテンテ
イング強度よりも5〜10Kg/mm2程度強化する必要
があり、そのためにはCr量は0.2〜0.6%が必要で
ある。一方Cr量が0.6%を超えると、伸線加工後
0.3mm線での延性劣が著しく、そして、パテンテ
イング時の変態完了時間が永くなつて、熱処理速
度を遅くする必要があり、実操業上得策ではな
い。0.2%未満では熱処理強度が不足するために、
本発明の目的とする0.4mm、360Kg/mm2以上を確保
するためには伸線加工度を大きくしなければなら
ず、結果として靱性(捻回値)を低下させる。こ
のことから、Cr含有量の範囲を0.2%以上0.6%以
下とした。 Mnはパテンテイング処理時の焼入性確保のた
め添加される元素であるが、本発明の成分の場
合、Crが添加されているので、鋼線での延性確
保および偏析低減のため上限を、0.7%とした。
一方、Mnによる脱酸調整能の確保と不純物Sを
MnSとして固定させさらに鋼線の靱性保持のた
め、下限を0.2%とした。 次に非金属介在物のコントロールに関する本発
明構成の限定理由について述べる。 全酸素量15〜50ppmの規定について: 50ppmを超える酸素量の線材では非変形の酸
化物系非金属介在物が多くなるので、それを上
限とした。 一方、Al等の強力な脱酸剤を使用する場合、
全酸素量を15ppm以下にすることが出来るが、
本発明の目的である非金属介在物の組成を可塑
性とするためには、15ppm以上が必要であるこ
とが研究の結果確認出来たので、下限を15ppm
とした。 非粘性介在物の組成について: SiO2が70%を越えるとその介在物は硬質と
なり、非金属介在物指数は高くなる。一方、25
%未満では本発明の目的とする可塑性を有する
多元系介在物としての組成組合せが得られな
い。したがつて、その範囲を25〜70%とした。
好ましい範囲は35〜60%である。 MnOはAl、Mg脱酸の場合、40%以上のも
のは生成されない。又、5%未満は非金属介在
物が硬質化するので、その範囲を5〜40%とし
た。好ましくは8〜30%である。 Al2O3は35%を超えると可塑性の多元系酸化物
として組成のバランスがくずれ、硬質な介在物と
なる。したがつて35%以下とした。好ましくは25
%以下である。 さらにMgO又はCaOの一方又は両方を含有せ
しめることによりアルミナ系非金属介在物及びシ
リケート系非金属介在物に対し、MnO系介在物
と共に塩基性成分として作用し、これらを低融点
化する硬化があり、熱間圧延中の介在物断面積の
縮小効果を有する。 先ず、MgOを40%以下としたのは、40%以下
であればアルミナ系、シリケート系の介在物に対
してMnOと共に低融点化をもたらし、疲労特性
向上に有効であるが、40%超ではMgOを主体と
する非金属介在物が発生し、微細ではあるが疲労
特性低下の原因となり得る。 CaOの含有量が高い場合、一般的に球形の非変
形介在物となるが、25%以下でかつ多元系である
とき、CaOを含む介在物も軟質化し非金属介在物
指数も低値となる。このため、CaOの介在物中の
含有量の上限を25%に規定する。好ましくはCaO
の含有量は1〜20%である。 次にその他の酸化物6%以下の規定について述
べる。本発明による多元系の可塑性介在物を得る
ためには、前述に示した組成が規定されるが、そ
の他にTi、V、Ba、Zr、Na等の添加に由来する
酸化物、さらに不可避的に混入する微量の酸化物
がある。その他の酸化物の合計含有量が6%以内
であれば非金属介在物の軟質化を阻害しないこと
がわかつた。したがつて、その含有量の上限を6
%に規定した。 次いで非粘性の非金属介在物の80%以上が前記
の組成であると規定したことについて述べる。 すなわち、精錬過程において一部不可避な混入
による本発明の請求範囲に示した非粘性介在物の
組成範囲より外れた介在物が存在するが、それは
全体の20%未満であり、本発明の介在物コントロ
ールによつて前記組成の非粘性介在物は80%以上
とすることが出来ることが判明し、そのことが極
細線の伸線加工性、撚り加工性そして疲労特性の
確保のため全非粘性介在物における本発明に示し
た組成の介在物の占有率を80%以上と規定した。 次に0.4mm以下の極細鋼線に加工する際、最終
伸線加工工程において断面減少率で96%以上の加
工歪みを与えることの規定理由について述べる。 極細鋼線の仕上り引張強さは、パテンテイング
後の引張強さと伸線仕上り線径までの伸線による
断面減少率の双方からきまり、高張力化のために
はその適正バランスを見出すことが課題となる。
伸線加工性が最適となるパテンテイング処理後、
伸線することにより伸線材の引張強さは伸線断面
減少率の増大と共に増加する。 従来の高炭素鋼線、ピアノ線材(JIS G
3506、JIS G 3502)は伸線による断面減少率が
96%を越え伸線材の引張強さが340Kg/mm2以上と
なると急激な絞り値等の延性低下が不可避であ
り、伸線材の高張力化に限界があつた。本発明鋼
は、伸線仕上り後の0.4mm以下の極細鋼線におい
て引張強さ360Kg/mm2以上でも延性が保持される
ことがわかつた。そのため伸線断面減少率の増加
の効果について試験した。その結果、後述の実施
例に示すように撚り加工性を確保した引張強さ
360Kg/mm2以上が達成出来、そのための伸線減面
加工率は96.0%以上であることが確認された。し
たがつて、本発明における最終伸線工程における
伸線加工歪みを断面減少率で96%以上とした。 (実施例) 次に本発明による高強度高靱性の極細鋼線の製
造についての実施例を示す。第1表には真空溶解
炉で溶製した試験材の化学成分を示した。真空溶
製した50Kg鋼塊を120mm×120mmの鋼片に熱間鍛造
し、この鋼片を5.5mmの線材に圧延した。この線
材を熱処理と伸線加工を繰返す工程で0.3mm極細
鋼線に伸線した。最終の熱処理は線径1.90〜1.70
mmの段階で連続パテンテイング処理した。パテン
テイング条件は比較鋼SWRH82Aのみ1000℃加
熱、550℃鉛浴焼入とし、他の成分系は1000℃加
熱、575℃鉛浴焼入とした。第2表に各試験材の
0.3mm仕上り鋼線での機械的性質を示した。
(Field of Industrial Application) The present invention relates to a high tensile strength steel wire for belt cords, tire cords, and other ultrafine steel wires having high strength, high toughness, and high fatigue strength using reinforcing materials in rubber, and ultrafine steel wires using the wire as a starting material. The present invention relates to a method for manufacturing steel wire. (Conventional technology) Ultra-fine wire as a reinforcing material in rubber is made by melting using high carbon steel → steel billet → hot rolled wire rod → heat treatment → wire drawing →
A method of obtaining a predetermined wire diameter and strength through steps such as heat treatment, plating, and wire drawing is usually adopted. Conventionally, in order to increase the tensile strength of ultra-fine finished steel wire,
Methods of increasing the amount of strain during wire drawing to the finished wire diameter as much as possible, and methods of increasing the strength of heat treatment before wire drawing using high carbon steel with increased carbon content, etc., have been implemented. However, although these methods can relatively easily increase the tensile strength of the finished wire, it is impossible to avoid a significant deterioration in toughness value due to high tensile strength, which is an important characteristic especially for steel cord wires. It is difficult to maintain twistability and fatigue strength, which has been an issue in the development of wire rods for high-tensile steel cords. In addition, as the tensile strength of steel wire increases, it is known that hard oxide-based nonmetallic inclusions, especially in ultra-fine wire for tire cords, can cause wire breakage during wire drawing, and further cause wire breakage during twisting. There is. This is because the higher the tensile strength of the material, the higher the notch sensitivity and fatigue sensitivity to material defects mainly due to non-metallic inclusions. That is, even if the nonmetallic inclusions have a size that was conventionally permissible, it is necessary to further reduce the size of the nonmetallic inclusions because the tensile strength of the material has been increased. Generally, among oxide-based nonmetallic inclusions,
Monocompositional inclusions such as Al 2 O 3 , SiO 2 , CaO, TiO 2 , MgO, etc. have high hardness and are difficult to undergo plastic deformation. Therefore, in order to manufacture wire rods for ultra-fine steel wires with excellent wire drawability, it is necessary to reduce the number of inclusions, lower the melting point of these inclusions, make them softer, and reduce the cross-section of the inclusions by hot rolling. It has become an important issue to do this. ``Hypereutectoid low alloy steel for ultra-high tensile strength steel wire that has both high strength, high toughness, and high wire drawability'' was disclosed in Japanese Patent Publication No. 1983-47025 as a patented invention related to high carbon steel with conventional high Si-Cr addition. has been done. This means that the tensile strength is 200Kg/mm2 or more (270Kg/mm2 in Table 4 of the same publication).
In order to obtain an ultra-high tensile strength steel wire with a maximum strength of 2 mm 2 (the limit), it is shown that REM additive N and O rules and wire drawing with a high area reduction are performed. However, this document does not disclose the lower limit composition of Si and Cr, the high-reduction wire drawing process to a wire diameter of 0.4 mm or less, and the regulation of nonmetallic inclusions necessary for this process.
Therefore, the tensile strength is judged to be 270 kg/mm 2 as shown in Table 4 of the same publication. In addition, high carbon steel wire rod with high Si-Cr addition was developed in
It is disclosed in the publication No. 60-204865. However, in the chemical composition range, the amount of Mn is less than 0.3%, which is different from the present invention, and there is a need to control the amount or composition of non-metallic inclusions, which is an essential requirement for high-tensile ultra-fine wires by wire drawing with a high reduction area. There is no description of this material, and it is considered that it is not suitable as a material that is drawn to a wire diameter of 0.4 mm or less and twisted, such as a wire rod for steel cord. In addition, the Si content in the above publication is 0.15
~1.00%, but the upper limit of the Si content is simply specified from the viewpoint of ensuring the toughness, reduction of ductility, and weldability of ultra-fine wires and steel cords, and is The decision was not made with the intention of actively adding Si for acquisition. By the way, the Si shown in the example of the above publication
The content is maximum 0.23%. Therefore, 0.23%
Regarding the amount of Si above, there are no actual examples and the upper limit is unproven. The Si content range of the above-mentioned publication partially overlaps with the component range of the present invention. However, in the present invention, based on the test results for a wide range of Si contents, we found that it is necessary to As shown in Figure 1, it was found that it was necessary to control the Si content range more narrowly. Further, the Cr content is set as "more than 0.15% and 0.50% or less" in the above-mentioned publication, but in this case as well, the maximum value of the Cr content is only 0.38% in the examples. On the other hand, in the present invention, in order to achieve a strength of 360 Kg/mm 2 or more with a wire diameter of 0.4 mm or less, the strength after heat treatment is 5 to 10 Kg/mm 2 or more than that of high carbon steel. It was necessary to increase the strength, and therefore it was found that the Cr content within the range stated in the above publication was insufficient and it was necessary to increase the Cr content to a maximum of 0.6%. In other words, the Cr content to obtain a strength of 360 Kg/mm2 or more while ensuring ductility (restriction of area) is in the range of 0.20 to 0.60%, as shown in Figure 2. It has been found that high tension can be achieved with the amount of wire processing strain, and the degree of deterioration in ductility is correspondingly small. Note that wire drawability and ductility of 0.3 mm wire are sufficiently ensured up to a Cr content of 0.6%. In addition, methods for increasing the cleanliness of steel and softening non-metallic inclusions are disclosed in Japanese Patent Publication No. 57-22969, Japanese Patent Application Laid-open No. 55-24961, and Japanese Patent Application Laid-open No. 71507-1989, etc. and these are Al 2 O 3 −SiO 2
-The aim is to control the composition of ternary oxide-based nonmetallic inclusions of MnO. However, in modifying ternary nonmetallic inclusions using these known methods, it is difficult to control the composition stably, and it is difficult to reduce the amount of inclusions. cannot necessarily be expected, and it has been desired to supply wire rods for high-tensile steel wires with stable quality. (Problems to be Solved by the Invention) The present invention is intended to solve the above-mentioned problems, and the present invention is to solve the above - mentioned problems. It is an object of the present invention to provide a high tensile strength steel wire rod for a steel wire, particularly an ultrafine steel wire used as a reinforcing material in rubber such as a belt cord or a tire cord, and a method for producing an ultrafine steel wire using the wire rod as a starting material. (Means and effects for solving the problem) In order to solve the above problems and provide a high-strength wire rod for ultra-fine wire, the present inventors have developed the mechanical properties of ultra-fine steel wire by wire drawing. As a result of our research, we found that in order to ensure toughness in high-strength drawn wire materials, it is effective to refine the pearlite/lamellar structure and strengthen the ferrite base. This study focuses on the fact that controlling the composition of nonmetallic inclusions in steel is effective in maintaining twistability. The gist of these means is as follows. In order to ensure toughness when increasing the tensile strength of the drawn wire material, the ferrite base is strengthened by adding 0.2 to 0.6% Cr to make the lamellar spacing of pearlite finer and adding 0.4 to 0.8% Si.
Further, by appropriately combining the above-mentioned Cr and Si, a composite effect can be exhibited. In order to maintain the drawability and twistability of high-strength steel wire, the composition of nonmetallic inclusions in the steel,
Control the amount appropriately. When processing wire rods into ultra-fine wires of 0.4 mm or less, the final wire drawing process causes processing distortion of 96% or more in area reduction rate. Based on the above outline, the gist of the present invention is as follows. (1) Carbon steel wire rod consisting of C: 0.6 to 1.0%, Mn: 0.3 to 0.7%, P: 0.025% or less, S: 0.025% or less, balance iron and unavoidable impurities in terms of weight%, satisfying the following conditions. A high tensile strength steel wire rod for ultra-fine steel wire. a Contain Si: 0.4 to 0.8% and Cr: 0.2 to 0.6%. b. Total oxygen content is 15-50 ppm. c More than 80% of non-viscous inclusions are SiO2 : 25-70
%, MnO: 5 to 40%, MgO: 40% or less,
In the composition range of Al 2 O 3 : 35% or less, CaO: 25% or less, SiO 2 and MnO are the main components, Al 2 O 3 or MgO or both of 5% or more, CaO 2% or more, and Ti , V, Ba, Zr, Na, and trace amounts of unavoidably mixed oxides in a total amount of 6% or less. (2) Ultra-fine steel that is composed of C: 0.6 to 1.0%, Mn: 0.3 to 0.7%, P: 0.025% or less, S: 0.025% or less, the balance being iron and unavoidable impurities, and satisfying the following conditions: A method for producing ultra-fine steel wire, which is characterized in that when processing high-tensile steel wire for wire into ultra-fine wire of 0.4 mm or less, a processing strain of 96% or more in area reduction rate is applied in the final wire drawing process. a Contain Si: 0.4 to 0.8% and Cr: 0.2 to 0.6%. b. Total oxygen content is 15-50 ppm. c More than 80% of non-viscous inclusions are SiO2 : 25-70
%, MnO: 5 to 40%, MgO: 40% or less,
In the composition range of Al 2 O 3 : 35% or less, CaO: 25% or less, SiO 2 and MnO are the main components, Al 2 O 3 or MgO or both of 5% or more, CaO 2% or more, and Ti , V, Ba, Zr, Na, and trace amounts of unavoidably mixed oxides in a total amount of 6% or less. Next, the details and effects of these technical ideas and the reasons for their respective limitations will be explained. The present inventor has discovered that an ultra-fine steel wire with a wire diameter of 0.4 mm or less has a tensile strength of 360 Kg/mm 2 or more, and has wire drawability.
In order to ensure twisting workability, it is necessary to
It was discovered that the ingredient amounts specified in Publication No. 47025 were not compatible, and that there was another appropriate ingredient range. In other words, for high-tensile ultra-fine steel wire by wire drawing, the amount of C,
The upper limit values for the amount of Si and the amount of Mn must all be lower than those described in Japanese Patent Publication No. 59-47025. or
We found that combined addition of Cr and Si is effective. Furthermore, in order to ensure wire drawability and twistability due to the high tension of ultra-fine wires, it is necessary to control non-metallic inclusions in addition to the above component ranges, but there are no regulations regarding this and wire drawing with high area reduction. It was found to be unsuitable for use with ultra-fine wires. These Cr, Si
The effect of is shown below. Addition of Cr increases the nose temperature during isothermal transformation, but the lamellar spacing of pearlite becomes finer. This is also valid for high carbon steel,
It is an element useful for increasing strength after patenting treatment. Furthermore, Si is known as an element that gradually decreases ductility and increases strength as its content increases. The effect of Si addition on the metal structure is thought to be hardening of the ferrite value due to solid solution in ferrite. In order to improve the processing limit to ultra-fine wires and increase the strength in cold wire drawing, it is necessary to make the pearlite lamella finer and to adjust the strength difference of the cementite in the ferrite hard layer of the soft matrix to an appropriate range. I thought it was effective. In other words, as the lamellar spacing becomes finer, the parent ferrite is replaced with Si.
By balancing the strength of cementite through addition of solid solution strengthening, uniform deformation in structure can be ensured during wire drawing. and,
We found a combined effect on wire drawability of lamellar refinement by Cr addition and ferrite reinforcement by Si addition. We have also found that the combined effects of these additions of Cr and Si on wire drawability include an appropriate combination of the amounts of Cr and Si. When processing low-alloy wire rods made by adding appropriate amounts of Cr and Si to high carbon steel into ultra-fine wires of 0.4 mm or less, a processing strain of 96% or more is applied in the final wire drawing process. It was confirmed that a high-tensile ultra-fine steel wire with a tensile strength of 360 kg/mm 2 or more could be obtained by this method. On the other hand, as mentioned above, non-deformable inclusions in high-strength ultra-fine steel wires are more susceptible to wire breakage during wire drawing or twisting, and to fatigue strength characteristics, which are even more severe than non-metallic wires. Control of inclusions is an essential condition. Considering the plasticity of oxide-based nonmetallic inclusions,
It is known that a single composition or an extremely high content of a specific oxide results in hardness and poor plasticity, but the present inventor has developed a composition of oxide-based nonmetallic inclusions that is suitable for high-tensile ultra-fine steel wire. , and the proportion of nonmetallic inclusions in total. The gist of the means to solve these nonmetallic inclusion control problems is (1) controlling the amount and composition of nonmetallic inclusions by regulating the total oxygen content within a certain range, and (2) controlling the amount and composition of nonmetallic inclusions. To reduce the amount and size of inclusions and make them less harmful to wire drawability and fatigue properties, and to replace non-viscous non-metallic inclusions contained in wire rods with multi-component inclusions in a specific composition range. The objective is to soften the inclusions and lower the nonmetallic inclusion index. That is, 80% or more of the non-viscous non-metallic inclusions contained in the wire are SiO2 : 25-70%, MnO: 5-40%, MgO: 40% or less, Al2O3 : 35% or less, CaO . :In the composition range of 25% or less, SiO 2 and MnO are the main components, Al 2 O 3 or
Contains 5% or more of either or both of MgO, 2% or more of CaO, and 6% or less of oxides derived from the addition of Ti, V, Ba, Zr, and Na, and trace amounts of oxides that are unavoidably mixed in. 5 Oxide of the original type or higher. The reason for the limitation for each combination of compositions will be explained, but it is difficult to develop the technology for individual compositions of the multi-component inclusions as in the present invention. In the present invention, the upper limit and limitations have been set based on research data over many years. First of all, it must contain SiO 2 and MnO, and
Contains either or both of Al 2 O or MgO, and also includes CaO, and in addition to oxides such as these,
6 of the total amount of oxides derived from the addition of Ti, V, Ba, Zr, and Na and trace amounts of oxides that are unavoidably mixed (referred to as "other oxides" in the following text)
As a result of many years of research, it has been found that when the content is less than %, it contributes to further softening of non-viscous inclusions. The composition of the non-viscous inclusions may be in any combination according to the present invention. Specific examples of these combinations are as follows. The combinations of inclusion compositions in the present invention are as follows:
That's right. (1) SiO 2 +MnO+Al 2 O 3 +MgO+CaO + other oxides (2) SiO 2 +MnO+Al 2 O 3 + other oxides (3) SiO 2 +MnO+Al 2 O 3 +CaO + other oxides (4) SiO 2 +MnO+MgO+CaO +Other oxides (5) SiO 2 +MnO+MgO +Other oxides (6) SiO 2 +MnO+Al 2 O 3 +MgO +Other oxides The reasons for limiting the component elements defined in the present invention will be explained below. Generally, the tensile strength of a steel wire produced by wire drawing increases with the carbon content, so it is desirable to increase the carbon content as much as possible. A carbon content of 0.6% or more is required for high-tensile ultra-fine steel wire for rubber reinforcement. On the other hand, when the carbon content exceeds 1.0%, Cr
Regardless of the Mn content, pro-eutectoid cementite occurs in the segregated areas that are unavoidable during melting, and this significantly impedes wire drawability. Therefore, the carbon content range was set at 0.6-1.0%. Si is an additive element that is featured in the present invention, and its content is determined by the combination of the Cr content.
The Si content must be at least 0.4% to harden the ferrite base to ensure wire drawability. However, the strength and
Although the ductility is maintained at a high level, if the Si content exceeds 0.8%, the ductility of the steel wire after wire drawing will deteriorate significantly.
Therefore, in order to ensure the ductility of wire-drawn steel wire, Si
The content was set to 0.4% or more and 0.8% or less. If it is less than 0.4% or more than 0.8%, the twist value becomes worse as shown in Figure 1. The amount of Cr is added to improve the patenting strength of drawn wire and to refine the lamellar spacing, but it strengthens the patenting strength by about 5 to 10 kg/mm 2 compared to high carbon steel without Cr addition. Therefore, the amount of Cr needs to be 0.2 to 0.6%. On the other hand, if the Cr content exceeds 0.6%, after wire drawing
The ductility of the 0.3 mm wire is extremely poor, and the time required to complete the transformation during patenting becomes long, making it necessary to slow down the heat treatment rate, which is not a good idea in actual operation. If it is less than 0.2%, the heat treatment strength will be insufficient.
In order to secure 0.4 mm, 360 Kg/mm 2 or more, which is the objective of the present invention, the degree of wire drawing must be increased, resulting in a decrease in toughness (torsion value). From this, the range of Cr content was set to 0.2% or more and 0.6% or less. Mn is an element added to ensure hardenability during patenting treatment, but in the case of the ingredients of the present invention, Cr is added, so the upper limit is set to 0.7 to ensure ductility and reduce segregation in the steel wire. %.
On the other hand, ensuring deoxidizing adjustment ability with Mn and reducing impurity S
In order to fix it as MnS and maintain the toughness of the steel wire, the lower limit was set at 0.2%. Next, the reasons for the limitations of the configuration of the present invention regarding the control of nonmetallic inclusions will be described. Regarding the regulation of total oxygen content of 15 to 50 ppm: Since a wire with an oxygen content exceeding 50 ppm will have a large amount of non-deformed oxide-based nonmetallic inclusions, this was set as the upper limit. On the other hand, when using a strong deoxidizing agent such as Al,
It is possible to reduce the total amount of oxygen to 15ppm or less, but
As a result of research, it was confirmed that in order to make the composition of nonmetallic inclusions plastic, which is the objective of the present invention, a concentration of 15 ppm or more is required.
And so. Regarding the composition of non-viscous inclusions: When SiO 2 exceeds 70%, the inclusions become hard and the nonmetallic inclusion index becomes high. On the other hand, 25
If the amount is less than %, the compositional combination as a multi-component inclusion having plasticity, which is the object of the present invention, cannot be obtained. Therefore, the range was set at 25-70%.
The preferred range is 35-60%. When deoxidizing Al and Mg, more than 40% of MnO is not produced. Also, if it is less than 5%, the nonmetallic inclusions become hard, so the range is set to 5 to 40%. Preferably it is 8 to 30%. When Al 2 O 3 exceeds 35%, the composition becomes unbalanced as a plastic multi-component oxide, resulting in hard inclusions. Therefore, it was set to 35% or less. preferably 25
% or less. Furthermore, by containing one or both of MgO and CaO, it acts as a basic component on alumina-based non-metallic inclusions and silicate-based non-metallic inclusions, together with MnO-based inclusions, and hardens them by lowering their melting point. , which has the effect of reducing the cross-sectional area of inclusions during hot rolling. First, the reason why MgO is 40% or less is that if it is 40% or less, it lowers the melting point of alumina-based and silicate-based inclusions together with MnO, and is effective in improving fatigue properties, but if it exceeds 40%, Nonmetallic inclusions mainly composed of MgO are generated, and although they are minute, they can cause a decrease in fatigue properties. When the CaO content is high, the inclusions are generally spherical and undeformed, but when the CaO content is less than 25% and is a multi-component system, the inclusions containing CaO also become soft and the nonmetallic inclusion index becomes low. . For this reason, the upper limit of the content of CaO in inclusions is set at 25%. Preferably CaO
The content of is 1 to 20%. Next, the regulation of 6% or less of other oxides will be described. In order to obtain a multi-component plastic inclusion according to the present invention, the composition shown above is specified, but in addition, oxides derived from the addition of Ti, V, Ba, Zr, Na, etc. There are trace amounts of oxides mixed in. It has been found that softening of nonmetallic inclusions is not inhibited if the total content of other oxides is within 6%. Therefore, the upper limit of its content is set at 6
%. Next, it will be described that 80% or more of the non-viscous non-metallic inclusions are specified to have the above composition. That is, although there are inclusions that are outside the composition range of the non-viscous inclusions shown in the claims of the present invention due to some unavoidable contamination during the refining process, they account for less than 20% of the total, and the inclusions of the present invention Through control, it was found that the content of non-viscous inclusions in the above composition could be increased to 80% or more. The occupancy rate of inclusions having the composition shown in the present invention in the product was defined as 80% or more. Next, we will discuss the reasons why it is stipulated that when processing ultra-fine steel wire of 0.4 mm or less, a processing strain of 96% or more in area reduction rate is applied in the final wire drawing process. The finished tensile strength of ultra-fine steel wire is determined by both the tensile strength after patenting and the cross-section reduction rate due to drawing to the finished wire diameter, and the challenge is to find the appropriate balance in order to achieve high tensile strength. Become.
After patenting treatment, which optimizes wire drawability,
By wire drawing, the tensile strength of the drawn wire material increases as the drawing area reduction rate increases. Conventional high carbon steel wire, piano wire (JIS G
3506, JIS G 3502), the cross-sectional reduction rate due to wire drawing is
When the tensile strength of the drawn wire material exceeds 96% and the tensile strength of the drawn wire material exceeds 340 Kg/mm 2 , a sudden decrease in ductility such as the reduction of area is inevitable, and there is a limit to the ability to increase the tensile strength of the drawn wire material. It was found that the steel of the present invention maintains ductility even when the tensile strength is 360 Kg/mm 2 or more in ultra-fine steel wire of 0.4 mm or less after wire drawing. Therefore, the effect of increasing the wire drawing cross section reduction rate was tested. As a result, as shown in the examples below, the tensile strength is high enough to ensure twisting workability.
It was confirmed that 360Kg/mm 2 or more could be achieved, and the wire drawing area reduction rate for this purpose was 96.0% or more. Therefore, the wire drawing strain in the final wire drawing step in the present invention was set to be 96% or more in terms of area reduction rate. (Example) Next, an example of manufacturing a high-strength, high-toughness ultra-fine steel wire according to the present invention will be shown. Table 1 shows the chemical components of the test materials melted in the vacuum melting furnace. A vacuum-melted 50Kg steel ingot was hot forged into a 120mm x 120mm steel billet, and this steel billet was rolled into a 5.5mm wire rod. This wire rod was drawn into a 0.3 mm ultra-fine steel wire through a process of repeating heat treatment and wire drawing. Final heat treatment is wire diameter 1.90~1.70
Continuous patenting treatment was performed at the mm stage. The patenting conditions were 1000℃ heating and 550℃ lead bath quenching for comparative steel SWRH82A, and 1000℃ heating and 575℃ lead bath quenching for the other component systems. Table 2 shows the characteristics of each test material.
The mechanical properties of 0.3mm finished steel wire are shown.

【表】【table】

【表】【table】

【表】 また、0.3mm鋼線での絞り値と引掛荷重の関係
における各成分系の位置付けを第3図に示した。
尚、引掛荷重とは鋼線を互いにフツク状に組合せ
して後、引張つたときの破断荷重である。 本発明鋼は0.3mm仕上り線の機械的性質で第2
表、第1図にみられるように、引張強さが362.2
Kg/mm2以上の高レベルにありながら、絞り値は35
%以上、引掛荷重は8Kg以上であり、比較鋼の場
合に比して明らかに高値である。極細線の絞り
値、引掛荷重は撚り加工時の鋼線の延性を示す特
性値と考えられ、したがつてその値が高いことは
高速撚り加工時の断線に対する抵抗が大きいこと
示している。 さらに実施例における添加合金成分の効果につ
いて述べる。 比較鋼である従来鋼種SWRH82Aによる高張
力化は、340.0Kg/mm2が限度であり、それ以上の
高張力化は延性劣化が不可避であつた。伸線加工
における熱処理後の強度を上げる目的でCr単味
を添加した試験材(試料No.S−1)でも高張力レ
ベルでの延性は、絞り23%、引掛荷重3.2Kgと十
分ではない。これに対して、Cr添加と共にSi量
を0.5%に増した本発明材(試料No.S−3)は、
引張強さ362.2Kg/mm2で絞り値35%、引掛荷重
10.7Kgと大幅に延性が向上しており、伸線加工に
よる高張力化に対して、Crと共にSi増の成分系
の効果が明らかに認められた。 以下に、Cr添加−高Si成分系をベースに、Cr
添加量、Si添加量、Mn添加量の適正範囲につい
ての実施例を順次説明する。 本発明鋼のSi量0.5%、0.7%(試料No.S−3お
よびS−6)に比して、Si量0.35%(試料No.S−
7)は、延性が低下傾向にあり、含有量の下限を
示すものであり、一方Si量0.85%(試料No.S−
8)は引掛荷重は大幅に低下しておりSi含有量の
上限を示すと考えられる。また、本発明鋼のCr
量0.3%、0.5%(試料No.S−3、S−15)と比較
してCr量を0.15%に減量したもの(試料No.S−
13)そして、Cr量を0.65%に増量したもの(試料
No.S−14)は共に、引張強さ360Kg/mm2以上の仕
上り線での延性、特に引掛荷重の劣化が著しく、
それぞれ、Cr適正含有量の下限、上限を超えて
いることを示している。さらに本発明鋼でのMn
量0.34%、0.45%(試料No.S−3、S−9)に比
して、Mn量0.14%およびMn量0.56%のもの(試
料No.S−10およびS−11)は共に引張強さが354
Kg/mm2前後と低いにもかかわらず絞り、引掛荷重
が低い。 実施例 2 次に実施例としての非金属介在物の組成コント
ロールについて述べる。試験材として本発明鋼S
−3と同等の成分系を選び、介在物コントロール
試験材を得るため高周波溶解炉を用いて50Kgの試
験溶製を行なつた。 非粘性の非金属介在物のコントロールのため行
なつた処理を簡単に説明する。本発明鋼は加炭
材、合金鉄添加により成分調生後、溶鋼精錬用合
成滓およびCaC2を溶鋼上に添加した。但し、比
較鋼には合成滓は添加していない。さらに、本発
明鋼ではMg、Ca、Ba、Ti、V、Zr、Naの2種
以上及びAlを加えた脱酸剤を、SiO2、MnOの改
質剤として溶鋼中に添加した。 50Kg鋼塊として注型後、120mm×120mm鋼片への
鍛造を経て、線剤延圧により5.5mm線材に製造し
た。 試験線材の化学成分、非金属介在物指数、代表
的な非金属介在物の組成を第3表に示した。線径
0.3mm、引張強さ360Kg/mm2の極細鋼線を目標に伸
線加工した。尚、非金属介在物指数とは非変形
(介在物の長径/短径比が3以下)の介在物を大
きさ別に重みをつけて算定した値である。 第3表に示すように、比粘性の比金属介在物の
組成改質の比金属介在物指数(10以下)への効果
は明らかである。 次に0.3mm鋼線の重要な必要特性である撚り加
工特性試験を第4図に示す高速撚り加工試験機を
用いて次の方法で試験した。 撚りピツチを5mmと一定にし、撚り加工速度を
5000〜19000rpmに変えて捻り加工歪み速度の影
響について把握した。試験機が所定の回転数に達
した時点で徐々に張力を付与し、極細線が断線す
るまで増やしていき、断線時の張力を引張強さ
(捻り加工歪みのない時の引張強さ)に対する割
合として求めた。試験結果を本発明鋼(試料No.P
−2)と比較鋼(試料No.P−6)を比較して第5
図に示した。
[Table] In addition, Figure 3 shows the position of each component system in the relationship between the aperture value and the hooking load for 0.3 mm steel wire.
Note that the hooking load is the breaking load when the steel wires are combined into a hook shape and then pulled. The steel of the present invention ranks second in mechanical properties of 0.3mm finished wire.
As shown in the table and Figure 1, the tensile strength is 362.2
Although it is at a high level of Kg/mm 2 or more, the aperture value is 35
% or more, the hooked load is 8 kg or more, which is clearly higher than that of comparative steel. The reduction of area and hooking load of ultra-fine wires are considered to be characteristic values that indicate the ductility of the steel wire during twisting, and therefore, high values indicate high resistance to wire breakage during high-speed twisting. Furthermore, effects of added alloy components in Examples will be described. The limit for increasing the tensile strength of conventional steel SWRH82A, which is a comparative steel, is 340.0 Kg/mm 2 , and increasing the tensile strength higher than that inevitably causes a deterioration in ductility. Even in the test material (sample No. S-1) in which Cr was added for the purpose of increasing the strength after heat treatment during wire drawing, the ductility at a high tension level was not sufficient, with a reduction of area of 23% and a hanging load of 3.2 kg. On the other hand, the material of the present invention (sample No. S-3) in which the amount of Si was increased to 0.5% along with the addition of Cr,
Tensile strength 362.2Kg/mm 2 , aperture value 35%, hanging load
The ductility was significantly improved to 10.7Kg, and the effect of the component system of increasing Si as well as Cr was clearly recognized in increasing the tensile strength due to wire drawing. Below, based on the Cr addition-high Si component system, Cr
Examples regarding appropriate ranges of addition amount, Si addition amount, and Mn addition amount will be sequentially explained. Compared to the Si content of 0.5% and 0.7% (Sample No. S-3 and S-6) in the steel of the present invention, the Si content is 0.35% (Sample No. S-3).
7) has a tendency to decrease in ductility and indicates the lower limit of the content, while the Si content of 0.85% (sample No.S-
In case 8), the hooking load was significantly reduced, and it is thought that this indicates the upper limit of the Si content. In addition, Cr of the steel of the present invention
The Cr content was reduced to 0.15% compared to 0.3% and 0.5% (Sample No. S-3, S-15) (Sample No. S-15).
13) And the sample with increased Cr content to 0.65%
For both No.S-14), the ductility of the finished wire with a tensile strength of 360Kg/mm 2 or more, especially the deterioration of the hooking load, was significant.
This indicates that the lower limit and upper limit of the appropriate Cr content are exceeded, respectively. Furthermore, Mn in the steel of the present invention
Compared to the Mn content of 0.34% and 0.45% (Sample Nos. S-3 and S-9), the tensile strength of both the Mn content of 0.14% and the Mn content of 0.56% (Samples No. S-10 and S-11) is Saga354
Despite being low at around Kg/ mm2 , the drawing and hooking loads are low. Example 2 Next, composition control of nonmetallic inclusions will be described as an example. Inventive steel S as a test material
A component system equivalent to -3 was selected, and test melting of 50 kg was performed using a high frequency melting furnace to obtain an inclusion control test material. The treatment carried out to control non-viscous non-metallic inclusions will be briefly explained. After the composition of the steel of the present invention was adjusted by adding carburizers and ferroalloys, synthetic slag for molten steel refining and CaC 2 were added to the molten steel. However, no synthetic slag was added to the comparative steel. Furthermore, in the steel of the present invention, a deoxidizing agent containing two or more of Mg, Ca, Ba, Ti, V, Zr, Na and Al was added to the molten steel as a modifier for SiO 2 and MnO. After casting as a 50Kg steel ingot, it was forged into a 120mm x 120mm steel billet, and then manufactured into a 5.5mm wire rod by wire rolling. Table 3 shows the chemical composition, nonmetallic inclusion index, and composition of typical nonmetallic inclusions of the test wire. Wire diameter
The wire was drawn with the goal of producing an ultra-fine steel wire with a diameter of 0.3 mm and a tensile strength of 360 Kg/ mm2 . Note that the nonmetallic inclusion index is a value calculated by weighting non-deformed inclusions (the ratio of major axis/minor axis of inclusions is 3 or less) according to their size. As shown in Table 3, the effect of modifying the composition of specific metal inclusions in specific viscosity on the specific metal inclusion index (10 or less) is clear. Next, a twisting property test, which is an important and necessary property of 0.3 mm steel wire, was conducted using the high speed twisting tester shown in Figure 4 in the following manner. The twisting pitch was kept constant at 5 mm, and the twisting speed was
The influence of twisting strain rate was understood by changing the speed from 5000 to 19000 rpm. When the testing machine reaches a predetermined rotational speed, gradually apply tension and increase it until the ultra-fine wire breaks, and measure the tension at the time of breakage against the tensile strength (tensile strength when there is no twisting distortion). It was calculated as a percentage. The test results were compared to the steel of the present invention (sample No.P
-2) and comparative steel (sample No. P-6).
Shown in the figure.

【表】 非金属介在物指数17でAl2O3含有量の多い比較
鋼(試料No.P−6)の場合、撚り加工速度
8000rpm程度から破断張力が低下し始め、12000
回/min以上で急激に低下する。 これに対して、非金属介在物指数3の本発明鋼
(試料No.P−2)の場合は、撚り加工速度
11000rpm程度から破断張力は低下が始まるが、
その低下の度合は緩慢である。このように、撚り
加工での破断張力に対する非金属介在物指数の影
響が大きい。そして捻り加工歪み速度が大きくな
るにつれて非金属介在物指数の影響がより顕著に
現われるようになる。これはより小さな硬質非金
属介在物が断線原因になるためと推測される。そ
して、極細線の引張強さが高い方が第6図に示す
ようにより小さい撚り加工速度で破断張力が低下
するようになつている。したがつて、撚り加工性
の点でも、非金属介在物の組成がコントロールさ
れた本発明鋼が優位にあることは明らかである。 実施例 3 次に、本発明材の極細伸線における伸線断面減
少率に関する実施例について述べる。線径1.78mm
鋼線での最終パテンテイング処理を、本発明鋼
(S−2)は1000℃−575℃、比較鋼
(SWRH82A)を1000℃−550℃の条件で行ない、
各段20%の減面率で伸線して得られた、各段の伸
線鋼線の引張強さと絞りを測定した。その結果を
第7図に示した。比較材(SWRH82A)は熱処
理後の断面減少率96%の時点で、絞りの低下が発
生し、引張強さは360Kg/mm2を越えることが出来
ないのに対し、本発明鋼(S−2)は断面減少率
96%以上でも絞りの劣化は認められず、線径0.3
mm鋼線で360Kg/mm2以上の引張強さが得られた。
このように本発明鋼は96%以上の断面減少率の伸
線加工を与えることにより360Kg/mm2以上の高張
力極細鋼線の製造が達成出来るものである。 (発明の効果) 以上詳述した如く、本発明による線材はSiと
Crの複合添加効果と、それに組合せた非金属介
在物組成のコントロール、そして伸線加工工程の
断面減少率で96%以上の加工歪みを与えることに
より優れた、延性および撚り加工性を有する高張
力極細鋼線が得られるものである。0.4mm以下の
極細鋼線において、高張力でありかつ延性が優れ
ていることは、製造工程におけるコード撚り加工
性およびコードの耐疲労特性の確保を示すもので
ある。 したがつて、タイヤ、ベルト、ゴムホース等ゴ
ム内のスチールコードの耐久性向上は勿論、高張
力化によるコード構成の簡素化を共に図り得るも
のであり、スチールコード素線として、本発明材
は工業的に極めて有用である。
[Table] In the case of comparative steel (sample No. P-6) with nonmetallic inclusion index 17 and high Al 2 O 3 content, twisting speed
The breaking tension starts to decrease from around 8000rpm and reaches 12000rpm.
It decreases rapidly above times/min. On the other hand, in the case of the invention steel (sample No. P-2) with a nonmetallic inclusion index of 3, the twisting speed was
The breaking tension starts to decrease from around 11000 rpm, but
The rate of decline is slow. As described above, the nonmetallic inclusion index has a large influence on the breaking tension during twisting. As the twisting strain rate increases, the influence of the nonmetallic inclusion index becomes more pronounced. It is presumed that this is because smaller hard nonmetallic inclusions cause wire breakage. As shown in FIG. 6, the higher the tensile strength of the ultrafine wire is, the lower the breaking tension is at a lower twisting speed. Therefore, it is clear that the steel of the present invention, in which the composition of non-metallic inclusions is controlled, is superior also in terms of twistability. Example 3 Next, an example regarding the wire drawing area reduction rate in ultra-fine wire drawing of the present invention material will be described. Wire diameter 1.78mm
The final patenting treatment on the steel wire was carried out at 1000°C - 575°C for the invention steel (S-2) and 1000°C - 550°C for the comparative steel (SWRH82A).
The tensile strength and aperture of the drawn steel wire of each stage obtained by drawing the wire at a reduction rate of 20% in each stage were measured. The results are shown in FIG. In the comparison material (SWRH82A), the reduction in area occurred at the point of 96% reduction in area after heat treatment, and the tensile strength could not exceed 360 Kg/ mm2 , whereas the inventive steel (S-2 ) is the area reduction rate
No deterioration of the aperture was observed even when the wire diameter was 0.3% or more.
A tensile strength of over 360Kg/mm 2 was obtained with mm steel wire.
As described above, the steel of the present invention can produce a high tensile strength ultra-fine steel wire of 360 kg/mm 2 or more by drawing the wire with a reduction in area of 96% or more. (Effects of the invention) As detailed above, the wire rod according to the present invention has Si and
High tensile strength with excellent ductility and twisting workability due to the combined effect of Cr addition, combined control of the composition of nonmetallic inclusions, and the creation of a processing strain of 96% or more at the cross-sectional area reduction rate in the wire drawing process. Ultra-fine steel wire can be obtained. The fact that ultra-fine steel wire of 0.4 mm or less has high tensile strength and excellent ductility indicates that cord twisting workability and fatigue resistance properties of the cord are ensured in the manufacturing process. Therefore, it is possible not only to improve the durability of steel cords in rubber such as tires, belts, and rubber hoses, but also to simplify the cord structure by increasing the tensile strength. It is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.3mm鋼線の引張強さと捻回値の関係
におよぼすSi含有量の影響を示すグラフ、第2図
は0.3mm鋼線の引張強さと伸線加工歪みの関係に
およぼすCr含有量の影響を示すグラフ、第3図
は、本発明鋼および比較鋼の線径0.3mm、引張強
さ360Kg/mm2伸線仕上り線の絞り値−引掛荷重の
関係での位置付けを示すグラフ、第4図は極細鋼
線の撚り加工特性試験に用いた高速撚り加工特性
試験機の構造を示す模式図、第5図は非金属介在
物指数の異なる線材より伸線された0.3mm鋼線の
各撚り加工速度に対する撚り破断張力を示すグラ
フ、第6図は、鋼線の引張強さ、非金属介在物指
数の撚り加工断線張力に対する影響を示すグラ
フ、第7図は熱処理後の伸線各段における引張強
さ、絞りに及ぼす伸線加工歪みの影響を示すグラ
フである。
Figure 1 is a graph showing the effect of Si content on the relationship between tensile strength and twist value of 0.3 mm steel wire, and Figure 2 is a graph showing the effect of Cr content on the relationship between tensile strength and wire drawing strain of 0.3 mm steel wire. A graph showing the influence of quantity, Figure 3 is a graph showing the positioning of the inventive steel and comparative steel in the relationship between the aperture value and the hooking load of the wire diameter of 0.3 mm and the tensile strength of 360 Kg/mm 2 drawn wire. Figure 4 is a schematic diagram showing the structure of a high-speed twisting property testing machine used for testing the twisting properties of ultra-fine steel wires. Figure 6 is a graph showing the effect of tensile strength of steel wire and non-metallic inclusion index on twisting breaking tension for each twisting speed. It is a graph showing the influence of wire drawing strain on the tensile strength and area of area in the step.

Claims (1)

【特許請求の範囲】 1 重量%で C:0.6〜1.0%、Mn:0.3〜0.7%、 P:0.025%以下、S:0.025%以下、残部鉄及
び不可避的不純物からなる炭素鋼線材において以
下の条件を満足することを特徴とする極細鋼線用
高張力鋼線材。 a Si:0.4〜0.8%、Cr:0.2〜0.6%を含有する
こと。 b 全酸素含有量が15〜50ppmであること。 c 非粘性介在物の80%以上がSiO2:25〜70%、
MnO:5〜40%、MgO:40%以下、Al2O3
35%以下、CaO:25%以下の組成範囲におい
て、SiO2と MnOを主成分にしてAl2O3又はMgOの何れか
又は両方で5%以上、CaO2%以上、さらに
Ti、V、Ba、Zr、Naの添加に由来する酸化物
及び不可避的に混入する微量の酸化物を総量で
6%以下含む5元系以上の酸化物であること。 2 重量%で C:0.6〜1.0%、Mn:0.3〜0.7%、 P:0.025%以下、S:0.025%以下、残部鉄及
び不可避的不純物からなり、かつ以下の条件を満
足する極細鋼線用高張力鋼線材を0.4mm以下の極
細線に加工するにあたり、最終伸線加工工程にお
いて断面減少率で96%以上の加工歪を付与するこ
とを特徴とする極細鋼線の製造方法。 a Si:0.4〜0.8%、Cr:0.2〜0.6%を含有する
こと。 b 全酸素含有量が15〜50ppmであること。 c 非粘性介在物の80%以上がSiO2:25〜70%、
MnO:5〜40%、MgO:40%以下、Al2O3
35%以下、CaO:25%以下の組成範囲におい
て、SiO2と MnOを主成分にしてAl2O3又はMgOの何れ
か又は両方で5%以上、CaO2%以上、さらに
Ti、V、Ba、Zr、Naの添加に由来する酸化物
及び不可避的に混入する微量の酸化物を総量で
6%以下含む5元系以上の酸化物であること。
[Claims] In a carbon steel wire rod consisting of 1% by weight, C: 0.6 to 1.0%, Mn: 0.3 to 0.7%, P: 0.025% or less, S: 0.025% or less, the balance being iron and unavoidable impurities, the following: A high-tensile steel wire rod for ultra-fine steel wire that satisfies the following conditions. a Contain Si: 0.4 to 0.8% and Cr: 0.2 to 0.6%. b. Total oxygen content is 15-50 ppm. c 80% or more of the non-viscous inclusions are SiO2 : 25-70%,
MnO: 5-40%, MgO: 40% or less, Al 2 O 3 :
35% or less, CaO: 25% or less, with SiO 2 and MnO as the main components, Al 2 O 3 or MgO or both at 5% or more, CaO 2% or more, and
It must be a quinary or higher oxide containing a total of 6% or less of oxides derived from the addition of Ti, V, Ba, Zr, and Na and trace amounts of oxides that are unavoidably mixed. 2. For ultra-fine steel wires consisting of C: 0.6 to 1.0%, Mn: 0.3 to 0.7%, P: 0.025% or less, S: 0.025% or less, the balance being iron and unavoidable impurities, and satisfying the following conditions: A method for producing ultra-fine steel wire, which is characterized in that when processing high-strength steel wire into ultra-fine wire of 0.4 mm or less, a processing strain of 96% or more in area reduction rate is applied in the final wire drawing process. a Contain Si: 0.4 to 0.8% and Cr: 0.2 to 0.6%. b. Total oxygen content is 15-50 ppm. c 80% or more of the non-viscous inclusions are SiO2 : 25-70%,
MnO: 5-40%, MgO: 40% or less, Al 2 O 3 :
In the composition range of 35% or less, CaO: 25% or less, SiO 2 and MnO are the main components, Al 2 O 3 or MgO or both of 5% or more, CaO 2% or more, and
It must be a quinary or higher oxide containing a total of 6% or less of oxides derived from the addition of Ti, V, Ba, Zr, and Na and trace amounts of oxides that are unavoidably mixed.
JP2256987A 1987-02-04 1987-02-04 High strength steel wire rod for extra fine steel wire Granted JPS63192846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256987A JPS63192846A (en) 1987-02-04 1987-02-04 High strength steel wire rod for extra fine steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256987A JPS63192846A (en) 1987-02-04 1987-02-04 High strength steel wire rod for extra fine steel wire

Publications (2)

Publication Number Publication Date
JPS63192846A JPS63192846A (en) 1988-08-10
JPH0371502B2 true JPH0371502B2 (en) 1991-11-13

Family

ID=12086506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256987A Granted JPS63192846A (en) 1987-02-04 1987-02-04 High strength steel wire rod for extra fine steel wire

Country Status (1)

Country Link
JP (1) JPS63192846A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627373B2 (en) * 1991-07-08 1997-07-02 金井 宏之 High strength extra fine metal wire
US5603208A (en) * 1992-12-10 1997-02-18 Bridgestone Bekaert Steel Cord Co., Ltd. Composite rubber bodies using steel cords for the reinforcement of rubber articles
DE19511057C1 (en) * 1995-03-25 1996-05-23 Riwo Drahtwerk Gmbh Mfr. of scraping or brushing wire
CN1104508C (en) 1999-06-16 2003-04-02 新日本制铁株式会社 High carbon steel wire rod excellent in drawability and fatigue resistance after wire drawing
US9062361B2 (en) 2006-12-28 2015-06-23 Kobe Steel, Ltd. Si-killed steel wire rod and spring excellent in fatigue properties
KR101168480B1 (en) 2006-12-28 2012-07-26 가부시키가이샤 고베 세이코쇼 Silicon-killed steel wire material and spring
JP6736950B2 (en) * 2016-04-08 2020-08-05 日本製鉄株式会社 Steel wire and method for manufacturing the steel wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Also Published As

Publication number Publication date
JPS63192846A (en) 1988-08-10

Similar Documents

Publication Publication Date Title
US5211772A (en) Wire rod for high strength and high toughness fine steel wire, high strength and high toughness fine steel wire, twisted products using the fine steel wires, and manufacture of the fine steel wire
US6277220B1 (en) Steel wire rod and process for producing steel for steel wire rod
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
EP1114879B1 (en) High carbon steel wire rod excellent in drawability and fatigue resistance after wire drawing
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JPH0853737A (en) High strength and high toughness hot-dip plated steel wire and its production
JPH0371502B2 (en)
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP3237305B2 (en) High carbon steel wire for high strength and high ductility steel wire
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JPH0949018A (en) Production of steel wire for reinforcing rubber
JP2005163082A (en) High carbon steel wire rod having excellent longitudinal crack resistance
JPH06312209A (en) Ultra-fine steel wire excellent in wire-drawability and fatigue strength and its manufacture
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JPH07265936A (en) Manufacture of steel wire for steel cord with generation of delamination suppressed
JPS5856021B2 (en) High cleanliness steel and its manufacturing method
JP3546551B2 (en) High carbon steel wire with excellent drawability
JPH06312210A (en) Steel wire for steel cord excellent in fatigue strength and its manufacture
JPS634039A (en) High-strength wire rod for ultra fine steel wire excellent in workability
KR100230523B1 (en) High strength steel wire with excellent in fatigue
JP3341300B2 (en) High carbon steel wire for high strength and high ductility steel wire

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term