JP2670366B2 - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JP2670366B2
JP2670366B2 JP1289942A JP28994289A JP2670366B2 JP 2670366 B2 JP2670366 B2 JP 2670366B2 JP 1289942 A JP1289942 A JP 1289942A JP 28994289 A JP28994289 A JP 28994289A JP 2670366 B2 JP2670366 B2 JP 2670366B2
Authority
JP
Japan
Prior art keywords
temperature side
thermoelectric
thermoelectric material
semiconductor
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1289942A
Other languages
Japanese (ja)
Other versions
JPH03155376A (en
Inventor
武志 野垣内
吉之助 河村
信隆 和智
一彦 岸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Original Assignee
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd filed Critical Japan Atomic Power Co Ltd
Priority to JP1289942A priority Critical patent/JP2670366B2/en
Publication of JPH03155376A publication Critical patent/JPH03155376A/en
Application granted granted Critical
Publication of JP2670366B2 publication Critical patent/JP2670366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electromechanical Clocks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電発電装置に用いられる熱電発電素子に
関するものである。
The present invention relates to a thermoelectric power generation element used in a thermoelectric power generation device.

〔従来の技術〕[Conventional technology]

第9図は熱電発電の原理の説明図で、同図において、
11はP型熱電素材、12はN型熱電素材、13は電気絶縁
物、14は正孔(+)、15は電子(−)、16は高温側の導
体、17と18は低温側の導体、19は導線、20は電球であ
る。
FIG. 9 is an explanatory diagram of the principle of thermoelectric power generation.
11 is a P-type thermoelectric material, 12 is an N-type thermoelectric material, 13 is an electrical insulator, 14 is a hole (+), 15 is an electron (-), 16 is a high temperature side conductor, and 17 and 18 are low temperature side conductors. , 19 is a lead wire, and 20 is a light bulb.

この熱電発電の原理は、公知の温度測定用の熱電対と
同様に、前記両熱電素材11,12の高温側と低温側の温度
差によって、前記両熱電素子11,12に起電力が発生し、
これに電球20を接続すれば、点灯する。
The principle of this thermoelectric power generation is, similar to a known thermocouple for temperature measurement, due to the temperature difference between the high temperature side and the low temperature side of the thermoelectric materials 11,12, electromotive force is generated in the thermoelectric elements 11,12. ,
If you connect the bulb 20 to this, it will light up.

この熱電発電の熱効率ηは、以下の式で表わされる性
能指数Zが大きいほど、理想効率(カルノー効率)に近
づき、また温度差が大きいほど、熱効率ηが上昇する。
これを第10図に示す。
The thermal efficiency η of this thermoelectric power generation is closer to the ideal efficiency (Carnot efficiency) as the figure of merit Z expressed by the following equation is larger, and the thermal efficiency η is higher as the temperature difference is larger.
This is shown in FIG.

ここで、熱電発電の熱効率ηを決定する性能指数Zは
以下の式で表わされたものの平均として定義される。
Here, the performance index Z that determines the thermal efficiency η of thermoelectric power generation is defined as the average of those expressed by the following equation.

ただし、 S(T):温度Tにおけるゼーベック係数 σ(T):温度Tにおける電気伝導度 K(T):温度Tにおける熱伝導度 前述の熱電素材11,12は、熱が流れにくく、その両端
に大きな温度差がついて、大きな起電力を発生するとと
もに、その起電力の素子内部での損失を極力少なくする
ように、電流が通りやすいことが要求される。すなわ
ち、大きな電気伝導度(電気抵抗が小さい)と小さな熱
伝導度(熱抵抗が大きい)が特性として求められてい
る。
However, S (T): Seebeck coefficient at temperature T σ (T): electric conductivity at temperature T K (T): Thermal conductivity at temperature T In the thermoelectric materials 11 and 12 described above, it is difficult for heat to flow, there is a large temperature difference at both ends, a large electromotive force is generated, and a current flows so as to minimize the loss of the electromotive force inside the element. It is required to be easy. That is, a large electrical conductivity (small electrical resistance) and a small thermal conductivity (large thermal resistance) are required as characteristics.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、金属材料の場合は電気伝導度と熱伝導
度の比率は一定であること(ビーデマン・フランツの法
則)が知られており、電気伝導度だけが大きく熱伝導度
の小さい物質を得ることは困難である。
However, it is known that the ratio of electrical conductivity and thermal conductivity is constant in the case of metallic materials (Biedemann-Franz's law), and it is not possible to obtain a substance having only large electrical conductivity and small thermal conductivity. Have difficulty.

本発明は上記のような問題点を解決しようとするもの
である。すなわち、本発明は、電気伝導度の温度依存性
が大きく、それに比較して熱伝導度の温度依存性が小さ
い半導体熱電素材を用い、かつ、高温側での熱と電気の
通過断面積を小さく、低温側ではそれを大きくすること
によって、材料そのものの物性値として決っている熱伝
導度に対する電気伝導度の比を、全体として大きくし、
熱電発電の熱効率を向上させることができる熱電発電素
子を提供することを目的とするものである。
The present invention is intended to solve the above problems. That is, the present invention uses a semiconductor thermoelectric material having a large temperature dependence of electrical conductivity and a smaller temperature dependence of thermal conductivity than that, and a small heat and electricity cross-sectional area on the high temperature side. On the low temperature side, by increasing it, the ratio of electrical conductivity to thermal conductivity, which is determined as the physical property value of the material itself, is increased as a whole,
An object of the present invention is to provide a thermoelectric power generation element capable of improving the thermal efficiency of thermoelectric power generation.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は、電気的にも熱
的にも良導体である高温側電極と、熱電素材と、電気的
にも熱的にも良導体である低温側電極とを順次接合して
なる熱電発電素子において、前記熱電素材は、熱伝導度
の温度依存性に比較して電気伝導度の温度依存性が大き
い反動体熱電素材からなり、かつ、熱電素材は、面に沿
った繰り返し形状からなる平板状であり、該繰り返し形
状は、電気と熱の通過断面積が高温側では小さく、低温
側ではそれが大きくなっているものとした。
In order to achieve the above object, the present invention sequentially joins a high temperature side electrode which is a good conductor both electrically and thermally, a thermoelectric material, and a low temperature side electrode which is a good conductor electrically and thermally. In the thermoelectric power generating element, the thermoelectric material is made of a reaction body thermoelectric material having a large temperature dependence of electric conductivity as compared with the temperature dependence of thermal conductivity, and the thermoelectric material is arranged along the surface. It was a flat plate having a repeating shape. In the repeating shape, the cross section of electricity and heat passing was small on the high temperature side and large on the low temperature side.

〔作 用〕(Operation)

本発明によれば、熱電素材は、熱伝導度の温度依存性
に比較して電気伝導度の温度依存性が大きい半導体であ
るので、上記金属の場合のビーデマン・フランツの法則
に従わなく、また熱電素材は、電気と熱の通過断面積が
高温側では小さく、低温側ではそれが大きくなっている
形状にしているので、熱電素材の全体の熱伝導度を小さ
くしても、電気伝導度の低下を相対的に極めて低く抑え
ることができる。したがって、該素材で定まっている熱
伝導度に対する電気伝導度の比が形状を変えない場合と
比較して大きくなって、熱電発電素子の熱効率、つま
り、発電効率を向上させることができる。
According to the present invention, the thermoelectric material is a semiconductor having a large temperature dependence of the electrical conductivity as compared to the temperature dependence of the thermal conductivity, and therefore does not follow the Wiedemann-Franz law in the case of the above metal, and Since the thermoelectric material has a shape in which the cross-sectional area of electricity and heat is small on the high temperature side and is large on the low temperature side, even if the overall thermal conductivity of the thermoelectric material is reduced, The decrease can be suppressed to be extremely low. Therefore, the ratio of the electrical conductivity to the thermal conductivity determined by the material is increased as compared with the case where the shape is not changed, and the thermal efficiency of the thermoelectric power generation element, that is, the power generation efficiency can be improved.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示した断面図であり、
第2図は第1図の熱電素材を拡大して示した斜視図であ
る。
FIG. 1 is a sectional view showing a first embodiment of the present invention,
FIG. 2 is an enlarged perspective view of the thermoelectric material of FIG.

第1図において、1は熱の良導体からなる基板、2は
酸化ベリリウムまたはダイヤモンド薄膜などからなる電
気的には不良導体で熱的には良導体である電気絶縁物、
3は電気的にも熱的にも良導体である低温側電極、4は
電気的にも熱的にも不良導体である絶縁物、5は後述す
る熱電素材、6は電気的にも熱的にも良導体である高温
側電極、7は電気的にも熱的にも不良導体である絶縁
物、8は酸化ベリリウムまたはダイヤモンド薄膜などか
らなる電気的には不良導体で熱的には良導体である電気
絶縁物である。また第1図にみられる左方の絶縁物4と
中央の絶縁物7の間の熱電素材5がP型熱電素材、右方
の絶縁物4と中央の絶縁物7の間の熱電素材5がN型熱
電素材である。
In FIG. 1, 1 is a substrate made of a good conductor of heat, 2 is an electrically insulating substance made of beryllium oxide, a diamond thin film, or the like, which is an electrically poor conductor and a thermally good conductor,
3 is a low temperature side electrode which is a good conductor electrically and thermally, 4 is an insulator which is a poor conductor electrically and thermally, 5 is a thermoelectric material described later, and 6 is both electrically and thermally High temperature side electrode which is a good conductor, 7 is an insulator which is a bad conductor both electrically and thermally, 8 is an electrically bad conductor which is a beryllium oxide or diamond thin film and is a good conductor electrically It is an insulator. In addition, the thermoelectric material 5 between the left insulator 4 and the central insulator 7 shown in FIG. 1 is a P-type thermoelectric material, and the thermoelectric material 5 between the right insulator 4 and the central insulator 7 is It is an N-type thermoelectric material.

そして、第2図に示すように、各熱電素材5は、熱電
素材は、面に沿った繰り返し形状からなる平板状であ
り、この繰り返し形状は、電気と熱の通過断面積が、高
温側では小さく、低温側ではそれが徐々に大きくなるよ
うに、ピラミッドの頂上を平面にしたような形状になっ
ている。
Then, as shown in FIG. 2, each thermoelectric material 5 has a flat plate shape having a repeating shape along the surface, and this repeating shape has a cross-sectional area of passage of electricity and heat on the high temperature side. It is small and has a shape like a flat top of the pyramid so that it gradually increases on the low temperature side.

第3図は本発明の第2実施例を示し、第4図は同じく
第3実施例を示し、第5図は同じく第4実施例を示した
斜視図であり、いずれも、熱電素子5だけを示し、他の
部材については、図示を省略している。
FIG. 3 shows a second embodiment of the present invention, FIG. 4 shows the same third embodiment, and FIG. 5 is a perspective view showing the same fourth embodiment. In all, only the thermoelectric element 5 is shown. The other members are not shown.

そして、第3図では、熱電素材5が截頭円錐形(円錐
台形)になっており、第4図では、熱電素材5の内部に
逆円錐形の空洞を有し、第5図では、底面(低温側)に
届かない円筒状の空洞を有し、いずれも、電気と熱の通
過断面積が熱電素子の高温側では小さく、低温側では大
きくなっている。
And in FIG. 3, the thermoelectric material 5 is frustoconical (frustroconical), and in FIG. 4, it has an inverted conical cavity inside the thermoelectric material 5, and in FIG. It has a cylindrical cavity that does not reach the (low temperature side), and the cross section of electricity and heat is small on the high temperature side of the thermoelectric element and large on the low temperature side.

第6図には、大きなゼーベック係数Sを示すアモルフ
ァス半導体FeSi2熱電素材の電気伝導度σの特性の一例
を示している。
FIG. 6 shows an example of the characteristic of the electric conductivity σ of the amorphous semiconductor FeSi 2 thermoelectric material exhibiting a large Seebeck coefficient S.

同図の曲線a,b,cは、(x/100)原子%Mnを入れたFe
1-xMnx(SiO)の場合で、曲線aは0.5原子%Mn、つま
り、Fe0.995Mn0.005(SiO)であり、曲線bはMnが0
原子%、曲線cはMnが3.9原子%の場合である。
Curves a, b, and c in the figure are Fe containing (x / 100) atom% Mn.
In the case of 1-x Mn x (SiO) 2, the curve a 0.5 atomic% Mn, i.e., a Fe 0.995 Mn 0.005 (SiO) 2 , curve b Mn 0
Atom%, curve c is for Mn 3.9 atom%.

第6図の曲線aの電気伝導度σは、素子の温度が300
度(絶対温度)から700度(絶対温度)になるにつれ
て、0.1(Ω-1cm-1)から20(Ω-1cm-1)と、2桁以上
大きくなることがわかる。
The electric conductivity σ of the curve a in FIG.
It can be seen that the temperature increases from 0.1 (Ω -1 cm -1 ) to 20 (Ω -1 cm -1 ) by two digits or more as the temperature (absolute temperature) changes to 700 degrees (absolute temperature).

一方、半導体の熱伝導度Kは温度Tが大きく変化して
も、一般にあまり変化しないことが知られている。
On the other hand, it is known that the thermal conductivity K of a semiconductor generally does not change much even if the temperature T changes greatly.

したがって、第2図〜第5図の実施例の熱電素材5と
しては、第6図の曲線aで示される素材、つまり、Fe
0.995Mn0.005(SiO)を用い、すなわち、熱伝導度K
の温度依存性に比較して電気伝導度σの温度依存性が、
きわめて大きい半導体熱電素材を用いた例である。
Therefore, as the thermoelectric material 5 of the embodiment shown in FIGS. 2 to 5, the material shown by the curve a in FIG. 6, that is, Fe
0.995 Mn 0.005 (SiO) 2 is used, that is, thermal conductivity K
The temperature dependence of the electrical conductivity σ is
This is an example using an extremely large semiconductor thermoelectric material.

ここで、もし、電気伝導度σと熱伝導度Kが、ともに
温度依存性がない熱電素材を用いた場合には、高温側で
前記断面積を小さくしても、その分だけ、電気伝導度σ
も熱伝導度Kも同じ割合で小さくなるため、素子全体で
平均した となり、一定であるので、性能指数Zも一定である。し
たがって、熱効率ηも変化しない。
Here, if a thermoelectric material whose electric conductivity σ and thermal conductivity K do not have temperature dependence is used, even if the cross-sectional area is decreased on the high temperature side, the electric conductivity is correspondingly increased. σ
And thermal conductivity K are also reduced at the same rate, so averaged over the entire device. Therefore, the figure of merit Z is also constant. Therefore, the thermal efficiency η also does not change.

しかし、第6図の曲線aで示される特性を有する半導
体熱電素材、つまり、第2図〜第5図の熱電素材5の場
合は、熱伝導度Kには温度依存性が少なく、電気伝導度
σに第6図の曲線aのような大きな温度依存性があるの
で、上記のケースとは異なり、以下のようになる。
However, in the case of the semiconductor thermoelectric material having the characteristics shown by the curve a in FIG. 6, that is, in the case of the thermoelectric material 5 in FIGS. 2 to 5, the thermal conductivity K has little temperature dependence and the electrical conductivity Since σ has a large temperature dependency as shown by the curve a in FIG. 6, unlike the above case, it is as follows.

すなわち、熱伝導度Kは高温側で前記断面積が小さく
なった分だけ小さくなるが、電気伝導度σは高温側でそ
の温度依存性により低温側での値よりも大きな値(桁の
オーダ)を示すので、前記断面積が小さくなって高温域
での電気伝導度σが多少低下(数分の一のオーダ)して
も、素子全体の比、すなわち は大きくなり、性能指数Zも大きくなる。これにより、
熱効率ηも向上する。
That is, the thermal conductivity K becomes smaller on the high temperature side by the smaller cross-sectional area, but the electrical conductivity σ is larger on the high temperature side than the value on the low temperature side (order of order) due to its temperature dependence. Therefore, even if the cross-sectional area is reduced and the electrical conductivity σ in the high-temperature region is slightly reduced (on the order of a fraction), the ratio of the entire device, that is, Becomes larger and the figure of merit Z also becomes larger. This allows
The thermal efficiency η is also improved.

これを定量的に示すため、高温側と低温側の2つの部
分からなるモデル素子を考える。熱電素子の両端の温度
は高温側端部でTH、低温側端部でTCとし、簡単化のため
素子の内部ではそれぞれ温度は一定であるとする。また
熱伝導度は高温側の温度THにおいてKHとし、低温側の温
度TCにおいてKCとし、両者は同じとする。電気伝導度は
高温側の温度THにおいてσとし、低温側の温度TCにお
いてσとし、また高温側では低温側に比べ、100倍大
きいとする。すると、 KH=KC …(1) σ=100σ …(2) ここで、高温側と低温側は、それぞれTHで加熱、TC
冷却されているものとする。
In order to show this quantitatively, consider a model element consisting of two parts, a high temperature side and a low temperature side. The temperature at both ends of the thermoelectric element is T H at the high-temperature end and T C at the low-temperature end. For simplicity, it is assumed that the temperature is constant inside the element. The thermal conductivity is K H at the temperature T H on the high temperature side and K C at the temperature T C on the low temperature side, and both are the same. The electric conductivity is assumed to be σ H at the temperature T H on the high temperature side, σ C at the temperature T C on the low temperature side, and 100 times higher at the high temperature side than at the low temperature side. Then, K H = K C (1) σ H = 100 σ C (2) Here, it is assumed that the high temperature side and the low temperature side are respectively heated at T H and cooled at T C.

いま、高温側と低温側の電気および熱の通過断面積を
同じとした場合を第7図に示し、高温側の前記断面積が
低温側のそれの1/10とした場合を第8図に示し、第7図
の場合と第8図の場合を比較する。
Fig. 7 shows the case where the cross sections of electricity and heat on the high temperature side are the same as those on the low temperature side, and Fig. 8 shows the case where the cross section on the high temperature side is 1/10 of that on the low temperature side. The case of FIG. 7 is compared with the case of FIG.

第7図の場合、全体の熱伝導度および電気伝導度をそ
れぞれ▲▼,▲▼とすると、 したがって、上記(3)式から次の(5)式が、上記
(4)式から次の(6)式が得られる。
In the case of FIG. 7, if the overall thermal conductivity and electrical conductivity are ▲ ▼ and ▲ ▼ respectively, Therefore, the following equation (5) is obtained from the above equation (3), and the following equation (6) is obtained from the above equation (4).

第8図の場合、全体の熱伝導度および熱伝導度をそれ
ぞれ▲▼,▲▼とすると、 したがって、上記(7)式から次の(9)式が、上記
(8)式から次の(10)式が得られる。
In the case of FIG. 8, if the overall thermal conductivity and thermal conductivity are ▲ ▼ and ▲ ▼ respectively, Therefore, the following equation (9) is obtained from the above equation (7), and the following equation (10) is obtained from the above equation (8).

ここで、第7図の場合と第8図の場合を比べると、高
温側の前記断面積を低温側のそれの1/10にすることによ
って、 第7図の場合および第8図の場合とも、ゼーベック係
高温側の温度がTHであり、低温側の温度がTCであるの
で、変わらない。しかし、 は、第7図の場合に比べ、第8図の場合は約5倍大きく
なるため、性能指数Zも約5倍大きくなる。
Here, comparing the case of FIG. 7 with the case of FIG. 8, by making the cross-sectional area on the high temperature side 1/10 of that on the low temperature side, Seebeck coefficient for both FIG. 7 and FIG. The temperature on the high temperature side is T H and the temperature on the low temperature side is T C , so it does not change. But, 8 is about 5 times larger in the case of FIG. 8 than in the case of FIG. 7, so the figure of merit Z is also about 5 times larger.

したがって、熱電素材の熱の通過断面形状を高温側で
小さくすることにより、平均の性能指数を大きくし、熱
効率を向上させることができる。またこれは、熱電素材
の電気伝導度を僅かに低下させるかわりに熱伝導度を著
しく低下させることであり、同じ温度差がついている場
合、電気出力が僅かに低下するが、熱の流入が著しく少
なくなり、入熱量に対する電気出力の割合、すなわち、
発電効率が向上するともいえる。
Therefore, the average performance index can be increased and the thermal efficiency can be improved by decreasing the heat passage cross-sectional shape of the thermoelectric material on the high temperature side. This also means that instead of slightly reducing the electrical conductivity of the thermoelectric material, the thermal conductivity is significantly reduced.If the same temperature difference is applied, the electrical output will be slightly reduced, but the inflow of heat will be significant. The ratio of electrical output to heat input, that is,
It can be said that the power generation efficiency is improved.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、熱電素材は、
熱伝導度の温度依存性に比較して電気伝導度の温度依存
性が大きい半導体であるので、温度の上昇に伴なって電
気伝導度が大きくなる割りには、熱伝導度は大きく変化
せず、また該熱電素材は、熱電素材は、面に沿った繰り
返し形状からなる平板状であり、この繰り返し形状は、
電気の熱の通過断面積が高温側では小さく、低温側では
それが大きくなっている形状にしているので、該熱電素
材の平均の熱伝導度を小さくしながら、電気伝導度の低
下を低く抑えることができる。したがって、該素材で定
まっている熱伝導度に対する電気伝導度の比が全体とし
て大きくなり、性能指数も大きくなって熱電発電素子の
熱効率、つまり、発電効率を向上させることができる効
果がある。
As described above, according to the present invention, the thermoelectric material is
Since the semiconductor has a higher temperature dependence of the electrical conductivity than the temperature dependence of the thermal conductivity, the thermal conductivity does not change significantly even if the electrical conductivity increases as the temperature rises. Also, the thermoelectric material is a flat plate-shaped thermoelectric material having a repeating shape along a surface, and the repeating shape is
Since the cross-sectional area for passing heat of electricity is small on the high temperature side and large on the low temperature side, the average thermal conductivity of the thermoelectric material is reduced, while suppressing the decrease in electrical conductivity. be able to. Therefore, the ratio of the electrical conductivity to the thermal conductivity determined by the material is increased as a whole, and the figure of merit is also increased, so that the thermal efficiency of the thermoelectric power generation element, that is, the power generation efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示した断面図、第2図は
第1図の熱電素材を拡大して示した斜視図、第3図は本
発明の第2実施例を示した斜視図、第4図は同じく第3
実施例を示した斜視図、第5図は同じく第4実施例を示
した斜視図、第6図はアモルフアスFeSi2熱電素材の電
気伝導度の特性の一例を示した説明図、第7図は熱電素
子の1つのモデルの説明図、第8図は同じくもう1つの
モデルの説明図、第9図は熱電発電の原理の説明図、第
10図は熱電発電の熱効率と性能指数の関係の説明図であ
る。 1……基板、2……電気絶縁物、 3……低温側電極、4……絶縁物、 5……熱電素材、6……高温側電極、 7……絶縁物、8……電気絶縁物。
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is an enlarged perspective view of the thermoelectric material of FIG. 1, and FIG. 3 shows a second embodiment of the present invention. The perspective view and FIG.
FIG. 5 is a perspective view showing an embodiment, FIG. 5 is a perspective view showing the same as the fourth embodiment, FIG. 6 is an explanatory view showing an example of electric conductivity characteristics of an amorphous FeSi 2 thermoelectric material, and FIG. FIG. 8 is an explanatory view of one model of a thermoelectric element, FIG. 8 is an explanatory view of another model, FIG. 9 is an explanatory view of the principle of thermoelectric power generation, FIG.
FIG. 10 is an explanatory diagram of the relationship between the thermal efficiency of thermoelectric generation and the figure of merit. 1 ... Substrate, 2 ... Electrical insulator, 3 ... Low temperature side electrode, 4 ... Insulator, 5 ... Thermoelectric material, 6 ... High temperature side electrode, 7 ... Insulator, 8 ... Electrical insulator .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸岡 一彦 東京都千代田区大手町1丁目6番1号 日本原子力発電株式会社内 (56)参考文献 特開 昭62−145783(JP,A) 特開 昭61−254082(JP,A) 実開 平2−114393(JP,U) ───────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuhiko Kishioka 1-6-1, Otemachi, Chiyoda-ku, Tokyo Inside Japan Atomic Power Company (56) References JP-A-62-145783 (JP, A) JP-A Sho 61-254082 (JP, A) Actual Kaihei 2-114393 (JP, U)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気的にも熱的にも良導体である高温側電
極と、熱電素材と、電気的にも熱的にも良導体である低
温側電極とを順次接合してなる熱電発電素子において、
前記熱電素材は、熱伝導度の温度依存性に比較して電気
伝導度の温度依存性が大きい半導体熱電素材からなり、
かつ、熱電素材は、面に沿った繰り返し形状からなる平
板状であり、該繰り返し形状は、電気と熱の通過断面積
が高温側では小さく、低温側ではそれが大きくなってい
ることを特徴とする、熱電発電素子。
1. A thermoelectric generator comprising a high temperature side electrode which is a good conductor electrically and thermally, a thermoelectric material and a low temperature side electrode which is a good conductor electrically and thermally in this order. ,
The thermoelectric material is composed of a semiconductor thermoelectric material having a large temperature dependence of electrical conductivity as compared to the temperature dependence of thermal conductivity,
Further, the thermoelectric material is a flat plate shape having a repeating shape along the surface, and the repeating shape is characterized in that the cross-sectional area of passage of electricity and heat is small on the high temperature side and large on the low temperature side. Yes, a thermoelectric generator.
【請求項2】半導体熱電素材が、アモルファス鉄シリサ
イド半導体からなる請求項1記載の熱電発電素子。
2. The thermoelectric power generation element according to claim 1, wherein the semiconductor thermoelectric material is an amorphous iron silicide semiconductor.
【請求項3】半導体熱電素材が、アモルファスFe0.995M
n0.005(SiO)半導体からなる請求項1記載の熱電発
電素子。
3. A semiconductor thermoelectric material is amorphous Fe 0.995 M.
The thermoelectric power generation element according to claim 1, which is made of n 0.005 (SiO) 2 semiconductor.
【請求項4】半導体熱電素材が、アモルファスFe0.95Cr
0.05(SiO)半導体からなる請求項1記載の熱電発電
素子。
4. The semiconductor thermoelectric material is amorphous Fe 0.95 Cr.
The thermoelectric power generation element according to claim 1, comprising a 0.05 (SiO) 2 semiconductor.
【請求項5】電気と熱の通過断面積が、低温側から高温
側にいくにつれて徐々に小さくなっている請求項1,2,3
または4記載の熱電発電素子。
5. The cross section of passage of electricity and heat gradually decreases from the low temperature side to the high temperature side.
Alternatively, the thermoelectric power generation element described in 4.
【請求項6】熱電素材の高温側の電極と接する部分およ
び低温側の電極と接する部分が、ともに面からなってい
る請求項1,2,3または4記載の熱電発電素子。
6. The thermoelectric power generating element according to claim 1, 2, 3 or 4, wherein a portion of the thermoelectric material that is in contact with the high temperature side electrode and a portion of the thermoelectric material that is in contact with the low temperature side are both planes.
JP1289942A 1989-11-09 1989-11-09 Thermoelectric generator Expired - Fee Related JP2670366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289942A JP2670366B2 (en) 1989-11-09 1989-11-09 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289942A JP2670366B2 (en) 1989-11-09 1989-11-09 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH03155376A JPH03155376A (en) 1991-07-03
JP2670366B2 true JP2670366B2 (en) 1997-10-29

Family

ID=17749736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289942A Expired - Fee Related JP2670366B2 (en) 1989-11-09 1989-11-09 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP2670366B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425783B2 (en) * 1993-05-07 2003-07-14 関西電力株式会社 Heat exchange system
JP3592395B2 (en) * 1994-05-23 2004-11-24 セイコーインスツル株式会社 Thermoelectric conversion element and manufacturing method thereof
US7658772B2 (en) 1997-09-08 2010-02-09 Borealis Technical Limited Process for making electrode pairs
US6680214B1 (en) 1998-06-08 2004-01-20 Borealis Technical Limited Artificial band gap
US6608250B2 (en) * 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US8574663B2 (en) 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs
GB0224300D0 (en) * 2002-10-20 2002-11-27 Tavkhelidze Avto Thermoelectric material with intergrated broglie wave filter
WO2005041314A2 (en) * 2003-10-29 2005-05-06 Elasthermo Ltd. Thermoelectric device and system
GB0501413D0 (en) 2005-01-24 2005-03-02 Tavkhelidze Avto Method for modification of built in potential of diodes
JP4524382B2 (en) * 2005-03-10 2010-08-18 独立行政法人産業技術総合研究所 Thermoelectric power generation elements that are subject to temperature differences
US8227885B2 (en) 2006-07-05 2012-07-24 Borealis Technical Limited Selective light absorbing semiconductor surface
GB0617934D0 (en) 2006-09-12 2006-10-18 Borealis Tech Ltd Transistor
GB0618268D0 (en) 2006-09-18 2006-10-25 Tavkhelidze Avto High efficiency solar cell with selective light absorbing surface
AT507533B1 (en) 2008-11-14 2010-08-15 Herbert Karl Fuchs DEVICE FOR CONVERTING HEAT ENERGY TO ELECTRICAL ENERGY
JP5499317B2 (en) * 2009-03-03 2014-05-21 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
KR101680766B1 (en) * 2010-01-14 2016-11-29 삼성전자주식회사 Thermoelectric device and Array of Thermoelectric device
ITUB20155100A1 (en) 2015-10-23 2017-04-23 Delta Ti Res Thermoelectric generator.
JP6839690B2 (en) * 2018-09-27 2021-03-10 アイシン高丘株式会社 How to manufacture a thermoelectric module
IT201900009627A1 (en) * 2019-06-20 2020-12-20 Fondazione St Italiano Tecnologia Flexible thermoelectric microgenerator and related production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254082A (en) * 1985-04-30 1986-11-11 Suzuki Motor Co Ltd Power generator utilizing exhaust heat
JPS62145783A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Thin film thermoelectric module
JPH02114393U (en) * 1988-07-27 1990-09-13

Also Published As

Publication number Publication date
JPH03155376A (en) 1991-07-03

Similar Documents

Publication Publication Date Title
JP2670366B2 (en) Thermoelectric generator
US10305014B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
JP5160784B2 (en) Thermoelectric conversion element module
US6958443B2 (en) Low power thermoelectric generator
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JPH0249480A (en) Thermoelectric device
KR20120080820A (en) Thermoelectric module
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
RU2628676C1 (en) Thermoelectric element
US20220278263A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor
CN207885048U (en) Cover sheet
TW201327951A (en) Thermoelectric generating apparatus and module
JP3056047B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JP7441847B2 (en) Manufacturing method of thermoelectric conversion material
JPH0320909B2 (en)
KR20190088256A (en) Thermoelectric element
KR102673621B1 (en) Phonon-Glass Electron-Crystal for power generation
US20230259078A1 (en) Temperature discretization digital device
JP7412703B2 (en) heat flow switching element
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof
JP2003347609A (en) Thermoelectric apparatus utilizing nernst effect and seebeck effect
CN116456798A (en) Z-type thermoelectric device and parameter optimization method thereof
JPS60235481A (en) Thermoelectric generator of variable size having supporting leg base made of material different from basic thermoelectric semiconductor element
JP2021040084A (en) Thermoelectric cell and thermoelectric module
CN116110992A (en) Photovoltaic-thermoelectric integrated device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees