JPH09202944A - High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production - Google Patents

High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production

Info

Publication number
JPH09202944A
JPH09202944A JP1087896A JP1087896A JPH09202944A JP H09202944 A JPH09202944 A JP H09202944A JP 1087896 A JP1087896 A JP 1087896A JP 1087896 A JP1087896 A JP 1087896A JP H09202944 A JPH09202944 A JP H09202944A
Authority
JP
Japan
Prior art keywords
wire rope
fatigue resistance
corrosion resistance
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1087896A
Other languages
Japanese (ja)
Inventor
Koji Takano
光司 高野
Satoshi Araki
敏 荒木
Wataru Murata
亘 村田
Koji Kanda
康治 神田
Takuya Murakami
卓也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokyo Seiko Co Ltd
Original Assignee
Nippon Steel Corp
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tokyo Seiko Co Ltd filed Critical Nippon Steel Corp
Priority to JP1087896A priority Critical patent/JPH09202944A/en
Publication of JPH09202944A publication Critical patent/JPH09202944A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a wire rope having respectively specified average crystalline grain size in cross-sectional direction and tensile strength by specifying the composition and manufacturing method of a stainless steel wire rope, respectively. SOLUTION: A wire rod, in as-hot-rolled state or after heat treatment, having a composition which consists of, by weight, <=0.12% C, 0.1-1.5% Si, >1.5-8.0% Mn, <=0.03% P, <=0.01% S, 3.5-7.5% Ni, 20.0-28.0% Cr, 0.1-3.0% Mo, and the balance Fe and in which the value of G1, represented by the equation, G1=0.67 Ni+20C+0.34Mn+0.4Cr+0.4Mo+0.6Si+3, is regulated to -1 to 2(%) is used. This wire rod is subjected to wire drawing at >=50% total reduction of area, to heat treatment at 1,000-1,150 deg.C, successively to wire drawing at 80-95% reduction of area, and then to stranding. By this method, the wire rope, having <=5μ average crystalline grain side in cross-sectional direction and >=1,500N/mm<2> tensile strength, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐疲労性、耐食性を
必要とする用途に使用される高強度ステンレス鋼ワイヤ
ロープに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength stainless steel wire rope used for applications requiring fatigue resistance and corrosion resistance.

【0002】[0002]

【従来の技術】近年、メンテナンスフリーの観点から水
門用、エレベータ用等の高強度ワイヤロープの高耐食性
化の要求が高まってきた。すなわち、過酷な環境でも錆
びにくいようにSUS304並以上の耐食性が要求され
るようになってきた。また、この種の高強度ワイヤロー
プは長期間使用しても破損しないために高炭素鋼ロープ
と同等の耐疲労性が要求される。
2. Description of the Related Art In recent years, there has been an increasing demand for high corrosion resistance of high strength wire ropes for sluices, elevators, etc. from the viewpoint of maintenance-free. That is, corrosion resistance equal to or higher than that of SUS304 has come to be required so as to prevent rusting even in a harsh environment. Further, this type of high-strength wire rope is not damaged even if it is used for a long period of time, and thus it is required to have fatigue resistance equivalent to that of a high carbon steel rope.

【0003】従来、高強度のワイヤロープに高炭素鋼の
パーライト鋼が使用されてきた。しかし、耐食性が悪い
ばかりか、耐食性・耐疲労性のため表面に油を塗布して
おり、環境汚染も引き起こしてきた。そのため、高耐食
性の観点からSUS304,SUS316等の伸線加工
されたオーステナイト系ステンレスワイヤロープの使用
が検討されてきた。しかし、オーステナト系ステンレス
ワイヤロープは長期間使用すると、繰り返し疲労による
早期破断が発生する問題があり、用途が制限されてい
る。
Conventionally, high carbon steel pearlite steel has been used for high strength wire ropes. However, not only the corrosion resistance is poor, but oil is applied to the surface for corrosion resistance and fatigue resistance, which causes environmental pollution. Therefore, from the viewpoint of high corrosion resistance, the use of wire-drawn austenitic stainless wire rope such as SUS304 and SUS316 has been studied. However, when the austenato stainless steel wire rope is used for a long period of time, there is a problem that premature rupture occurs due to repeated fatigue, and its application is limited.

【0004】一方、近年、2相ステンレス鋼の疲労強度
について、2相組織による結晶粒の微細化、2相組織の
硬質相の増加、2つの相の各相の耐力比の増大により耐
疲労性が向上することが提案されている(友田陽ら:鉄
と鋼,第63号(1977),第6号,P64)。ま
た、一般に鋼の高強度化により耐疲労性が向上されるこ
とが知られている(例えば、岡栄一ら:製鉄研究,第3
20号(1986年),P28)。さらに、伸線加工に
より高強度化された2相ステンレス鋼線の耐疲労性が伸
線加工により高強度化されたオーステナイト系ステンレ
ス鋼線より優れていることが確認されている(児玉勝
ら:ばね論文集,第37号(1992年),P1)。
On the other hand, in recent years, regarding the fatigue strength of duplex stainless steel, the fatigue resistance is increased by the refinement of crystal grains due to the two-phase structure, the increase of the hard phase of the two-phase structure, and the increase of the proof stress ratio of each phase of the two phases. Have been proposed (Yo Tomoda et al .: Iron and Steel, No. 63 (1977), No. 6, P64). Further, it is generally known that the fatigue resistance is improved by increasing the strength of steel (for example, Eiichi Oka et al .: Research on Steelmaking, No. 3
20 (1986), P28). Furthermore, it has been confirmed that the fatigue resistance of the duplex stainless steel wire strengthened by wire drawing is superior to the austenitic stainless steel wire strengthened by wire drawing (Kodama Katsu et al .: Spring Papers, No. 37 (1992), P1).

【0005】そこで、最近、この2相ステンレス鋼の耐
疲労性に注目して、2相ステンレス鋼線の伸線材のワイ
ヤロープへの適用を提案している(特開平6−2877
14号公報)。しかし、この2相ステンレス鋼ロープは
高炭素鋼ワイヤロープに対し、引張強さが低いという欠
点があり、耐疲労性を落とすこと無く、高強度化させる
ことが要求されている。すなわち、従来の2相ステンレ
ス鋼のレベルである1500N/mm2 以上、好ましくは
高炭素鋼並以上の1700N/mm2 以上が要求されてい
る。
Therefore, recently, paying attention to the fatigue resistance of the duplex stainless steel, it has been proposed to apply the drawn wire of the duplex stainless steel wire to the wire rope (Japanese Patent Laid-Open No. 6-2877).
No. 14). However, this duplex stainless steel rope has a drawback that the tensile strength is low as compared with the high carbon steel wire rope, and it is required to increase the strength without lowering the fatigue resistance. That, 1500 N / mm 2 or more at the level of a conventional two-phase stainless steel, preferably parallel over 1700 N / mm 2 or more high-carbon steel is required.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記課題を解
決するものであり、耐疲労性、耐食性を必要とする用途
に使用される高強度ステンレス鋼ワイヤロープおよびそ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is to solve the above problems and provides a high strength stainless steel wire rope used for applications requiring fatigue resistance and corrosion resistance, and a method for producing the same. To aim.

【0007】[0007]

【課題を解決するための手段】本発明は、2相ステンレ
ス鋼ワイヤロープの成分およびその製造方法を種々検討
した結果、以下の知見を得たことによる。すなわち、重
量%で、 (1) C :0.12%以下、 Si:0.1%〜1.5%、 Mn:1.5%超〜8.0%、 P :0.03%以下、 S :0.01%以下、 Ni:3.5%〜7.5%、 Cr:20.0%〜28.0%、 Mo:0.1%〜3.0% を含有し、下記式(1)で表されるG1の値が−1〜2
(%)で残部が実質的にFeおよび不可避的不純物から
なる合金組成で、横断面方向の平均結晶粒径が5μm以
下であり、引張強さが1500N/mm2 以上にすると耐
疲労・耐食性に優れた高強度ステンレスワイヤロープが
得られることを見いだした。 G1=0.67Ni+20C+0.34Mn−0.4Cr−0.4Mo −0.6Si+3・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
The present invention is based on the following findings as a result of various studies on components of a duplex stainless steel wire rope and a method for producing the same. That is, in% by weight, (1) C: 0.12% or less, Si: 0.1% to 1.5%, Mn: more than 1.5% to 8.0%, P: 0.03% or less, S: 0.01% or less, Ni: 3.5% to 7.5%, Cr: 20.0% to 28.0%, Mo: 0.1% to 3.0%, and the following formula ( The value of G1 represented by 1) is -1 to 2
(%) The balance is substantially Fe and unavoidable impurities, and the average crystal grain size in the transverse direction is 5 μm or less, and the tensile strength is 1500 N / mm 2 or more, fatigue resistance and corrosion resistance are improved. It has been found that an excellent high-strength stainless wire rope can be obtained. G1 = 0.67Ni + 20C + 0.34Mn-0.4Cr-0.4Mo-0.6Si + 3 ...・ ・ ・ ・ ・ ・ ・ (1)

【0008】(2) 上記(1) 記載の成分に、さらに重量%
で、 N :0.1%〜0.3% を含有し、下記式(2)で表されるG2の値が−1〜2
(%)であると、さらに、耐疲労、強度が向上すること
を見いだした。 G2=0.67Ni+20C+20N+0.34Mn−0.4Cr −0.4Mo−0.6Si+3・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
(2) In addition to the components described in (1) above, further weight%
And N: 0.1% to 0.3% is contained, and the value of G2 represented by the following formula (2) is -1 to 2
It has been found that when it is (%), fatigue resistance and strength are further improved. G2 = 0.67Ni + 20C + 20N + 0.34Mn-0.4Cr-0.4Mo-0.6Si + 3 ... (2)

【0009】(3) 上記(1) 或いは(2) 記載の成分に、さ
らに重量%で、 Nb:0.05%〜0.50%、 Ti:0.05%〜0.50% のうち1種または2種を含有し、下記式(3)で表され
るG3の値が−1〜2(%)で、鋼線の横断面方向の平
均結晶粒径が3μm未満であるとさらに、耐疲労性、強
度が向上することを見いだした。 G3=0.67Ni+20C+20N+0.34Mn−0.4Cr −0.4Mo−0.6Si−0.9Ti−0.1Nb+3・・・・(3)
(3) In addition to the components described in (1) or (2) above, 1% of Nb: 0.05% to 0.50% and Ti: 0.05% to 0.50% by weight%. Or 2 kinds, the value of G3 represented by the following formula (3) is −1 to 2 (%), and the average grain size in the transverse direction of the steel wire is less than 3 μm, It has been found that fatigue strength and strength are improved. G3 = 0.67Ni + 20C + 20N + 0.34Mn-0.4Cr-0.4Mo-0.6Si-0.9Ti-0.1Nb + 3 ... (3)

【0010】(4) 上記(1) ,(2) 或いは(3) 記載の成分
に、さらに重量%で、 Al:0.01%以下、 Ca:0.001%〜0.004% を含有し、鋼線の横断面方向の介在物の大きさを20μ
m以下に抑制するとさらに、耐疲労性が向上することを
見いだした。
(4) The composition described in (1), (2) or (3) above, further containing Al: 0.01% or less and Ca: 0.001% to 0.004% by weight. , The size of inclusions in the transverse direction of the steel wire is 20μ
It has been found that the fatigue resistance is further improved when the thickness is suppressed to m or less.

【0011】(5) また、上記(1) ,(2) ,(3) 或いは
(4) 記載の成分を有する熱間線材圧延のまま或いは熱処
理後の線材を、減面率で50%以上の伸線加工を施し、
その後、1000℃〜1150℃の温度で熱処理後、引
き続き、減面率で80%〜95%の伸線加工を施し、そ
の後、ストランディングおよびクロージングの撚り線加
工を施すと耐疲労・耐食性に優れた高強度ステンレスワ
イヤロープが得られ、さらに、必要に応じて200〜4
00℃の時効処理を施すと耐疲労性と強度がさらに向上
することを見いだした。
(5) Further, the above (1), (2), (3) or
(4) Hot-rolled wire rods having the components described, or after being heat-treated, are subjected to wire drawing at a surface reduction rate of 50% or more,
After that, after heat treatment at a temperature of 1000 ° C to 1150 ° C, wire drawing work of 80% to 95% in area reduction is performed, and then stranding work of stranding and closing is performed, which is excellent in fatigue resistance and corrosion resistance. High-strength stainless wire rope can be obtained, and if necessary, 200-4
It has been found that fatigue resistance and strength are further improved by applying an aging treatment at 00 ° C.

【0012】[0012]

【発明の実施の形態】本発明は、ワイヤロープの耐疲労
性、耐食性と高強度化の3特性を同時に満たすことを目
的とし、2相ステンレス鋼線の成分、伸線加工および熱
処理の最適化を行っている。すなわち、加工硬化、最適
な相分率、結晶粒微細化、各相の耐力比の増大を図って
いる。また、第3の硬質相を導入し、結晶粒微細化を促
進させ、高耐疲労性、高強度化を図り、さらに、介在物
の形態を抑制することで、耐疲労性の向上を図ってい
る。よって以下の条件に限定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention aims to simultaneously satisfy the three properties of wire rope: fatigue resistance, corrosion resistance and high strength, and optimizes the composition of duplex stainless steel wire, wire drawing and heat treatment. It is carried out. That is, work hardening, optimal phase fraction, grain refinement, and proof stress ratio of each phase are increased. In addition, by introducing a third hard phase to promote the refinement of crystal grains, to achieve high fatigue resistance and strength, and to suppress the form of inclusions, it is possible to improve fatigue resistance. There is. Therefore, the conditions are limited to the following.

【0013】最初に、本発明の製造方法の限定理由を以
下に述べる。本発明は、請求項1〜4記載の成分の線材
に1回目の冷間伸線加工と熱処理を施し、その後、2回
目の冷間伸線加工を行い、鋼線の横断面方向の結晶粒を
微細化させるが、1回目の伸線加工で減面率が50%未
満であると熱処理時の再結晶粒が粗大になり、最終製品
のワイヤロープの横断面方向の結晶粒が5μm超にな
る。この最終製品のワイヤロープの横断面方向の結晶粒
径と耐疲労性の関係を図1に示す。このワイヤロープは
0.03C−0.4Si−5.0Mn−6.5Ni−2
2.5Cr−1.2Mo−0.03Nを基本成分とした
ステンレス鋼線材を10〜85%の減面率で伸線加工を
施し、続いて焼鈍炉にて1050℃の温度で5分間の連
続焼鈍を施し、その後、85%の減面率で伸線加工を施
し、続いて、ストランディングおよびクロージングの撚
り線加工を施した。ワイヤロープ中の横断面方向の結晶
粒径が5μm超になると、耐疲労性であるS曲げ(D/
d=20,SF=6)での寿命までの回数が30000
回未満となる。そのため、1回目の伸線加工での減面率
を50%以上に限定した。
First, the reasons for limiting the manufacturing method of the present invention will be described below. According to the present invention, the wire rod having the components according to claims 1 to 4 is subjected to the first cold drawing and heat treatment, and then the second cold drawing is performed to obtain crystal grains in the cross-sectional direction of the steel wire. However, if the area reduction rate is less than 50% in the first wire drawing, the recrystallized grains during the heat treatment will become coarse, and the grain size in the transverse direction of the wire rope of the final product will exceed 5 μm. Become. FIG. 1 shows the relationship between the grain size in the cross-sectional direction of the wire rope of this final product and the fatigue resistance. This wire rope is 0.03C-0.4Si-5.0Mn-6.5Ni-2.
A stainless steel wire rod whose basic component is 2.5Cr-1.2Mo-0.03N is subjected to wire drawing at a surface reduction rate of 10 to 85%, and then continuously in an annealing furnace at a temperature of 1050 ° C for 5 minutes. Annealing was performed, followed by wire drawing at an area reduction rate of 85%, followed by stranding and stranding for closing. If the crystal grain size in the cross-sectional direction in the wire rope exceeds 5 μm, the fatigue resistance S bending (D /
d = 20, SF = 6), the number of lifespan is 30000
Less than once. Therefore, the area reduction rate in the first wire drawing is limited to 50% or more.

【0014】また、その後の熱処理で熱処理温度が10
00℃未満であるとσ相が析出し、靭性を低下させ、伸
線性を悪くさせるばかりか、耐疲労性を低下させる。逆
に熱処理温度が1150℃超になると最終製品のワイヤ
ロープの横断面方向の結晶粒が粗大化し、5μm超にな
り、耐疲労性が劣化する。そのため、熱処理温度を10
00℃以上、1150℃以下に限定した。
In the subsequent heat treatment, the heat treatment temperature is 10
If the temperature is less than 00 ° C, the σ phase is precipitated, which lowers the toughness, deteriorates the wire drawability, and lowers the fatigue resistance. On the other hand, if the heat treatment temperature exceeds 1150 ° C., the crystal grains in the cross-sectional direction of the wire rope of the final product become coarse and become larger than 5 μm, and the fatigue resistance deteriorates. Therefore, the heat treatment temperature should be 10
The temperature was limited to 00 ° C or higher and 1150 ° C or lower.

【0015】熱処理後、高強度化および高耐疲労性のた
め2回目の伸線加工を行う。この伸線加工での減面率と
ワイヤロープの強度の関係を図2に示す。このワイヤロ
ープは0.03C−0.4Si−5.0Mn−6.5N
i−22.5Cr−1.2Mo−0.03Nを基本成分
としたステンレス鋼線材を60%の減面率で伸線加工を
施し、続いて焼鈍炉にて1050℃の温度で5分間の連
続焼鈍を施した。その後、0〜90%のトータル減面率
で伸線加工を施し、続いて、ストランディングおよびク
ロージングを行い、ワイヤロープを製作した。伸線加工
の減面率が80%未満ではワイヤロープの引張強さが1
500N/mm2 未満となる。そのため2回目の伸線加工
での減面率を80%以上に限定した。
After the heat treatment, a second wire drawing process is carried out in order to enhance strength and fatigue resistance. FIG. 2 shows the relationship between the area reduction rate in this wire drawing process and the strength of the wire rope. This wire rope is 0.03C-0.4Si-5.0Mn-6.5N
i-22.5Cr-1.2Mo-0.03N as a basic component, a stainless steel wire rod was subjected to wire drawing at a surface reduction rate of 60%, and then continuously in an annealing furnace at a temperature of 1050 ° C for 5 minutes. It was annealed. Then, wire drawing was performed at a total area reduction rate of 0 to 90%, followed by stranding and closing to manufacture a wire rope. If the reduction rate of wire drawing is less than 80%, the tensile strength of the wire rope is 1
It is less than 500 N / mm 2 . Therefore, the area reduction rate in the second wire drawing is limited to 80% or more.

【0016】しかし、伸線加工の減面率が95%超にな
ると、図3に示すように伸線後の鋼線の引張破断絞りが
急激に低下し、靭性が劣化する。そのため、図4に示す
ようにワイヤロープの耐疲労性が30000回未満と劣
化する。この図3,4の鋼線およびワイヤロープは0.
03C−0.4Si−5.0Mn−6.5Ni−22.
5Cr−1.2Mo−0.03Nを基本成分としたステ
ンレス鋼線材を60%の減面率で伸線加工を施し、続い
て焼鈍炉にて1050℃の温度で5分間の連続焼鈍を施
した。その後、80〜99%の減面率で伸線加工を施
し、図4のワイヤロープは続いて、ストランディングお
よびクロージングの撚り線加工を施した。従って、2回
目の伸線加工率の上限を95%に限定した。
However, when the area reduction ratio of the wire drawing exceeds 95%, the tensile breaking reduction of the steel wire after wire drawing is drastically lowered as shown in FIG. 3, and the toughness is deteriorated. Therefore, as shown in FIG. 4, the fatigue resistance of the wire rope deteriorates to less than 30,000 cycles. The steel wire and wire rope of FIGS.
03C-0.4Si-5.0Mn-6.5Ni-22.
A stainless steel wire rod containing 5Cr-1.2Mo-0.03N as a basic component was subjected to wire drawing at a surface reduction rate of 60%, and then continuously annealed at a temperature of 1050 ° C for 5 minutes in an annealing furnace. . After that, wire drawing was performed at a surface reduction rate of 80 to 99%, and the wire rope of FIG. 4 was subsequently subjected to stranding of stranding and closing. Therefore, the upper limit of the second wire drawing rate is limited to 95%.

【0017】さらに、その後、必要に応じて本発明の成
分系で時効処理を行う。本発明成分でのオーステナイト
相にはMnまたはNが多く含有されているため、この時
効処理でオーステナイト相の高強度化によりオーステナ
イト相とフェライト相の耐力比の増大が起こり、耐疲労
性は急激に向上する。しかし、200℃未満および40
0℃超ではこの時効処理の効果が少ないため時効温度の
範囲を200〜400℃に限定した。
After that, if necessary, an aging treatment is carried out with the component system of the present invention. Since the austenite phase in the component of the present invention contains a large amount of Mn or N, the aging treatment increases the strength of the austenite phase to increase the yield strength ratio of the austenite phase and the ferrite phase, and the fatigue resistance rapidly increases. improves. However, below 200 ° C and 40
If it exceeds 0 ° C, the effect of this aging treatment is small, so the range of aging temperature is limited to 200 to 400 ° C.

【0018】次に、本発明の成分の限定理由を述べる。
G1,G2は本発明方法により各成分の2相ステンレス
鋼線材を60%の減面率で伸線加工を施し、続いて焼鈍
炉にて1050℃の温度で5分間の連続焼鈍を施し、そ
の後、85%の減面率で伸線加工を施し、続いて、スト
ランディングおよびクロージングの撚り線加工したワイ
ヤロープのオーステナイト相の量、引張強さおよび横断
面方向の平均結晶粒の関係に対する各種元素の影響を調
査した結果得られたものである。C,N,Ni,Mn,
Cr,Si,Mo,Nb,Tiが影響を与える。G1,
G2の値が−1(%)未満であると、図5に示すように
ワイヤロープのオーステナイト相の量が40%未満にな
り、図6に示すようにワイヤロープの製品の引張強度が
1500N/mm2 未満になる。また、G1,G2の値が
2(%)超であると、図5に示すように、ワイヤロープ
中のオーステナイト相の量が70%以上になり、単相組
織に近づくため結晶粒の粗大化がおこり、伸線加工後の
横断面方向の平均結晶粒を5μm以下にすることができ
ず、耐疲労性が低下する。そのため、G1,G2の値を
−1〜2(%)に限定した。
Next, the reasons for limiting the components of the present invention will be described.
For G1 and G2, a duplex stainless steel wire rod of each component was drawn by a method of the present invention at a surface reduction rate of 60%, followed by continuous annealing at a temperature of 1050 ° C. for 5 minutes in an annealing furnace, and thereafter. , Various elements for the relationship between the amount of austenite phase, the tensile strength and the average grain size in the cross-sectional direction of the wire rope that has been subjected to wire drawing at a surface reduction rate of 85% and then stranding of stranding and closing It was obtained as a result of investigating the effect of. C, N, Ni, Mn,
Cr, Si, Mo, Nb and Ti have an influence. G1,
When the value of G2 is less than -1 (%), the amount of austenite phase of the wire rope becomes less than 40% as shown in FIG. 5, and the tensile strength of the wire rope product is 1500 N / as shown in FIG. less than mm 2 . Further, when the values of G1 and G2 are more than 2 (%), the amount of austenite phase in the wire rope becomes 70% or more as shown in FIG. Occurs, the average grain size in the cross-sectional direction after wire drawing cannot be reduced to 5 μm or less, and the fatigue resistance decreases. Therefore, the values of G1 and G2 are limited to -1 to 2 (%).

【0019】Cはワイヤロープの引張強さを確保、また
はオーステナイト相を得るため添加するが、0.12%
を超えて添加すると粗大な粒界炭化物を生成し、耐食性
を劣化させるばかりか、耐疲労性も低下する。そのた
め、上限を0.12%に限定した。Siは脱酸のために
必要な元素であるため、0.1%以上添加する。しか
し、1.5%を超えて添加してもその効果は飽和するば
かりか反対に靭性および耐疲労性を低下させるため、上
限を1.5%に限定した。
C is added to secure the tensile strength of the wire rope or to obtain the austenite phase, but 0.12%
If it is added over the range, coarse grain boundary carbides are formed, which not only deteriorates the corrosion resistance but also reduces the fatigue resistance. Therefore, the upper limit is limited to 0.12%. Since Si is an element necessary for deoxidation, 0.1% or more is added. However, even if added in excess of 1.5%, the effect is saturated and, conversely, the toughness and fatigue resistance are reduced, so the upper limit was limited to 1.5%.

【0020】Mnは脱酸、鋼中のSを固定するばかり
か、オーステナイト相の積層欠陥エネルギーを低下さ
せ、伸線加工による延性低下を抑えて高強度化を図るの
と、オーステナイト相とフェライト相の耐力比を増大さ
せ、耐疲労性を向上させるのに有効な元素であり、1.
5%超添加する。しかし、8.0%を超えて添加すると
G1,G2の値が大きくなり、オーステナイト相が70
%超となり、耐疲労性が低下する。そのため、上限を
8.0%に限定した。Pは粒界偏析元素であり、ワイヤ
ロープの特性および製造性を悪くすることから0.03
%以下に限定した。
Mn not only deoxidizes and fixes S in steel, but also lowers the stacking fault energy of the austenite phase and suppresses the reduction of ductility due to wire drawing to enhance the strength, and the austenite and ferrite phases. Is an element effective in increasing the proof stress ratio and improving the fatigue resistance.
Add more than 5%. However, if the addition exceeds 8.0%, the values of G1 and G2 become large, and the austenite phase becomes 70%.
%, And fatigue resistance decreases. Therefore, the upper limit is limited to 8.0%. P is a grain boundary segregation element, which deteriorates the properties and manufacturability of the wire rope, so 0.03
% Or less.

【0021】Sは粒界偏析元素であり、ワイヤロープの
特性および製造性を悪くすることから0.01%以下に
限定した。Niはオーステナイト相を40%以上得る有
効な元素であるため3.5%以上添加する。しかし、
7.5%を超えて添加するとG1,G2の値が大きくな
り、オーステナイト相が70%超となり、耐疲労性が低
下する。そのため、上限を7.5%に限定した。
S is a grain boundary segregating element, and is limited to 0.01% or less because it deteriorates the properties and manufacturability of the wire rope. Since Ni is an effective element for obtaining an austenite phase of 40% or more, Ni is added in an amount of 3.5% or more. But,
When added in excess of 7.5%, the values of G1 and G2 increase, the austenite phase exceeds 70%, and the fatigue resistance decreases. Therefore, the upper limit is limited to 7.5%.

【0022】Crは耐銹性を向上し、フェライト相を得
る有効な元素であるため、20.0%以上添加する。し
かし、28.0%を超えて添加するとG1,G2の値が
小さくなり、オーステナイト相が40%未満になり、耐
疲労性が低下する。そのため、上限を28.0%にし
た。Moは耐食性を高め、また、強度を高めるのに有効
な元素であるため添加する。しかし、3.0%を超えて
添加してもその効果は飽和するし、G1,G2の値が小
さくなり、オーステナイト相が40%未満になる。その
ため、上限を3.0%にした。
Since Cr is an effective element for improving rust resistance and obtaining a ferrite phase, it is added in an amount of 20.0% or more. However, when added in excess of 28.0%, the values of G1 and G2 become small, the austenite phase becomes less than 40%, and the fatigue resistance decreases. Therefore, the upper limit is set to 28.0%. Mo is an element effective in enhancing the corrosion resistance and the strength, and is therefore added. However, even if added over 3.0%, the effect is saturated, the values of G1 and G2 become small, and the austenite phase becomes less than 40%. Therefore, the upper limit is set to 3.0%.

【0023】Nは伸線加工時の延性低下を抑えて、高強
度を図るのと、オーステナイト相とフェライト相の耐力
比を増大させ耐疲労性を向上させるのに有効な元素であ
るため、必要によっては0.10%以上を添加する。し
かし、0.30%を超えて添加すると鋳造時にブローホ
ールが発生するばかりか、粒界の窒化物が発生し、耐疲
労性を低下させることから、上限を0.30%に限定し
た。Nb,Tiは第3の硬質相である炭窒化物の析出効
果により強度および耐疲労性を高めるのに有効な元素で
あるため、必要によっては0.05%以上添加する。し
かし、添加し過ぎるとその効果は飽和するし、靭性を損
ない、耐疲労性を低下させる。そのため、上限をそれぞ
れ、0.5%に限定した。
N is an element that is effective for suppressing the reduction of ductility during wire drawing, to achieve high strength, and for increasing the yield strength ratio of the austenite phase and the ferrite phase to improve fatigue resistance. Depending on the case, 0.10% or more is added. However, if added in excess of 0.30%, not only blowholes are generated during casting, but also nitrides at grain boundaries are generated and fatigue resistance is reduced, so the upper limit was limited to 0.30%. Nb and Ti are elements effective in increasing strength and fatigue resistance due to the precipitation effect of carbonitride, which is the third hard phase, and are therefore added in an amount of 0.05% or more as necessary. However, if added too much, the effect is saturated, the toughness is impaired, and the fatigue resistance is reduced. Therefore, the upper limits are limited to 0.5%.

【0024】[0024]

【実施例】以下に本発明の実施例について説明する。表
1に試験した材料の成分を示す。また、表2、表3、表
4に実施例の製造条件および評価結果を示す。これらの
実施例は、通常のステンレス鋼線材の製造工程で、溶
製、熱間線材圧延した。その後、表2の実施例No.1
〜No.32は、供試鋼A〜Z,AA〜AFの各線材を
60%の減面率で伸線加工を施し、続いて焼鈍炉にて1
050℃の温度で5分間の連続焼鈍を施した。その後、
85%のトータル減面率で伸線加工を施し、続いて、ス
トランディンングおよびクロージングの撚り線加工を施
した。その後、ワイヤロープの特性として、横断面方向
の平均結晶粒径、オーステナイト相の比率、引張強さ、
耐疲労性、耐食性を評価し、成分の影響を調査した。
Embodiments of the present invention will be described below. Table 1 shows the ingredients of the materials tested. Further, Table 2, Table 3, and Table 4 show the manufacturing conditions and evaluation results of the examples. In these examples, in a normal stainless steel wire manufacturing process, melting and hot wire rolling were performed. After that, the example Nos. 1
-No. In No. 32, wire rods of each of the test steels A to Z and AA to AF were subjected to wire drawing at a surface reduction rate of 60%, followed by 1 in an annealing furnace.
Continuous annealing was performed at a temperature of 050 ° C for 5 minutes. afterwards,
Wire drawing was performed at a total area reduction rate of 85%, followed by stranding and closing stranded wire processing. Then, as the characteristics of the wire rope, the average crystal grain size in the transverse direction, the ratio of the austenite phase, the tensile strength,
Fatigue resistance and corrosion resistance were evaluated and the influence of the components was investigated.

【0025】また、表3、表4の実施例No.33〜N
o.43は、供試鋼Aの線材圧延材を30〜80%の減
面率で伸線加工を施し、続いて焼鈍炉にて900℃〜1
200℃の温度範囲で5分間の連続焼鈍を施した。その
後、減面率で60%〜98%の伸線加工を施し、ワイヤ
ロープにより線加工を行い、その後、必要に応じて50
0℃以下で時効処理を行った。その後、ワイヤロープの
特性として、横断面方向の平均結晶粒径、オーステナイ
ト相の比率、引張強さ、耐疲労性を評価し、各工程の製
造条件の影響を調査した。
In addition, the example Nos. In Tables 3 and 4 were used. 33 to N
o. In No. 43, the rolled wire rod of the sample steel A was subjected to wire drawing at a surface reduction rate of 30 to 80%, and then 900 ° C to 1 in an annealing furnace.
Continuous annealing was performed for 5 minutes in the temperature range of 200 ° C. After that, wire drawing is performed at a surface reduction rate of 60% to 98%, wire drawing is performed with a wire rope, and then 50% if necessary.
Aging treatment was performed at 0 ° C or lower. After that, as the characteristics of the wire rope, the average crystal grain size in the cross-sectional direction, the ratio of the austenite phase, the tensile strength, and the fatigue resistance were evaluated, and the influence of the manufacturing conditions in each step was investigated.

【0026】横断面方向の結晶粒径およびオーステナイ
ト相の比率の測定は、最初にJISG0571によりエ
ッチを行い、続いて30gのフェシリアン化カリウム、
30gの水酸化カリウムと100mlの水の加熱した混
合液で浸漬エッチを行い、フェライト相に着色し、その
後、倍率が1000倍で20視野の平均粒径およびオー
ステナイト相の面積比率を画像解析により求めた。本発
明のワイヤロープの横断面方向の平均結晶粒径は5μm
以下であり、オーステナイト相の比率は40〜70%で
あった。
The crystal grain size in the cross-sectional direction and the ratio of the austenite phase were measured by first performing etching according to JIS G 0571, and then using 30 g of potassium fesilianide,
Immersion etching was performed with a heated mixed solution of 30 g of potassium hydroxide and 100 ml of water to color the ferrite phase, and then the average grain size of 20 fields of view and the area ratio of the austenite phase were obtained by image analysis at a magnification of 1000 times. It was The average crystal grain size in the transverse direction of the wire rope of the present invention is 5 μm
The ratio of the austenite phase was 40 to 70%.

【0027】引張試験はJIS Z2241により製品
のワイヤロープの引張強さを測定した。本発明例のワイ
ヤロープの引張強さは1500N/mm2 以上であった。
高炭素鋼ワイヤロープの引張強さは1700N/mm2
あった。
In the tensile test, the tensile strength of the wire rope of the product was measured according to JIS Z2241. The tensile strength of the wire rope of the invention example was 1500 N / mm 2 or more.
The tensile strength of the high carbon steel wire rope was 1700 N / mm 2 .

【0028】耐疲労性試験はS字曲げ疲労試験機を用
い、1ロープピッチ当たりの最外層素線の断線数が側ス
トランド構成総素線数の10%に達したところで試験を
終了し、この時の繰り返し曲げ回数を耐疲労性の指標と
した。本発明例のワイヤロープの耐疲労性は高炭素鋼並
であった。
For the fatigue resistance test, an S-shaped bending fatigue tester was used, and the test was terminated when the number of wire breaks in the outermost layer strand per rope pitch reached 10% of the total number of strands constituting the side strand. The number of repeated bendings was used as an index of fatigue resistance. The fatigue resistance of the wire rope of the example of the present invention was comparable to that of high carbon steel.

【0029】耐食性は濃度が3%のNaCl溶液を30
℃でワイヤロープに噴霧し、赤錆が発生するまでの時間
を測定した。但し、1000h試験しても赤錆が発生し
ないものについては1000時間で試験を止めた。本発
明例のワイヤロープは800時間以上でも錆びず、52
0h以上で赤錆が発生したSUS304以上であった。
The corrosion resistance is 30% with a NaCl solution having a concentration of 3%.
The wire rope was sprayed at ℃, and the time until red rust was generated was measured. However, the test was stopped after 1000 hours for those in which red rust did not occur even after the 1000-hour test. The wire rope of the example of the present invention does not rust even after 800 hours,
It was SUS304 or more in which red rust was generated at 0 hours or more.

【0030】最初に、ワイヤロープの特性として、横断
面方向の平均結晶粒径、オーステナイト相の比率、引張
強さ、耐疲労性、耐食性に及ぼす成分の影響を述べる。
No.1〜No.3は供試鋼A〜Cの0.5Si−3.
5Mn−6.5Ni−22.5Cr−1.2Mo−0.
02Nを基本成分としてオーステナイト生成元素である
C量(%)を変化させて、各元素の横断面方向の平均結
晶粒径、オーステナイト相の比率、引張強さ、耐疲労
性、耐食性への影響を調査し、本発明効果を確認したも
のである。供試鋼A,Bにおいて本発明の効果が確認で
きる。比較例No.3はC量が高いため、耐疲労性に劣
る。
First, as the characteristics of the wire rope, the effects of the components on the average crystal grain size in the transverse direction, the ratio of the austenite phase, the tensile strength, the fatigue resistance and the corrosion resistance will be described.
No. 1 to No. 3 is 0.5Si-3.
5Mn-6.5Ni-22.5Cr-1.2Mo-0.
By changing the amount of C (%) that is an austenite-forming element with 02N as a basic component, the effect on the average crystal grain size of each element in the cross-sectional direction, austenite phase ratio, tensile strength, fatigue resistance, corrosion resistance It was investigated and the effect of the present invention was confirmed. The effects of the present invention can be confirmed in the test steels A and B. Comparative Example No. Since No. 3 has a high C content, it is inferior in fatigue resistance.

【0031】No.1,No.4〜No.7は供試鋼
A,D〜Gの0.03C−0.5Si−6.5Mn−2
2.5Cr−1.2Mo−0.02Nを基本成分として
オーステナイト生成元素であるMn量(%)を変化させ
て、各元素の横断面方向の平均結晶粒径、オーステナイ
ト相の比率、引張強さ、耐疲労性、耐食性への影響を調
査し、本発明効果を確認したものである。供試鋼A,
E,Fにおいて本発明の効果が確認できる。比較例N
o.4はMn量が低いため、引張強度に劣る。比較例N
o.7はMn量が高く、G1の値が高いため、オーステ
ナイト相の比率が高く、横断面方向の平均結晶粒径が大
きく、耐疲労性に劣る。
No. 1, No. 4 to No. 7 is 0.03C-0.5Si-6.5Mn-2 of the sample steels A and D to G
2.5Cr-1.2Mo-0.02N is used as a basic component and the amount of Mn (%) that is an austenite-forming element is changed, and the average crystal grain size in the transverse direction of each element, the ratio of the austenite phase, and the tensile strength. The effects of the present invention were confirmed by investigating the effects on fatigue resistance and corrosion resistance. Test Steel A,
The effects of the present invention can be confirmed in E and F. Comparative Example N
o. Since No. 4 has a low Mn content, it has poor tensile strength. Comparative Example N
o. Since No. 7 has a high Mn content and a high G1 value, the ratio of the austenite phase is high, the average crystal grain size in the cross-sectional direction is large, and the fatigue resistance is poor.

【0032】No.6,No.8,No.9は供試鋼
F,H,Iの0.03C−7.0Mn−6.5Ni−2
2.2Cr−1.2Mo−0.03Nを基本成分として
フェライト生成元素であるSi量(%)を変化させて、
各元素の横断面方向の平均結晶粒径、オーステナイト相
の比率、引張強さ、耐疲労性、耐食性への影響を調査
し、本発明効果を確認したものである。供試鋼F,Hに
おいて本発明の効果が確認できる。比較例No.9はS
i量が高いため、耐疲労性に劣る。
No. 6, No. 8, No. 9 is 0.03C-7.0Mn-6.5Ni-2 of the sample steels F, H, and I.
2.2Cr-1.2Mo-0.03N is used as a basic component and the amount of Si (%) which is a ferrite forming element is changed,
The effects of the present invention were confirmed by investigating the influence of each element on the average crystal grain size in the cross-sectional direction, austenite phase ratio, tensile strength, fatigue resistance, and corrosion resistance. The effects of the present invention can be confirmed in the test steels F and H. Comparative Example No. 9 is S
Since the amount of i is high, the fatigue resistance is poor.

【0033】No.10〜No.12は供試鋼J,K,
Lの0.03C−0.5Si−5.5Mn−22.4C
r−1.0Mo−0.03Nを基本成分としてオーステ
ナイト生成元素であるNi量(%)を変化させて、各元
素の横断面方向の平均結晶粒径、オーステナイト相の比
率、引張強さ、耐疲労性、耐食性への影響を調査し、本
発明効果を確認したものである。供試鋼Jにおいて本発
明の効果が確認できる。比較例No.11はNi量が低
いため、G1の値が低いため、オーステナイト相の比率
が低く、引張強さに劣るばかりか、横断面方向の平均結
晶粒径が大きく、耐疲労性に劣る。比較例No.12は
Ni量が高く、G1の値が高いため、オーステナイト相
の比率が高く、横断面方向の平均結晶粒径が大きく、耐
疲労性に劣る。
No. 10-No. 12 is the test steel J, K,
L 0.03C-0.5Si-5.5Mn-22.4C
By changing the amount (%) of Ni, which is an austenite-forming element, with r-1.0Mo-0.03N as a basic component, the average crystal grain size in the cross-sectional direction of each element, the ratio of the austenite phase, the tensile strength, and the resistance to The effect on the present invention was confirmed by investigating the effects on fatigue resistance and corrosion resistance. The effect of the present invention can be confirmed in the sample steel J. Comparative Example No. Since No. 11 has a low Ni content and a low G1 value, it has a low austenite phase ratio and is inferior in tensile strength, and also has a large average crystal grain size in the cross-sectional direction and is inferior in fatigue resistance. Comparative Example No. Since No. 12 has a high Ni content and a high G1 value, the ratio of the austenite phase is high, the average crystal grain size in the cross-sectional direction is large, and the fatigue resistance is poor.

【0034】No.13〜No.16は供試鋼M〜Pの
0.03C−0.5Si−4.5Mn−7.1Ni−
1.0Mo−0.03Nを基本成分としてフェライト生
成元素であるCr量(%)を変化させて、各元素の横断
面方向の平均結晶粒径、オーステナイト相の比率、引張
強さ、耐疲労性、耐食性への影響を調査し、本発明効果
を確認したものである。供試鋼M,Nにおいて本発明の
効果が確認できる。比較例No.15はCr量が低く、
G1の値が高いため、オーステナイト相の比率が高く、
横断面方向の平均結晶粒径が大きく、耐疲労性に劣る。
比較例No.16はCr量が高く、G1の値が低いた
め、オーステナイト相の比率が低く、引張強さに劣る。
No. 13-No. 16 is 0.03C-0.5Si-4.5Mn-7.1Ni- of the sample steels M to P.
The amount of Cr (%) that is a ferrite-forming element is changed with 1.0Mo-0.03N as a basic component, and the average grain size in the cross-sectional direction of each element, the ratio of the austenite phase, the tensile strength, and the fatigue resistance. The effect on the corrosion resistance was investigated and the effect of the present invention was confirmed. The effects of the present invention can be confirmed in the test steels M and N. Comparative Example No. 15 has a low Cr content,
Since the value of G1 is high, the ratio of the austenite phase is high,
The average grain size in the cross-sectional direction is large and the fatigue resistance is poor.
Comparative Example No. Since No. 16 has a high Cr content and a low G1 value, the ratio of the austenite phase is low and the tensile strength is poor.

【0035】No.17〜No.19は供試鋼Q〜Sの
0.03C−0.5Si−5.2Mn−6.4Ni−2
3Cr−0.03Nを基本成分としてフェライト生成元
素であるMo量(%)を変化させて、各元素の横断面方
向の平均結晶粒径、オーステナイト相の比率、引張強
さ、耐疲労性、耐食性への影響を調査し、本発明効果を
確認したものである。供試鋼Q,Sにおいて本発明の効
果が確認できる。比較例No.19はMo量が高く、G
1の値が低いため、オーステナイト相の比率が低く、引
張強さに劣る。
No. 17-No. 19 is 0.03C-0.5Si-5.2Mn-6.4Ni-2 of the sample steels QS.
3Cr-0.03N is used as a basic component and the amount of Mo (%), which is a ferrite-forming element, is changed, and the average crystal grain size in the cross-sectional direction of each element, austenite phase ratio, tensile strength, fatigue resistance, corrosion resistance The effect on the present invention was investigated and the effect of the present invention was confirmed. The effect of the present invention can be confirmed in the test steels Q and S. Comparative Example No. 19 has a high amount of Mo, G
Since the value of 1 is low, the ratio of the austenite phase is low and the tensile strength is poor.

【0036】No.20〜No.23は供試鋼T〜Wの
0.02C−0.5Si−2.3Mn−23Cr−1.
2Moを基本成分としてオーステナイト生成元素である
Ni量(%)とN量(%)を変化させて、各元素の横断
面方向の平均結晶粒径、オーステナイト相の比率、引張
強さ、耐疲労性、耐食性への影響を調査し、本発明効果
を確認したものである。供試鋼T,U,Vにおいて本発
明の効果が確認できる。特に、N量(%)を0.10%
以上添加した供試鋼U,Vにおいては無添加の供試鋼T
より高強度・高耐疲労性を示し、本発明の効果が著し
い。比較例No.23はN量が高いため、窒化物および
ブローホール生成のため、耐疲労性に劣る。
No. 20-No. 23 is 0.02C-0.5Si-2.3Mn-23Cr-1.
By changing the amount of Ni (%) and the amount of N (%) that are austenite forming elements with 2Mo as a basic component, the average crystal grain size in the transverse direction of each element, austenite phase ratio, tensile strength, fatigue resistance The effect on the corrosion resistance was investigated and the effect of the present invention was confirmed. The effects of the present invention can be confirmed on the test steels T, U, and V. Especially, N amount (%) is 0.10%
In the test steels U and V added above, the test steel T without addition
It exhibits higher strength and fatigue resistance, and the effect of the present invention is remarkable. Comparative Example No. No. 23, which has a high N content, is inferior in fatigue resistance due to the formation of nitrides and blow holes.

【0037】No.1,No.24〜No.25は供試
鋼A,X,Yの0.02C−0.5Si−3.5Mn−
6.3Ni−22.5Cr−0.03Nを基本成分とし
て結晶粒微細化を促進させるTi量(%)およびNb量
(%)を変化させて、各元素の横断面方向の平均結晶粒
径、オーステナイト相の比率、引張強さ、耐疲労性、耐
食性への影響を調査し、本発明効果を確認したものであ
る。供試鋼A,X,Yにおいて本発明の効果が確認でき
る。特にTi量(%)を0.05〜0.5%添加した供
試鋼Xと、Nb量(%)を0.05〜0.5(%)添加
した供試鋼Yにおいては無添加の供試鋼Aより高強度・
高耐疲労性を示し、本発明の効果が著しい。
No. 1, No. 24-No. No. 25 is 0.02C-0.5Si-3.5Mn- of the sample steels A, X, and Y.
By changing the Ti amount (%) and the Nb amount (%) for promoting grain refinement with 6.3Ni-22.5Cr-0.03N as a basic component, the average crystal grain size of each element in the cross-sectional direction, The effects of the present invention were confirmed by investigating the effects on the ratio of austenite phase, tensile strength, fatigue resistance, and corrosion resistance. The effects of the present invention can be confirmed in the test steels A, X, and Y. In particular, in the test steel X added with 0.05 to 0.5% of Ti amount (%) and the test steel Y added with 0.05 to 0.5 (%) of Nb amount, no addition was made. Higher strength than test steel A
It exhibits high fatigue resistance and the effect of the present invention is remarkable.

【0038】No.21,No.26〜No.30は供
試鋼U,Z,AB〜ADの0.02C−0.5Si−
2.2Mn−4.8Ni−22.8Cr−0.15Nを
基本成分として結晶粒微細化を促進させるTi量(%)
およびNb量(%)を変化させて、各元素の横断面方向
の平均結晶粒径、オーステナイト相の比率、引張強さ、
耐疲労性、耐食性への影響を調査し、本発明効果を確認
したものである。供試鋼U,Z〜ABにおいて本発明の
効果が確認できる。特にTi量(%)を0.05〜0.
5%添加した供試鋼Z,ABと、Nb量(%)を0.0
5〜0.5(%)添加した供試鋼AA,ABにおいては
無添加の供試鋼Aより高強度・高耐疲労性を示し、本発
明の効果が著しい。比較例No.29,30はTi量、
Nb量が高過ぎるため、耐疲労性に劣る。
No. 21, No. 26-No. No. 30 is 0.02C-0.5Si- of the sample steels U, Z, AB to AD.
2.2 Mn-4.8Ni-22.8Cr-0.15N as a basic component to promote Ti grain refinement (%)
And the Nb amount (%) are changed to change the average crystal grain size in the transverse direction of each element, the ratio of the austenite phase, the tensile strength,
The effects on the present invention were confirmed by investigating the effects on fatigue resistance and corrosion resistance. The effects of the present invention can be confirmed in the sample steels U, Z to AB. Particularly, the Ti amount (%) is set to 0.05 to 0.
Steels Z and AB added with 5% and Nb content (%) of 0.0
The sample steels AA and AB added with 5 to 0.5 (%) exhibit higher strength and fatigue resistance than the sample steel A without addition, and the effect of the present invention is remarkable. Comparative Example No. 29 and 30 are Ti amount,
Since the amount of Nb is too high, the fatigue resistance is poor.

【0039】No.25,No.28,No.30〜N
o.34は供試鋼Y,AA〜AHの0.02C−0.5
Si−3.6Mn−6.7Ni−22.6Cr−1.2
Mo−0.03N(−0.4Nb)または0.02C−
0.5Si−2.3Mn−4.8Ni−23Cr−0.
15N(−0.3Nb)を基本成分として介在物のサイ
ズに影響を及ぼすAl量(%)およびCa量(%)を変
化させて、横断面方向の平均結晶粒径、オーステナイト
相の比率、引張強さ、耐疲労性、耐食性への影響を調査
し、本発明効果を確認したものである。Al量(%)を
0.01%以下に抑えて、Ca量(%)を0.002%
添加した供試鋼AE〜AHにおいては無添加の供試鋼
Y,AAより高耐疲労性を示し、本発明の効果が著し
い。
No. 25, no. 28, No. 30 to N
o. 34 is 0.02C-0.5 of the sample steels Y and AA to AH.
Si-3.6Mn-6.7Ni-22.6Cr-1.2
Mo-0.03N (-0.4Nb) or 0.02C-
0.5Si-2.3Mn-4.8Ni-23Cr-0.
By changing the Al amount (%) and Ca amount (%) that influence the size of inclusions with 15 N (-0.3 Nb) as a basic component, the average crystal grain size in the cross-sectional direction, austenite phase ratio, and tensile The effects on the present invention were confirmed by investigating the effects on strength, fatigue resistance and corrosion resistance. Al content (%) is suppressed to 0.01% or less, Ca content (%) is 0.002%
The added test steels AE to AH exhibit higher fatigue resistance than the non-added test steels Y and AA, and the effect of the present invention is remarkable.

【0040】No.35は供試鋼AIのSUS304、
No.36は供試鋼AGの高炭素鋼のワイヤロープの特
性を評価したものである。SUS304の比較例No.
35は耐疲労性に劣り、高炭素鋼のワイヤロープの比較
例No.36は耐食性に劣る。
No. 35 is SUS304 of the test steel AI,
No. 36 is an evaluation of the characteristics of the wire rope of the high carbon steel of the test steel AG. Comparative example No. SUS304.
No. 35 is inferior in fatigue resistance, and is a high carbon steel wire rope comparative example No. 36 has poor corrosion resistance.

【0041】次に、供試鋼Aのワイヤロープの特性とし
て、横断面方向の平均結晶粒径、オーステナイト相の比
率、引張強さ、耐疲労性、耐食性に及ぼす各工程の製造
条件の影響を述べる。No.37〜No.39は1回目
の伸線加工率を30%〜80%まで変化させて、横断面
方向の平均結晶粒径、オーステナイト相とフェライト相
の比率、引張強さ、耐疲労性、耐食性への影響を調査
し、本発明効果を確認したものである。本発明例38,
39において本発明の効果が確認できる。比較例No.
37は1回目の伸線加工率が低いため、その後の熱処理
で結晶粒径が十分に微細にならず、耐疲労性に劣る。
Next, as the characteristics of the wire rope of the sample steel A, the influence of the manufacturing conditions of each step on the average grain size in the transverse direction, the ratio of the austenite phase, the tensile strength, the fatigue resistance, and the corrosion resistance was examined. Describe. No. 37-No. In No. 39, the first wire drawing ratio was changed from 30% to 80%, and the influence on the average crystal grain size in the transverse direction, the ratio of the austenite phase to the ferrite phase, the tensile strength, the fatigue resistance, and the corrosion resistance. It was investigated and the effect of the present invention was confirmed. Invention Example 38,
In 39, the effect of the present invention can be confirmed. Comparative Example No.
Since No. 37 has a low first wire drawing rate, the grain size is not sufficiently fined by the subsequent heat treatment and fatigue resistance is poor.

【0042】No.38,No.40〜No.43は熱
処理温度を900℃〜1200℃まで変化させて、横断
面方向の平均結晶粒径、オーステナイト相の比率、引張
強さ、耐疲労性、耐食性への影響を調査し、本発明効果
を確認したものである。本発明例38,41,42にお
いて本発明の効果が確認できる。比較例No.40は熱
処理温度が低いため、σ相が析出し、耐疲労性に劣る。
比較例No.43は1回目の熱処理温度が高いため、オ
ーステナイト粒径が粗大化し、耐疲労性に劣る。
No. 38, no. 40-No. In No. 43, the heat treatment temperature was changed from 900 ° C. to 1200 ° C., and the effect on the average crystal grain size in the transverse direction, the ratio of the austenite phase, the tensile strength, the fatigue resistance, and the corrosion resistance was investigated, and the effect of the present invention was confirmed. It was done. The effects of the present invention can be confirmed in Invention Examples 38, 41 and 42. Comparative Example No. Since No. 40 has a low heat treatment temperature, a σ phase precipitates and fatigue resistance is poor.
Comparative Example No. In No. 43, since the first heat treatment temperature is high, the austenite grain size becomes coarse and the fatigue resistance is poor.

【0043】No.44〜No.48は2回目の伸線加
工率を60%〜98%まで変化させて、横断面方向の平
均結晶粒径、オーステナイト相の比率、引張強さ、耐疲
労性、耐食性への影響を調査し、本発明効果を確認した
ものである。本発明例No.46,No.47において
本発明の効果が確認できる。比較例No.44,45は
2回目の伸線加工率が低いため、引張強さに劣る。比較
例No.48は2回目の伸線加工率が高いため、靭性の
低下により、耐疲労性に劣る。
No. 44-No. No. 48 changes the second wire drawing rate from 60% to 98%, and investigates the influence on the average crystal grain size in the transverse direction, the ratio of the austenite phase, the tensile strength, the fatigue resistance, and the corrosion resistance, The effects of the present invention have been confirmed. Invention Example No. 46, no. 47, the effect of the present invention can be confirmed. Comparative Example No. Nos. 44 and 45 are low in tensile strength because the second wire drawing rate is low. Comparative Example No. Since No. 48 has a high second wire drawing rate, its toughness deteriorates, resulting in poor fatigue resistance.

【0044】No.49〜No.53は2回目の伸線加
工後の時効処理温度を500℃以下で変化させて、横断
面方向の平均結晶粒径、オーステナイト相の比率、引張
強さ、耐疲労性、耐食性への影響を調査し、本発明効果
を確認したものである。本発明例No.50,51,5
2において本発明の効果が著しく、引張強度が1700
N/mm2 を超えており、高炭素鋼並の強度と耐疲労性を
示す。本発明例No.49は時効処理温度が低過ぎるた
め、強度および耐疲労性の向上が期待できない。本発明
例No.53は時効処理温度が高過ぎるため、耐疲労性
の向上が期待できない。以上の実施例から分かるように
本発明例の優位性が明らかである。
No. 49-No. In No. 53, the aging treatment temperature after the second wire drawing was changed at 500 ° C or less to investigate the influence on the average crystal grain size in the cross-sectional direction, austenite phase ratio, tensile strength, fatigue resistance, and corrosion resistance. However, the effect of the present invention was confirmed. Invention Example No. 50,51,5
2, the effect of the present invention is remarkable and the tensile strength is 1700.
It exceeds N / mm 2 and exhibits strength and fatigue resistance comparable to high carbon steel. Invention Example No. In No. 49, the aging temperature is too low, and therefore improvement in strength and fatigue resistance cannot be expected. Invention Example No. In No. 53, the aging temperature is too high, and therefore improvement in fatigue resistance cannot be expected. As can be seen from the above examples, the superiority of the present invention example is clear.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【発明の効果】本発明により耐疲労・耐食性に優れた高
強度ステンレスワイヤロープを提供することが可能で、
産業上有効な効果がもたらされる。
According to the present invention, it is possible to provide a high strength stainless wire rope having excellent fatigue resistance and corrosion resistance.
Industrially effective effects are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】ワイヤロープの横断面方向の平均結晶粒径と耐
疲労性の関係を示す図である。
FIG. 1 is a diagram showing a relationship between an average crystal grain size in a cross-sectional direction of a wire rope and fatigue resistance.

【図2】伸線加工の減面率とワイヤロープの強度の関係
を示す図である。
FIG. 2 is a diagram showing a relationship between a reduction rate of wire drawing and strength of a wire rope.

【図3】伸線加工の減面率と鋼線の引張破断絞りの関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the area reduction rate of wire drawing and the tensile fracture drawing of steel wire.

【図4】伸線加工の減面率とワイヤロープの耐疲労性の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the area reduction rate of wire drawing and the fatigue resistance of the wire rope.

【図5】ワイヤロープのオーステナイト相の量とG1,
G2の関係を示す図である。
FIG. 5: Amount of austenite phase of wire rope and G1,
It is a figure which shows the relationship of G2.

【図6】G1,G2とワイヤロープの引張強さの関係を
示す図である。
FIG. 6 is a diagram showing the relationship between G1 and G2 and the tensile strength of the wire rope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 亘 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 神田 康治 茨城県新治郡出島村大字宍倉5707 東京製 綱株式会社研究所内 (72)発明者 村上 卓也 東京都中央区日本橋室町2丁目3番14号 東京製綱株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Wataru Murata 3434 Shimada, Hikari City, Yamaguchi Prefecture Inside the Nippon Steel Corporation Hikari Steel Works (72) Inventor Koji Kanda Dejima Village, Shinji-gun, Ibaraki Prefecture 5707 Shishikura Tokyo Tsuna Co., Ltd. Research Institute (72) Inventor Takuya Murakami 2-3-14 Nihonbashi Muromachi, Chuo-ku, Tokyo Tokyo Tsuna Tsuna Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.12%以下、 Si:0.1%〜1.5%、 Mn:1.5%超〜8.0%、 P :0.03%以下、 S :0.01%以下、 Ni:3.5%〜7.5%、 Cr:20.0%〜28.0%、 Mo:0.1%〜3.0%以下 を含有し、下記式(1)で表されるG1の値が−1〜2
(%)で残部が実質的にFeおよび不可避的不純物から
なる合金組成で、横断面方向の平均結晶粒径が5μm以
下であり、引張強さが1500N/mm2 以上であること
を特徴とする耐疲労・耐食性に優れた高強度ステンレス
ワイヤロープ。 G1=0.67Ni+20C+0.34Mn−0.4Cr−0.4Mo −0.6Si+3・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
1. By weight%, C: 0.12% or less, Si: 0.1% to 1.5%, Mn: more than 1.5% to 8.0%, P: 0.03% or less, S: 0.01% or less, Ni: 3.5% to 7.5%, Cr: 20.0% to 28.0%, Mo: 0.1% to 3.0% or less. The value of G1 represented by (1) is −1 to 2
(%) Is an alloy composition in which the balance substantially consists of Fe and unavoidable impurities, the average crystal grain size in the transverse direction is 5 μm or less, and the tensile strength is 1500 N / mm 2 or more. A high-strength stainless wire rope with excellent fatigue and corrosion resistance. G1 = 0.67Ni + 20C + 0.34Mn-0.4Cr-0.4Mo-0.6Si + 3 ...・ ・ ・ ・ ・ ・ ・ (1)
【請求項2】 請求項1記載の成分にさらに重量%で、 N :0.1%〜0.3% を含有し、下記式(2)で表されるG2の値が−1〜2
(%)であることを特徴とする請求項1記載の耐疲労・
耐食性に優れた高強度ステンレスワイヤロープ。 G2=0.67Ni+20C+20N+0.34Mn−0.4Cr −0.4Mo−0.6Si+3・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
2. The component according to claim 1, further containing N: 0.1% to 0.3% by weight, and the value of G2 represented by the following formula (2) is -1 to 2.
(%) Is the fatigue resistance according to claim 1,
High-strength stainless wire rope with excellent corrosion resistance. G2 = 0.67Ni + 20C + 20N + 0.34Mn-0.4Cr-0.4Mo-0.6Si + 3 ... (2)
【請求項3】 請求項1或いは2記載の成分にさらに重
量%で、 Nb:0.05%〜0.50%、 Ti:0.05%〜0.50% のうち1種または2種を含有し、下記式(3)で表され
るG3の値が−1〜2(%)で、鋼線の横断面方向の平
均結晶粒径が3μm未満であることを特徴とする請求項
1或いは2記載の耐疲労・耐食性に優れた高強度ステン
レスワイヤロープ。 G3=0.67Ni+20C+20N+0.34Mn−0.4Cr −0.4Mo−0.6Si−0.9Ti−0.1Nb+3・・・・(3)
3. The component according to claim 1 or 2, further comprising 1% or 2% of Nb: 0.05% to 0.50% and Ti: 0.05% to 0.50% by weight. The value of G3 represented by the following formula (3) is -1 to 2 (%), and the average crystal grain size in the transverse direction of the steel wire is less than 3 µm. High-strength stainless wire rope with excellent fatigue and corrosion resistance as described in 2. G3 = 0.67Ni + 20C + 20N + 0.34Mn-0.4Cr-0.4Mo-0.6Si-0.9Ti-0.1Nb + 3 ... (3)
【請求項4】 請求項1,2または3の何れかに記載の
成分にさらに重量%で、 Al:0.01%以下、 Ca:0.001%〜0.004% を含有し、鋼線の横断面方向の介在物の大きさが20μ
m以下であることを特徴とする請求項1,2または3の
何れかに記載の耐疲労性・耐食性に優れた高強度ステン
レスワイヤロープ。
4. A steel wire containing the component according to claim 1, 2 or 3 in an amount of, by weight%, Al: 0.01% or less and Ca: 0.001% to 0.004%. The size of inclusions in the cross-sectional direction of
The high-strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance according to claim 1, characterized in that it is m or less.
【請求項5】 請求項1,2,3または4の何れかに記
載の成分を有する熱間圧延のまま或いは熱処理後の線材
を、トータル減面率で50%以上の伸線加工を施し、そ
の後、1000℃〜1150℃の温度で熱処理後、引き
続き、減面率で80%〜95%の伸線加工を施し、その
後ワイヤロープにストランディングおよびクロージング
の撚り線加工を施すことを特徴とする耐疲労性・耐食性
に優れた高強度ステンレスワイヤロープの製造方法。
5. A wire rod, which has been hot-rolled or has been heat-treated, having the component according to any one of claims 1, 2, 3 or 4 is subjected to wire drawing at a total area reduction of 50% or more, After that, after heat treatment at a temperature of 1000 ° C. to 1150 ° C., subsequently, a wire drawing process of 80% to 95% in area reduction is performed, and then a stranding process of stranding and closing is performed on the wire rope. A method for manufacturing high-strength stainless wire rope with excellent fatigue resistance and corrosion resistance.
【請求項6】 請求項5記載のワイヤロープに、さらに
200〜400℃の時効処理を施すことを特徴とする耐
疲労性・耐食性に優れた高強度ステンレスワイヤロープ
の製造方法。
6. A method for producing a high-strength stainless wire rope having excellent fatigue resistance and corrosion resistance, which comprises subjecting the wire rope according to claim 5 to aging treatment at 200 to 400 ° C.
JP1087896A 1996-01-25 1996-01-25 High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production Withdrawn JPH09202944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087896A JPH09202944A (en) 1996-01-25 1996-01-25 High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087896A JPH09202944A (en) 1996-01-25 1996-01-25 High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production

Publications (1)

Publication Number Publication Date
JPH09202944A true JPH09202944A (en) 1997-08-05

Family

ID=11762594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087896A Withdrawn JPH09202944A (en) 1996-01-25 1996-01-25 High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPH09202944A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024069A1 (en) * 2007-08-15 2009-02-26 Baofeng Jin A Fe ALLOY
JP2011092284A (en) * 2009-10-27 2011-05-12 Patentstra Co Ltd Medical treatment instrument, method for producing the medical treatment instrument, and assembly of medical endoscope and medical treatment instrument for endoscope
JP2011110381A (en) * 2009-11-30 2011-06-09 Patentstra Co Ltd Medical treatment instrument, method for manufacturing the same, and assembly of medical endoscope and treatment instrument for medical endoscope
CN102319763A (en) * 2011-07-19 2012-01-18 江苏胜达科技有限公司 Processing method of phi 2.10mmHT tempered bead wire
WO2013035588A1 (en) * 2011-09-06 2013-03-14 新日鐵住金株式会社 Two-phase stainless steel
JP2015061944A (en) * 2008-09-19 2015-04-02 フォート ウェイン メタルス リサーチ プロダクツ コーポレーション Fatigue damage resistant wire and method of production thereof
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire
CN113944058A (en) * 2021-09-26 2022-01-18 江苏亚盛金属制品有限公司 High-strength fatigue-resistant duplex stainless steel wire rope and research method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024069A1 (en) * 2007-08-15 2009-02-26 Baofeng Jin A Fe ALLOY
JP2015061944A (en) * 2008-09-19 2015-04-02 フォート ウェイン メタルス リサーチ プロダクツ コーポレーション Fatigue damage resistant wire and method of production thereof
JP2011092284A (en) * 2009-10-27 2011-05-12 Patentstra Co Ltd Medical treatment instrument, method for producing the medical treatment instrument, and assembly of medical endoscope and medical treatment instrument for endoscope
JP2011110381A (en) * 2009-11-30 2011-06-09 Patentstra Co Ltd Medical treatment instrument, method for manufacturing the same, and assembly of medical endoscope and treatment instrument for medical endoscope
CN102319763A (en) * 2011-07-19 2012-01-18 江苏胜达科技有限公司 Processing method of phi 2.10mmHT tempered bead wire
WO2013035588A1 (en) * 2011-09-06 2013-03-14 新日鐵住金株式会社 Two-phase stainless steel
JP5170351B1 (en) * 2011-09-06 2013-03-27 新日鐵住金株式会社 Duplex stainless steel
AU2012305447B2 (en) * 2011-09-06 2015-07-16 Nippon Steel Corporation Two-phase stainless steel
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire
CN113944058A (en) * 2021-09-26 2022-01-18 江苏亚盛金属制品有限公司 High-strength fatigue-resistant duplex stainless steel wire rope and research method thereof

Similar Documents

Publication Publication Date Title
CN101400818B (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
US5948183A (en) Hot-rolled steel sheet and method for forming hot-rolled steel sheet having low yield ratio, high strength and excellent toughness
EP2267177B1 (en) High-strength steel plate and producing method therefor
US5725689A (en) Steel wire of high strength excellent in fatigue characteristics
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
WO2017108251A1 (en) High strength galvannealed steel sheet and method of producing such steel sheet
US6322907B1 (en) Composite wire comprising a carbon-steel core and a stainless-steel outer layer
JP7226548B2 (en) wire
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JPH09202944A (en) High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production
JP4790539B2 (en) High-strength, high-elasticity stainless steel and stainless steel wire
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
JPH09202942A (en) High strength stainless steel wire rope excellent in fatigue resistance and corrosion resistance and its production
JP2973909B2 (en) Non-heat treated steel for high strength rebar and method for producing high strength rebar
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP3011596B2 (en) Low thermal expansion high strength core wire for transmission line and low sag wire using the same
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
KR102635314B1 (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer and method of manufacturing same
JP2001262281A (en) High strength metastable austenitic stainless steel
JP7277484B2 (en) Duplex stainless steel strip and method for manufacturing same
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JPS6130653A (en) High strength spring steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401