JP2658919B2 - Chemical composition monitoring method and device - Google Patents

Chemical composition monitoring method and device

Info

Publication number
JP2658919B2
JP2658919B2 JP6278828A JP27882894A JP2658919B2 JP 2658919 B2 JP2658919 B2 JP 2658919B2 JP 6278828 A JP6278828 A JP 6278828A JP 27882894 A JP27882894 A JP 27882894A JP 2658919 B2 JP2658919 B2 JP 2658919B2
Authority
JP
Japan
Prior art keywords
solution
chemical
valve
water
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6278828A
Other languages
Japanese (ja)
Other versions
JPH08136451A (en
Inventor
潮 長谷
一郎 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6278828A priority Critical patent/JP2658919B2/en
Publication of JPH08136451A publication Critical patent/JPH08136451A/en
Application granted granted Critical
Publication of JP2658919B2 publication Critical patent/JP2658919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばSiウェハなど
の洗浄に使用される過酸化水素、アンモニア、水とから
なる洗浄薬液の組成モニタ方法およびその装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring the composition of a cleaning chemical solution comprising hydrogen peroxide, ammonia and water used for cleaning, for example, Si wafers.

【0002】[0002]

【従来の技術】過酸化水素とアンモニアの混合溶液によ
るSiウェハの洗浄では、しばしば60℃程度まで加熱
されるため、過酸化水素は熱分解され、またアンモニア
が蒸発し洗浄薬液の組成が経時変化する。そこで洗浄薬
液の組成をモニタすることが必要である。
2. Description of the Related Art In cleaning a Si wafer with a mixed solution of hydrogen peroxide and ammonia, the wafer is often heated to about 60 ° C., so that hydrogen peroxide is thermally decomposed, and ammonia evaporates to change the composition of the cleaning solution over time. I do. Therefore, it is necessary to monitor the composition of the cleaning solution.

【0003】過酸化水素の検出法として紫外吸収を利用
した方法がある。しかしながら過酸化水素は、溶液中で
は(1)式に示すような解離平衡状態にあり、20℃に
おける平衡定数は1.5×10-12 で、紫外光の吸収率
はHO2 - がH2 2 に比べ4〜50倍大きい(197
9年、「コットン・ウィルキンソン 基礎無機化学」、
初版、培風館、305頁参照)。
As a method for detecting hydrogen peroxide, there is a method utilizing ultraviolet absorption. However, hydrogen peroxide is in a dissociation equilibrium state as shown in equation (1) in a solution, the equilibrium constant at 20 ° C. is 1.5 × 10 −12 , and the absorptance of ultraviolet light is HO 2 when H 2 4 to 50 times larger than O 2 (197
9 years, "Cotton Wilkinson Basic Inorganic Chemistry",
First edition, Baifukan, page 305).

【0004】[0004]

【化1】 H2 2 =HO2 - +H+ (1)Embedded image H 2 O 2 = HO 2 + H + (1)

【0005】しかし、分析誤差を考慮すると、pH6以
下ではHO2 - の存在を無視でき、過酸化水素以外の成
分による吸収が無視できる波長を選択すれば、紫外吸収
を過酸化水素の定量に用いることができる。過酸化水素
とアンモニアの混合溶液では、HO2 - による紫外吸収
への寄与が大きく、HO2 - の存在率はアンモニア濃度
に依存する。そこで特開昭61−281532号公報で
は、酸を添加しpHを4以下にした洗浄薬液と洗浄薬液
そのものの300nmにおける吸光度を測定し、前者の吸
光度から過酸化水素濃度を、後者の吸光度と過酸化水素
の濃度からアンモニア濃度を算出している。
However, considering the analytical error, HO 2 at pH6 below - there can ignore the, by selecting the wavelength negligible absorption by components other than the hydrogen peroxide, using a UV absorption for the determination of hydrogen peroxide be able to. In a mixed solution of hydrogen peroxide and ammonia, HO 2 makes a large contribution to ultraviolet absorption, and the abundance of HO 2 depends on the ammonia concentration. In Japanese Patent Application Laid-Open No. 61-281532, the absorbance at 300 nm of a cleaning solution and a cleaning solution itself to which an acid was added to adjust the pH to 4 or less was measured, and the concentration of hydrogen peroxide was determined from the absorbance of the former and the absorbance of the latter. The ammonia concentration is calculated from the concentration of hydrogen oxide.

【0006】一方、アンモニアの検出方法として導電率
検出がある。しかしながらアンモニアは、溶液中では
(2)式に示すような解離平衡状態にあり、25℃にお
ける平衡定数は1.81×10-5である(1979年、
「コットン・ウィルキンソン基礎無機化学」、初版、培
風館、281頁参照)。
On the other hand, there is a conductivity detection method as a method for detecting ammonia. However, ammonia is in a dissociation equilibrium state as shown in equation (2) in a solution, and the equilibrium constant at 25 ° C. is 1.81 × 10 −5 (1979,
"Cotton Wilkinson Basic Inorganic Chemistry," First Edition, Baifukan, p. 281).

【0007】[0007]

【化2】 NH3 +H2 O=NH4 + +OH- (2)## STR2 ## NH 3 + H 2 O = NH 4 + + OH - (2)

【0008】導電率に寄与する成分はNH4 + のみであ
り、pH5以下ではNH3 の存在を無視できるが、pH
9.3ではNH3 が50%、pH10でNH3 は80%
と、pHの増大により導電率検出での感度が低下する。
[0008] The only component that contributes to the conductivity is NH 4 + . At pH 5 or less, the presence of NH 3 can be neglected.
9.3 at 50% NH 3 , pH 10 at 80% NH 3
In addition, the sensitivity in the detection of conductivity decreases due to an increase in pH.

【0009】上述したように、過酸化水素は紫外吸収
で、アンモニアは導電率で検出できるが、いずれも感度
がpHに依存し、過酸化水素、アンモニア、水とからな
る洗浄薬液の場合、アンモニア濃度が紫外吸収に、過酸
化水素濃度が導電率に影響を与える。そこで特開昭62
−8040号公報では、紫外吸収および導電率と、過酸
化水素、アンモニア両成分の濃度との関係を実験的に求
め、得られた式を用いて両成分の濃度を算出している。
As described above, hydrogen peroxide can be detected by ultraviolet absorption and ammonia can be detected by electrical conductivity. However, the sensitivity depends on the pH, and in the case of a cleaning solution composed of hydrogen peroxide, ammonia and water, ammonia can be detected. Concentration affects ultraviolet absorption and hydrogen peroxide concentration affects conductivity. Therefore, JP
In Japanese Patent No. -8040, the relationship between ultraviolet absorption and conductivity and the concentrations of both hydrogen peroxide and ammonia is experimentally determined, and the concentrations of both components are calculated using the obtained equation.

【0010】ところで、送液ポンプでキャリア液を連続
送液し、下流側で吸光度などをフローセルを持つ検出器
により連続的に検出しながら、当該ポンプと当該検出器
の間に設けた流路切替バルブにより試料や試薬を導入し
反応させ、試料を含む液流がセルを通過する際の検出量
の変化より、試料中の分析成分の濃度を定量する方法が
報告されている。この分析方法はフローインジェクショ
ン分析法(FIA法)(1987年、「分析化学実験ハ
ンドブック」、丸善、629〜634頁参照)とよば
れ、ポンプ流速、配管の長さ、バルブ切替時間等を制御
することで、反応の正確な制御を容易に行え、少量の試
料でも精度よく定量分析できる上、自動化が容易な分析
方法である。
By the way, the carrier liquid is continuously supplied by the liquid supply pump, and the absorbance and the like are continuously detected by the detector having the flow cell on the downstream side, and the flow path switching provided between the pump and the detector is performed. A method has been reported in which a sample or a reagent is introduced by a valve to cause a reaction, and the concentration of an analytical component in the sample is quantified based on a change in a detection amount when a liquid stream containing the sample passes through a cell. This analysis method is called a flow injection analysis method (FIA method) (1987, "Handbook of Analytical Chemistry Experiments", Maruzen, pp. 629-634), and controls the pump flow rate, pipe length, valve switching time, and the like. In this way, accurate control of the reaction can be easily performed, quantitative analysis can be accurately performed even with a small amount of sample, and the analysis method can be easily automated.

【0011】[0011]

【発明が解決しようとする課題】特開昭61−2815
32号公報に記載の装置の構成を図5に示す。この方法
では、過酸化水素の濃度については、酸を添加しpHを
4以下にした洗浄薬液の吸光度と過酸化水素濃度の間の
直線関係から求めるが、アンモニアについては得られた
過酸化水素濃度と洗浄薬液そのものの吸光度を利用して
濃度を算出するために、アンモニアの測定値は2つの吸
光度測定の誤差を含むものとなり、測定精度が悪く厳密
な組成管理には適してない。図6に示す特開昭62−8
040号公報に記載の方法もまた吸光度、導電率とも
に、過酸化水素、アンモニア両成分の濃度に依存する測
定を行っており、前述の特開昭61−281532号公
報記載の方法と同様な問題がある。
SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. Sho 61-2815
FIG. 5 shows the configuration of the device described in Japanese Patent Publication No. 32. In this method, the concentration of hydrogen peroxide is determined from the linear relationship between the absorbance of the cleaning chemical solution to which the pH has been reduced to 4 or less by adding an acid and the concentration of hydrogen peroxide. Since the concentration is calculated using the absorbance of the cleaning solution itself and the measured value, the measured value of ammonia includes two errors in the absorbance measurement, and the measurement accuracy is poor, and is not suitable for strict composition control. JP-A-62-8 shown in FIG.
The method described in Japanese Patent Application Publication No. 040-040 also measures both the absorbance and the electrical conductivity depending on the concentrations of both hydrogen peroxide and ammonia components, and has the same problem as the method described in the above-mentioned Japanese Patent Application Laid-Open No. 61-281532. There is.

【0012】当該両従来技術とも前述の精度面での問題
に加え、測定値が両成分に依存するために多数の検量線
を作成することが必要である。測定値が温度等の測定条
件に依存するために、定期的な検量線の校正が必要であ
り、実用上の操作の繁雑さも発生する。さらに洗浄薬液
そのものをフローセル57、62、157、162に導
入しているために、検出セル内での発泡による障害や、
長期使用での検出セルの損傷が懸念される。
[0012] In both of the above prior arts, in addition to the above-mentioned problems in terms of accuracy, it is necessary to prepare a large number of calibration curves because measured values depend on both components. Since the measured value depends on measurement conditions such as temperature, it is necessary to periodically calibrate the calibration curve, and practical operation is complicated. In addition, since the cleaning solution itself is introduced into the flow cells 57, 62, 157, and 162, obstacles due to foaming in the detection cells,
There is a concern that the detection cell may be damaged during long-term use.

【0013】本発明は上記のような課題を解決するもの
であり、FIA法を応用し、洗浄薬液を希釈し、希釈薬
液のpHを、紫外吸収の吸光度が過酸化水素濃度のみ
と、導電率がアンモニア濃度のみと直線関係になるよう
に調整し、測定部に前記溶液を送液し測定を行い、測定
値から濃度を換算するという一連の操作を自動で行う薬
液モニタを提供することを目的とする。
The present invention solves the above-mentioned problems. The present invention applies the FIA method, dilutes a cleaning chemical, and adjusts the pH of the diluted chemical by measuring the absorbance of ultraviolet absorption only for the hydrogen peroxide concentration and the conductivity. The purpose of the present invention is to provide a chemical liquid monitor which automatically performs a series of operations of adjusting the liquid crystal to be in a linear relationship with only the ammonia concentration, sending the solution to a measurement unit, measuring, and converting the concentration from the measured value. And

【0014】[0014]

【課題を解決するための手段】本発明の第1の発明は、
過酸化水素、アンモニア、水とからなる薬液の過酸化水
素とアンモニアの組成モニタ方法において、薬液に水と
弱酸溶液を混合希釈し、紫外吸収測定部および導電率測
定部で、弱酸溶液と混合された希釈薬液の所定の波長に
おける吸光度と、導電率をそれぞれ連続測定し、前記2
種の測定部からの検出値を、予め既知の濃度のアンモニ
ア溶液および過酸化水素溶液あるいは前記薬液の吸光度
と導電率を測定し作成された検量線データと対照し、組
成を計算することを特徴とする薬液組成モニタ方法であ
る。
Means for Solving the Problems A first invention of the present invention is:
In a method for monitoring the composition of hydrogen peroxide and ammonia in a chemical solution comprising hydrogen peroxide, ammonia, and water, water and a weak acid solution are mixed and diluted with the chemical solution, and mixed with a weak acid solution in an ultraviolet absorption measurement unit and a conductivity measurement unit. The absorbance at a predetermined wavelength of the diluted chemical solution and the conductivity were continuously measured.
The composition is calculated by comparing the detection value from the measuring part of the species with the calibration curve data created by measuring the absorbance and conductivity of the ammonia solution and the hydrogen peroxide solution of a known concentration or the chemical solution in advance. This is a method for monitoring a chemical composition.

【0015】第2の発明は、過酸化水素、アンモニア、
水とからなる薬液の過酸化水素とアンモニアの組成モニ
タ方法において、定量ポンプにより管内に連続送液され
ている弱酸溶液に、水により希釈された前記薬液を流路
切替バルブを用いて導入し、前記バルブの下流側に接続
された紫外吸収測定部および導電率測定部で、弱酸溶液
と混合された希釈薬液の所定の波長における吸光度と、
導電率をそれぞれ連続測定し、前記両測定部での検出値
をインターフェースを介してコンピュータに自動入力
し、前記2種の測定部からの検出値を、予め既知の濃度
のアンモニア溶液および過酸化水素溶液あるいは前記薬
液の吸光度と導電率を測定し作成されコンピュータに保
存されている検量線データと対照し、組成を計算するこ
とを特徴とする薬液組成モニタ方法である。
[0015] A second invention is directed to hydrogen peroxide, ammonia,
In the method for monitoring the composition of hydrogen peroxide and ammonia in a chemical solution composed of water, a weak acid solution that has been continuously fed into a tube by a metering pump, the chemical solution diluted with water is introduced using a flow path switching valve, In the ultraviolet absorption measurement unit and the conductivity measurement unit connected to the downstream side of the valve, the absorbance at a predetermined wavelength of the diluted chemical solution mixed with the weak acid solution,
Conductivity is continuously measured, and the detected values of the two measuring units are automatically input to a computer via an interface, and the detected values of the two measuring units are converted into ammonia solution and hydrogen peroxide having a known concentration in advance. A chemical solution composition monitoring method characterized in that the absorbance and the conductivity of a solution or the chemical solution are measured, and the composition is calculated by comparing with a calibration curve data created and stored in a computer.

【0016】第3の発明は、前記弱酸溶液がホウ酸であ
ることを特徴とする第1の発明または第2の発明に記載
の薬液組成モニタ方法である。
A third invention is the method for monitoring a chemical composition according to the first invention or the second invention, wherein the weak acid solution is boric acid.

【0017】第4の発明は、第1の発明または第2の発
明または第3の発明に記載の薬液組成モニタ方法に使用
する薬液組成モニタ装置であって、過酸化水素、アンモ
ニア、水とからなる薬液を供給する薬液供給部と、水供
給部と、弱酸溶液供給部とが接続された流路切替バルブ
と、前記バルブの上流側に接続され前記3種の液の各供
給量を制御する定量ポンプと、前記バルブの下流側に接
続された混合器と、前記混合器の下流側に接続された紫
外吸収測定部ならびに導電率測定部と、装置内のバルブ
とポンプの制御ならびに両測定部からの検出値を取得し
データ処理を行う制御部から構成され、前記バルブの切
替えにより、薬液と水と弱酸溶液を、あるいは水と弱酸
溶液の少なくともいずれかを前記混合器に導入するよう
に流路の設定を行えることを特徴とする薬液組成モニタ
装置である。
According to a fourth aspect of the present invention, there is provided a chemical composition monitoring apparatus used in the chemical composition monitoring method according to the first, second, or third aspect, wherein the chemical composition monitoring apparatus comprises hydrogen peroxide, ammonia, and water. A flow path switching valve to which a chemical liquid supply unit for supplying a chemical liquid is connected, a water supply unit, and a weak acid solution supply unit; and a flow path switching valve connected upstream of the valve to control the supply amounts of the three types of liquids. Metering pump, a mixer connected downstream of the valve, an ultraviolet absorption measurement unit and a conductivity measurement unit connected downstream of the mixer, control of valves and pumps in the apparatus and both measurement units And a data processing unit that obtains a detection value from the control unit and switches the valve so that a chemical solution and water and a weak acid solution, or at least one of water and a weak acid solution are introduced into the mixer. Set the road A chemical composition monitor apparatus according to claim Rukoto.

【0018】第5の発明は、前記流路切替バルブが、四
方バルブあるいは四方バルブと同等の機能を有する水導
入用流路切替バルブと、六方バルブあるいは六方バルブ
と同等の機能を有する2つの流路切替バルブから構成さ
れ、前記六方バルブの内の1つは薬液導入用で、他方が
弱酸溶液導入用であり、前記3つのバルブにはいずれも
各液の供給部と排出部が接続され、かつ前記3つのバル
ブは配管で相互に接続され、前記四方バルブの切り替え
により、水供給部から導入された水が六方バルブを通過
し四方バルブの別の接続口から排出される開配管状態
と、前記3つのバルブを接続する配管内の溶液が循環す
る閉配管状態との切り替えが可能であり、前記混合器
は、弱酸溶液導入用あるいは水導入用バルブの下流側に
接続されることを特徴とする第4の発明に記載の薬液組
成モニタ装置である。
According to a fifth aspect of the present invention, the flow path switching valve has a four-way valve or a water-introducing flow path switching valve having the same function as the four-way valve, and a two-way valve or two flow paths having the same function as the six-way valve. A path switching valve, one of the six-way valves is for introducing a chemical solution, the other is for introducing a weak acid solution, and the three valves are connected to a supply part and a discharge part of each liquid, And the three valves are connected to each other by a pipe, and by switching the four-way valve, an open pipe state in which water introduced from the water supply unit passes through the six-way valve and is discharged from another connection port of the four-way valve, It is possible to switch between a closed pipe state in which the solution in the pipe connecting the three valves circulates, and the mixer is connected to a downstream side of a weak acid solution introduction or water introduction valve. A chemical composition monitor according to the fourth aspect of the present invention to.

【0019】第6の発明は、前記薬液供給部が冷却装置
と、脱泡器と、逆止弁を有することを特徴とする第4の
発明または第5の発明に記載の薬液組成モニタ装置であ
る。
According to a sixth aspect of the present invention, there is provided the chemical composition monitoring apparatus according to the fourth or fifth aspect, wherein the chemical supply section has a cooling device, a defoamer, and a check valve. is there.

【0020】第7の発明は、第5の発明または第6の発
明に記載の薬液組成モニタ装置による薬液組成モニタ方
法であって、まず第5の発明または第6の発明の薬液組
成モニタ装置の前記配管を前記開配管状態となるように
前記四方バルブを設定し、水を前記配管内に導入し配管
内を水で満たし、次いで薬液導入用バルブにより薬液を
導入すると共に、四方バルブを切り替えて閉配管状態と
し、所定時間配管内の溶液を循環させて薬液と配管内の
水とを混合させ希釈し、しかる後に弱酸溶液導入用バル
ブを切替えることにより、弱酸溶液と希釈薬液とを混合
し、吸光度及び導電率の測定に供し、前記工程を繰り返
し行うことを特徴とする第1の発明または第2の発明ま
たは第3の発明に記載の薬液組成モニタ方法である。
According to a seventh aspect of the present invention, there is provided a chemical composition monitoring method using the chemical composition monitoring device according to the fifth or sixth aspect of the present invention. The four-way valve is set so that the pipe is in the open pipe state, water is introduced into the pipe and the pipe is filled with water, and then a chemical is introduced by a chemical liquid introduction valve, and the four-way valve is switched. Closed pipe state, circulate the solution in the pipe for a predetermined time to mix and dilute the chemical solution and water in the pipe, and then switch the weak acid solution introduction valve to mix the weak acid solution and the diluted chemical solution, The method for monitoring a chemical composition according to the first invention, the second invention, or the third invention, wherein the method is used for measuring the absorbance and the electrical conductivity, and the steps are repeatedly performed.

【0021】[0021]

【作用】過酸化水素は溶液中では、(1)式に示すよう
な解離平衡状態にあり、20℃における平衡定数は1.
5×10-12 である(1979年、「コットン・ウィル
キンソン 基礎無機化学」、初版、培風館、305頁参
照)。
In a solution, hydrogen peroxide is in a dissociation equilibrium state as shown in equation (1), and the equilibrium constant at 20 ° C. is 1.
5 × 10 −12 (see “Cotton Wilkinson Basic Inorganic Chemistry”, 1979, first edition, Baifukan, p. 305).

【0022】[0022]

【化3】 H2 2 =HO2 - +H+ (1)Embedded image H 2 O 2 = HO 2 + H + (1)

【0023】紫外光の吸収率は、HO2 - がH2 2
比べ約4〜50倍大きい。pH6以下では、HO2 -
存在比は1×10-4%以下であり、HO2 - の吸収率が
22 の4〜50倍であっても、吸収率への影響は1
×10-2%以下であり、測定誤差を考慮するとHO2 -
による紫外吸収は無視できる。一方、通常使用される過
酸化水素、アンモニア、水とからなる洗浄薬液のpHは
10〜11であり、HO2 - の存在比は1〜10%にな
り、H2 2 のみの吸光度の2〜10倍になる。前記吸
光度の増分はpHの増大、すなわち当該洗浄薬液ではア
ンモニア濃度に依存するものである。本発明ではpHが
6以下になるように酸を添加することで、すべての過酸
化水素をH2 2 として紫外吸収により検出できる。
As for the absorptance of ultraviolet light, HO 2 - is about 4 to 50 times larger than H 2 O 2 . The pH6 below, HO 2 - in the present ratio is 1 × 10 -4% or less, HO 2 - even 4-50-fold absorption rate is of H 2 O 2, the effect on the absorption rate 1
× is 10 -2% or less, considering a measurement error HO 2 -
UV absorption due to is negligible. On the other hand, pH of the wash liquor consisting of hydrogen peroxide, ammonia, and water which is usually used is 10 to 11, HO 2 - abundance ratio becomes 1-10%, 2 absorbance only H 2 O 2 Up to 10 times. The increase in absorbance depends on the increase in pH, that is, on the ammonia concentration in the cleaning solution. In the present invention, all the hydrogen peroxide can be detected as H 2 O 2 by ultraviolet absorption by adding an acid so that the pH becomes 6 or less.

【0024】一方、アンモニアは溶液中では、(2)式
に示すような解離平衡状態にあり、25℃における平衡
定数は1.81×10-5である(1979年、「コット
ン・ウィルキンソン 基礎無機化学」、初版、培風館、
281頁参照)。
On the other hand, ammonia is in a dissociation equilibrium state as shown in equation (2) in a solution, and the equilibrium constant at 25 ° C. is 1.81 × 10 -5 (1979, "Cotton-Wilkinson Basic Inorganic"). Chemistry, first edition, Baifukan,
281).

【0025】[0025]

【化4】 NH3 +H2 O=NH4 + +OH- (2)## STR4 ## NH 3 + H 2 O = NH 4 + + OH - (2)

【0026】導電率に寄与する成分はNH4 + のみであ
る。pH6以下ではNH3 の存在を無視できるが、pH
9.3ではNH3 が50%、pH10でNH3 は80%
と、pHの増大により導電率検出での感度が低下する。
通常使用される過酸化水素、アンモニア、水とからなる
洗浄薬液のpHは10〜11であり、10%前後しかN
4 + として存在せず、存在比は過酸化水素濃度に依存
し、前述したように過酸化水素も一部HO2 - として導
電率で検出される状態になっている。加えて洗浄薬液そ
のもののような高濃度の溶液では、導電率とイオン濃度
は直線関係にならない。したがって導電率はアンモニア
濃度に対して単純な依存関係とはならない。本発明で
は、洗浄薬液を希釈した上で、pHが6以下になるよう
に酸を添加することで、すべてのアンモニアをNH4 +
として感度よく検出できる。
The only component that contributes to the conductivity is NH 4 + . At pH 6 or lower, the presence of NH 3 can be neglected.
9.3 at 50% NH 3 , pH 10 at 80% NH 3
In addition, the sensitivity in the detection of conductivity decreases due to an increase in pH.
The pH of a commonly used cleaning chemical solution consisting of hydrogen peroxide, ammonia, and water is 10 to 11, and only about 10% of N
It does not exist as H 4 + , and the abundance ratio depends on the concentration of hydrogen peroxide. As described above, hydrogen peroxide is partially detected as HO 2 − by conductivity. In addition, in a highly concentrated solution such as the cleaning solution itself, the conductivity and the ion concentration do not have a linear relationship. Therefore, the conductivity does not have a simple dependence on the ammonia concentration. In the present invention, all ammonia is reduced to NH 4 + by diluting the cleaning solution and adding an acid so that the pH becomes 6 or less.
Can be detected with high sensitivity.

【0027】前述の目的で添加する酸としてホウ酸を使
用すると、以下の効果が得られる。ホウ酸は溶液中で
は、(3)式に示すような解離平衡状態にあり、25℃
における平衡定数は1.0×10-9である(1979
年、「コットン・ウィルキンソン基礎無機化学」、初
版、培風館、235頁参照)。
When boric acid is used as the acid to be added for the above purpose, the following effects can be obtained. Boric acid is in a dissociation equilibrium state as shown in equation (3)
Is 1.0 × 10 −9 (1979).
Year, “Cotton Wilkinson Basic Inorganic Chemistry”, First Edition, Baifukan, p. 235).

【0028】[0028]

【化5】 B(OH)3 +H2 O=B(OH)4 - +H+ (3)Embedded image B (OH) 3 + H 2 O = B (OH) 4 + H + (3)

【0029】例えば0.1mol/l溶液の場合、pH
は5.1であり、B(OH)4 - の存在比は0.01%
である。したがってホウ酸はアンモニアに対しては酸と
して働き、大部分のアンモニアはNH4 + となるが、ホ
ウ酸溶液自体の導電率は非常に低いので、ホウ酸溶液を
キャリア液とすることで、良好なS(シグナル)/B
(バックグラウンド)比での導電率検出が可能となる。
For example, in the case of a 0.1 mol / l solution,
Is 5.1, B (OH) 4 - is the abundance ratio of 0.01%
It is. Therefore, boric acid acts as an acid with respect to ammonia, and most of the ammonia becomes NH 4 + , but since the conductivity of the boric acid solution itself is very low, it is preferable to use the boric acid solution as the carrier liquid. Na S (signal) / B
The conductivity can be detected at a (background) ratio.

【0030】本発明では、FIA法を応用し、洗浄薬液
の純水による希釈液を流路切替バルブによりホウ酸溶液
の連続流(キャリア液)に導入し、当該連続流の所定の
波長における紫外吸収と導電率を連続測定することで、
上記過酸化水素とアンモニア濃度の測定操作を実現し
た。
In the present invention, the FIA method is applied, and a diluent of the cleaning chemical solution in pure water is introduced into a continuous flow of boric acid solution (carrier solution) by a flow path switching valve, and ultraviolet light at a predetermined wavelength of the continuous flow is used. By continuously measuring absorption and conductivity,
The measurement operation of the hydrogen peroxide and ammonia concentrations was realized.

【0031】また洗浄薬液や酸溶液の導入量は、流路切
替バルブに取り付けた細管の容量で所定値に固定でき、
コンピュータと接続することで、バルブの切替時間、ポ
ンプ流量などの測定条件もまた容易に精度よく制御でき
るので、洗浄薬液は自動で再現性よく希釈され、希釈さ
れた洗浄薬液の測定もまた精度よく行われるので、再現
性のよい自動薬液モニタが可能である。さらに通常導入
容量は数十μl程度であるので、モニタのために採取さ
れる薬液量を抑えることができ、また検出器に濃厚な薬
液が定常的に導入されないので、長期使用での検出セル
の損傷がなく長期的に信頼性のある測定が行える。なお
本発明では洗浄薬液の希釈についてもFIA法を応用す
ることで、自動化を実現した。
Further, the introduction amount of the cleaning chemical solution or the acid solution can be fixed to a predetermined value by the capacity of the thin tube attached to the flow path switching valve.
By connecting to a computer, measurement conditions such as valve switching time and pump flow rate can also be easily and accurately controlled, so that the cleaning solution is automatically and reproducibly diluted, and the measurement of the diluted cleaning solution is also performed with high accuracy. Since it is performed, an automatic chemical solution monitor with good reproducibility is possible. Furthermore, since the normal introduction volume is about several tens of μl, the amount of the drug solution collected for monitoring can be suppressed, and since the concentrated drug solution is not constantly introduced into the detector, the detection cell can be used for a long time. Long-term reliable measurement without damage. In the present invention, the dilution of the cleaning solution is also automated by applying the FIA method.

【0032】[0032]

【実施例】次に本発明の一実施例について説明する。Next, an embodiment of the present invention will be described.

【0033】本発明の一実施例としてアンモニア−過酸
化水素洗浄薬液の組成モニタに関して、図1の構成図に
より詳述する。
As one embodiment of the present invention, the composition monitor of the ammonia-hydrogen peroxide cleaning solution will be described in detail with reference to the block diagram of FIG.

【0034】ループ12およびループ13の容量は、ル
ープ11の容量の数十倍あるものとする。ポンプ1によ
りホウ酸溶液を定常的に送液し、導電率測定部21と紫
外吸収測定部26によりに導電率と吸光度を連続測定す
る。紫外吸収測定はアンモニアによる吸収が無視できる
240nm以上の波長で行う。
The capacities of the loops 12 and 13 are tens of times the capacities of the loop 11. The boric acid solution is constantly fed by the pump 1, and the conductivity and the absorbance are continuously measured by the conductivity measuring unit 21 and the ultraviolet absorption measuring unit 26. The ultraviolet absorption measurement is performed at a wavelength of 240 nm or more where the absorption by ammonia can be ignored.

【0035】第1のステップでは、バルブ5、バルブ
6、バルブ7を破線状態にし、ポンプ3によりループ1
4、ループ12、ループ11、ループ13内を純水で満
たす。
In the first step, the valves 5, 6, and 7 are set to the broken line state, and the pump 3
4. Fill the loop 12, the loop 11, and the loop 13 with pure water.

【0036】第2のステップでは、バルブ5を実線状態
にし、ポンプ2により薬液をループ11に送液し薬液で
満たす。なお60℃に加熱されている薬液は、冷却器1
5で冷却され薬液とともに配管に入った気泡は脱泡器1
6により除かれる。
In the second step, the valve 5 is set to the solid line state, and the pump 2 sends the chemical to the loop 11 and fills it with the chemical. The chemical solution heated to 60 ° C. is supplied to the cooler 1
Bubbles cooled in 5 and entering the piping together with the chemical solution are defoamers 1
6 removed.

【0037】第3のステップでは、バルブ6を実線状態
に、バルブ5を破線状態に切り替える。この時形成され
る循環流路にループ14、ループ12、ループ11、ル
ープ13、ポンプ3が組み込まれ、ポンプ3を所定時間
稼働することにより、循環流路内の液体は細管内の流動
により混合され、薬液は細管内の純水により希釈され
る。ループ14内には薬液の希釈液が満たされる。
In the third step, the valve 6 is switched to the solid line state, and the valve 5 is switched to the broken line state. The loop 14, the loop 12, the loop 11, the loop 13, and the pump 3 are incorporated in the circulation channel formed at this time, and by operating the pump 3 for a predetermined time, the liquid in the circulation channel is mixed by the flow in the narrow tube. The chemical is diluted with pure water in the capillary. The loop 14 is filled with a diluent of a chemical solution.

【0038】第4のステップでは、バルブ7を実線状態
にする。これによりポンプ1から流出するホウ酸溶液は
ループ14を通過した後、混合器20に入る。細管内部
の流動により、前述の希釈薬液は混合器20内でホウ酸
溶液と混合された後、導電率測定部21内の導電率測定
用フローセル22、紫外吸収測定部26内の吸光測定用
フローセル27を順次通過する。導電率測定部21では
洗浄薬液中のアンモニアがアンモニウムイオンとして検
出される。一方過酸化水素は中性分子のH2 2 となっ
てるために、過酸化水素による導電率は無視できる。紫
外吸収検出器では、過酸化水素が中性分子のH2 2
して検出され、アンモニアによる紫外吸収は無視でき
る。導電率からアンモニアを、吸光度から過酸化水素の
定量を行う。
In the fourth step, the valve 7 is set to a solid line state. Thus, the boric acid solution flowing out of the pump 1 passes through the loop 14 and then enters the mixer 20. Due to the flow inside the thin tube, the above-mentioned diluted chemical solution is mixed with the boric acid solution in the mixer 20, and then the conductivity measurement flow cell 22 in the conductivity measurement unit 21 and the absorption measurement flow cell in the ultraviolet absorption measurement unit 26. 27 sequentially. In the conductivity measuring section 21, ammonia in the cleaning solution is detected as ammonium ions. On the other hand, since hydrogen peroxide is a neutral molecule of H 2 O 2 , the conductivity due to hydrogen peroxide can be ignored. In the ultraviolet absorption detector, hydrogen peroxide is detected as neutral molecule H 2 O 2 , and the ultraviolet absorption by ammonia can be ignored. Amount of ammonia is determined from conductivity, and hydrogen peroxide is determined from absorbance.

【0039】その後、再び第1のステップの状態に全バ
ルブを戻す。ステップ1〜4を繰り返すことで薬液組成
の連続モニタリングが可能である。
Thereafter, all the valves are returned to the state of the first step. By repeating steps 1 to 4, continuous monitoring of the chemical composition is possible.

【0040】図2は本発明の薬液組成モニタ装置でのホ
ウ酸濃度の最適化実験の結果であり、ホウ酸溶液を20
mmol/l以上にするとアンモニア濃度に対して導電
率が直線関係となることが確認された。図3、図4はそ
れぞれ相互の成分が共存する場合のアンモニア、過酸化
水素の検量線である。図3、図4から、本発明によれ
ば、導電率測定値からは過酸化水素の影響を受けること
なくアンモニア濃度を測定でき、吸光度測定値からはア
ンモニアの影響を受けることなく過酸化水素濃度を測定
できることがわかる。本発明によれば、アンモニア濃度
と過酸化水素濃度を、他成分の影響を受けることなく独
立して測定できるため、従来のように一方の成分の測定
濃度を利用して他方の成分の濃度を算出する場合に比
べ、測定精度がよい。
FIG. 2 shows the results of an experiment for optimizing the concentration of boric acid using the chemical composition monitoring device of the present invention.
It was confirmed that when the concentration was set to mmol / l or more, the conductivity had a linear relationship with the ammonia concentration. FIGS. 3 and 4 are calibration curves of ammonia and hydrogen peroxide, respectively, when both components coexist. 3 and 4, according to the present invention, the ammonia concentration can be measured from the measured conductivity value without being affected by hydrogen peroxide, and the hydrogen peroxide concentration can be measured from the measured absorbance value without being affected by ammonia. It can be seen that can be measured. According to the present invention, since the concentration of ammonia and the concentration of hydrogen peroxide can be measured independently without being affected by other components, the concentration of the other component is determined by using the measured concentration of one component as in the related art. The measurement accuracy is better than when calculating.

【0041】[0041]

【発明の効果】本発明によると、過酸化水素、アンモニ
ア、水とからなる洗浄薬液の組成を、少ない薬液の採取
で、再現性よく、連続自動モニタが可能である。また検
出器に濃厚な薬液が定常的に導入されないので、長期使
用での検出セルの損傷がなく長期的に信頼性のある測定
が行える。
According to the present invention, the composition of a cleaning chemical composed of hydrogen peroxide, ammonia, and water can be monitored automatically with good reproducibility by collecting a small amount of chemical. Further, since a concentrated chemical solution is not constantly introduced into the detector, there is no damage to the detection cell during long-term use, and reliable measurement can be performed in the long term.

【0042】また、本発明によれば、アンモニア濃度と
過酸化水素濃度の各濃度を、他成分の影響を受けること
なく独立して測定できるため、従来のように一方の成分
の測定濃度を利用して他方の成分の濃度を算出する場合
に比べ、測定精度がよい。
Further, according to the present invention, each of the ammonia concentration and the hydrogen peroxide concentration can be independently measured without being affected by the other components. The measurement accuracy is better than when the concentration of the other component is calculated.

【0043】この装置と薬液の供給装置とを組み合わせ
ることで、安定した洗浄を行え製品の信頼性を向上させ
ることができると共に、薬液の適量供給により薬液使用
量の削減を図ることができる。
By combining this device with a chemical liquid supply device, stable cleaning can be performed and the reliability of the product can be improved, and the amount of chemical liquid used can be reduced by supplying an appropriate amount of chemical liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の洗浄薬液の組成モニタ装置の一実施例
を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a cleaning liquid composition monitoring device of the present invention.

【図2】本発明の洗浄薬液の組成モニタ装置におけるホ
ウ酸濃度の最適化実験の結果を示す図である。
FIG. 2 is a diagram showing the results of an experiment for optimizing the concentration of boric acid in the apparatus for monitoring the composition of a cleaning solution of the present invention.

【図3】本発明の洗浄薬液の組成モニタ装置によるアン
モニアの検量線を示す図である。
FIG. 3 is a diagram showing a calibration curve of ammonia by the cleaning liquid composition monitoring device of the present invention.

【図4】本発明の洗浄薬液の組成モニタ装置による過酸
化水素の検量線を示す図である。
FIG. 4 is a diagram showing a calibration curve of hydrogen peroxide by the cleaning chemical composition monitoring device of the present invention.

【図5】従来技術による洗浄薬液の組成モニタ装置を組
み込んだ洗浄薬液の濃度調整装置を示す構成図である。
FIG. 5 is a configuration diagram showing a cleaning chemical solution concentration adjusting device incorporating a cleaning chemical composition monitoring device according to a conventional technique.

【図6】従来技術による洗浄薬液の組成モニタ装置を組
み込んだ洗浄薬液の濃度調整装置を示す構成図である。
FIG. 6 is a configuration diagram showing a cleaning chemical solution concentration adjusting device incorporating a cleaning chemical composition monitoring device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1、2、3、55、60、65、75、78、155、
160、165、175、178 送液ポンプ 5、6、7 流路切替バルブ 11、12、13、14 ループ 15 冷却器 16 脱泡器 17 逆止弁 20 混合器 21、161 導電率検出部 22、162 導電率測定用フローセル 26、56、61、156 紫外吸収測定部 27、57、62、157 吸光測定用フローセル 28、58、63、158 紫外線光源 29、59、64、159 紫外線検出器 30 脱気装置 51、151 洗浄槽 52、152 洗浄液 53、153 ヒータ 66 塩酸 67、167 インターフェース 68、168 電磁弁制御部 69a、69b、169a、169b 電磁弁 70、170 過酸化水素タンク 71、171 アンモニア水タンク 72、172 マイクロコンピュータ 73、74、173、174 廃水 76、176 純水 77、177 液面センサ 79、179 フィルタ 80、180 温度計
1, 2, 3, 55, 60, 65, 75, 78, 155,
160, 165, 175, 178 Liquid sending pump 5, 6, 7 Flow path switching valve 11, 12, 13, 14 Loop 15 Cooler 16 Defoamer 17 Check valve 20 Mixer 21, 161 Conductivity detector 22, 162 Conductivity measurement flow cell 26, 56, 61, 156 Ultraviolet absorption measurement section 27, 57, 62, 157 Absorption measurement flow cell 28, 58, 63, 158 Ultraviolet light source 29, 59, 64, 159 Ultraviolet detector 30 Degassing Apparatus 51, 151 Cleaning tank 52, 152 Cleaning liquid 53, 153 Heater 66 Hydrochloric acid 67, 167 Interface 68, 168 Solenoid valve controller 69a, 69b, 169a, 169b Solenoid valve 70, 170 Hydrogen peroxide tank 71, 171 Ammonia water tank 72 , 172 Microcomputer 73, 74, 173, 174 Wastewater 76 176 Pure water 40,632 level sensor 79,179 filters 80, 180 Thermometer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 21/304 341 H01L 21/304 341Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // H01L 21/304 341 H01L 21/304 341Z

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】過酸化水素、アンモニア、水とからなる薬
液の過酸化水素とアンモニアの組成モニタ方法におい
て、前記薬液に水と弱酸溶液を混合希釈し、紫外吸収測
定部および導電率測定部で、前記弱酸溶液と混合された
前記希釈薬液の所定の波長における吸光度と、導電率を
それぞれ連続測定し、前記2種の測定部からの検出値
を、予め既知の濃度のアンモニア溶液および過酸化水素
溶液あるいは前記薬液の吸光度と導電率を測定し作成さ
れた検量線データと対照し、組成を計算することを特徴
とする薬液組成モニタ方法。
1. A method for monitoring the composition of hydrogen peroxide and ammonia in a chemical solution comprising hydrogen peroxide, ammonia and water, wherein said chemical solution is mixed and diluted with water and a weak acid solution, and the diluted solution is mixed with an ultraviolet absorption measuring unit and a conductivity measuring unit. The absorbance at a predetermined wavelength and the conductivity of the diluted chemical solution mixed with the weak acid solution are each continuously measured, and the detection values from the two types of measurement units are determined using an ammonia solution and a hydrogen peroxide having a known concentration in advance. A chemical solution composition monitoring method, comprising measuring absorbance and conductivity of a solution or the chemical solution, and comparing the calibration curve data created to calculate the composition.
【請求項2】過酸化水素、アンモニア、水とからなる薬
液の過酸化水素とアンモニアの組成モニタ方法におい
て、定量ポンプにより管内に連続送液されている弱酸溶
液に、水により希釈された前記薬液を流路切替バルブを
用いて導入し、前記バルブの下流側に接続された紫外吸
収測定部および導電率測定部で、前記弱酸溶液と混合さ
れた前記希釈薬液の所定の波長における吸光度と、導電
率をそれぞれ連続測定し、前記両測定部での検出値をイ
ンターフェースを介してコンピュータに自動入力し、前
記2種の測定部からの検出値を、予め既知の濃度のアン
モニア溶液および過酸化水素溶液あるいは前記薬液の吸
光度と導電率を測定し作成されコンピュータに保存され
ている検量線データと対照し、組成を計算することを特
徴とする薬液組成モニタ方法。
2. A method for monitoring the composition of hydrogen peroxide and ammonia in a chemical solution comprising hydrogen peroxide, ammonia and water, wherein the chemical solution diluted with water is added to a weak acid solution continuously fed into a tube by a metering pump. Is introduced using a flow path switching valve, and at an ultraviolet absorption measurement unit and a conductivity measurement unit connected to the downstream side of the valve, the absorbance at a predetermined wavelength of the diluted chemical solution mixed with the weak acid solution, and conductivity. The measurement values are continuously measured, and the detection values from the two measurement units are automatically input to a computer via an interface, and the detection values from the two measurement units are converted into ammonia solution and hydrogen peroxide solution having a known concentration in advance. Alternatively, the composition of the chemical solution is calculated by measuring the absorbance and conductivity of the chemical solution and comparing the calibration curve data created and stored in a computer to calculate the composition. Data method.
【請求項3】前記弱酸溶液がホウ酸であることを特徴と
する請求項1または請求項2記載の薬液組成モニタ方
法。
3. The method according to claim 1, wherein the weak acid solution is boric acid.
【請求項4】請求項1または請求項2または請求項3記
載の薬液組成モニタ方法に使用する薬液組成モニタ装置
であって、過酸化水素、アンモニア、水とからなる薬液
の薬液供給部と、水供給部と、弱酸溶液供給部とが接続
された流路切替バルブと、前記バルブの上流側に接続さ
れ前記3種の液の各供給量を制御する定量ポンプと、前
記バルブの下流側に接続された混合器と、前記混合器の
下流側に接続された紫外吸収測定部ならびに導電率測定
部と、装置内のバルブと前記ポンプの制御ならびに前記
両測定部からの検出値を取得しデータ処理を行う制御部
から構成され、前記バルブの切替えにより、前記薬液と
前記水と前記弱酸溶液を、あるいは前記水と前記弱酸溶
液の少なくともいずれかを前記混合器に導入するように
流路の設定を行えることを特徴とする薬液組成モニタ装
置。
4. A chemical liquid composition monitoring apparatus used in the chemical liquid composition monitoring method according to claim 1, 2 or 3, further comprising: a chemical liquid supply section for supplying a chemical liquid comprising hydrogen peroxide, ammonia, and water. A water supply unit, a flow path switching valve connected to the weak acid solution supply unit, a metering pump connected to the upstream side of the valve to control the supply amount of each of the three liquids, and a downstream side of the valve. A connected mixer, an ultraviolet absorption measurement unit and a conductivity measurement unit connected to the downstream side of the mixer, control of a valve and the pump in the apparatus, and data obtained by detecting values from both the measurement units. It is configured from a control unit that performs a process, and by switching the valve, setting of a flow path so that the chemical solution, the water, and the weak acid solution, or at least one of the water and the weak acid solution is introduced into the mixer. Do Chemical composition monitor apparatus characterized by.
【請求項5】前記流路切替バルブが、四方バルブあるい
は四方バルブと同等の機能を有する水導入用流路切替バ
ルブと、六方バルブあるいは六方バルブと同等の機能を
有する2つの流路切替バルブから構成され、前記六方バ
ルブの内の1つは薬液導入用で、他方が弱酸溶液導入用
であり、前記3つのバルブにはいずれも各液の供給部と
排出部が接続され、前記3つのバルブは配管で相互に接
続され、前記四方バルブの切り替えにより、前記水供給
部から導入された水が前記六方バルブを通過し前記四方
バルブの別の接続口から排出される開配管状態と、前記
3つのバルブを接続する配管内の溶液が循環する閉配管
状態との切り替えが可能であり、前記混合器は、前記弱
酸溶液導入用あるいは水導入用バルブの下流側に接続さ
れることを特徴とする請求項4記載の薬液組成モニタ装
置。
5. The flow path switching valve includes a four-way valve or a water introduction flow path switching valve having the same function as the four-way valve, and a six-way valve or two flow path switching valves having the same function as the six-way valve. One of the six-way valves is for introducing a chemical solution, the other is for introducing a weak acid solution, and the three valves are connected to a supply part and a discharge part of each liquid, respectively. Are connected to each other by a pipe, and when the four-way valve is switched, water introduced from the water supply unit passes through the six-way valve and is discharged from another connection port of the four-way valve. It is possible to switch between a closed pipe state in which the solution in the pipe connecting the two valves circulates, and the mixer is connected to the downstream side of the weak acid solution introduction or water introduction valve. Chemical composition monitoring apparatus of claim 4, wherein that.
【請求項6】前記薬液供給部が冷却装置と、脱泡器と、
逆止弁を有することを特徴とする請求項4または請求項
5記載の薬液組成モニタ装置。
6. The method according to claim 1, wherein the chemical solution supply unit includes a cooling device, a defoamer,
The chemical liquid composition monitoring device according to claim 4, further comprising a check valve.
【請求項7】請求項5または請求項6記載の薬液組成モ
ニタ装置による薬液組成モニタ方法であって、まず請求
項5または請求項6の薬液組成モニタ装置の前記配管を
前記開配管状態となるように前記四方バルブを設定し、
水を前記配管内に導入し前記配管内を水で満たし、次い
で前記薬液導入用バルブにより薬液を導入すると共に、
前記四方バルブを切り替えて前記閉配管状態とし、所定
時間配管内の溶液を循環させて前記薬液と配管内の水と
を混合させ希釈し、しかる後に前記弱酸溶液導入用バル
ブを切替えることにより、前記弱酸溶液と前記希釈薬液
とを混合し、吸光度及び導電率の測定に供し、前記工程
を繰り返し行うことを特徴とする請求項1または請求項
2または請求項3記載の薬液組成モニタ方法。
7. A chemical liquid composition monitoring method using the chemical liquid composition monitoring device according to claim 5 or 6, wherein the piping of the chemical liquid composition monitoring device according to claim 5 or 6 is in the open pipe state. Set the four-way valve so that
Water is introduced into the pipe and the inside of the pipe is filled with water, and then a chemical is introduced by the chemical introduction valve,
By switching the four-way valve to the closed pipe state, circulating the solution in the pipe for a predetermined time to mix and dilute the chemical solution and water in the pipe, and then switching the weak acid solution introduction valve, the The chemical solution monitoring method according to claim 1, wherein the weak acid solution and the diluted chemical solution are mixed, the absorbance and the conductivity are measured, and the step is repeated.
JP6278828A 1994-11-14 1994-11-14 Chemical composition monitoring method and device Expired - Lifetime JP2658919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6278828A JP2658919B2 (en) 1994-11-14 1994-11-14 Chemical composition monitoring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6278828A JP2658919B2 (en) 1994-11-14 1994-11-14 Chemical composition monitoring method and device

Publications (2)

Publication Number Publication Date
JPH08136451A JPH08136451A (en) 1996-05-31
JP2658919B2 true JP2658919B2 (en) 1997-09-30

Family

ID=17602728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6278828A Expired - Lifetime JP2658919B2 (en) 1994-11-14 1994-11-14 Chemical composition monitoring method and device

Country Status (1)

Country Link
JP (1) JP2658919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160100031A (en) 2015-02-13 2016-08-23 주식회사 위드텍 Calibration Method of On-line Measurement, Recording Medium Storing Program for Executing the Same and Recording Medium Storing Program for Executing the Same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208471A (en) * 1999-01-11 2000-07-28 Kurita Water Ind Ltd Device for preparing cleaning water for electronic materials
WO2003050513A2 (en) * 2001-12-06 2003-06-19 Biocontrol Systems, Inc. Sample collection and testing system
JP5198187B2 (en) * 2007-09-26 2013-05-15 東京エレクトロン株式会社 Liquid processing apparatus and processing liquid supply method
EP2407234B1 (en) 2010-01-08 2013-01-09 Olympus Medical Systems Corp. Fluid mixing device, medical fluid testing device, and endoscope processing device
CN104062169B (en) * 2014-06-23 2017-03-15 青岛普仁仪器有限公司 A kind of automatic on-line micro-example dilution mixing device and mixed method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381291A (en) * 1976-12-27 1978-07-18 Mitsubishi Chem Ind Determination of ammonia
JPS628040A (en) * 1985-07-05 1987-01-16 Hitachi Ltd Washing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160100031A (en) 2015-02-13 2016-08-23 주식회사 위드텍 Calibration Method of On-line Measurement, Recording Medium Storing Program for Executing the Same and Recording Medium Storing Program for Executing the Same

Also Published As

Publication number Publication date
JPH08136451A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US5364510A (en) Scheme for bath chemistry measurement and control for improved semiconductor wet processing
US6884356B2 (en) Low-level boron detection and measurement
US5494824A (en) Apparatus for measuring aldehye
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
KR100860269B1 (en) A method and apparatus for on-line monitoring wafer cleaning solution at single wafer process and a reagent container for the apparatus
US20060133964A1 (en) Closed loop automated matrix removal
JP2658919B2 (en) Chemical composition monitoring method and device
CN105452845A (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
KR100879009B1 (en) A system and method for monitoring metals and metal compounds in air and gases
CN103399163B (en) Online phosphorus and fluorine content measuring analyzer
JPS628040A (en) Washing apparatus
JP2701760B2 (en) Chemical composition monitor
US11480526B2 (en) Instrument for sequential analysis for silica and phosphate in aqueous solution
JP2677263B2 (en) Chemical composition monitoring method and device
JPH1054802A (en) Monitoring method for liquid-medicine composition
JP2008175729A (en) Specimen measurement system
JPWO2006049239A1 (en) Method and apparatus for detecting ultra-trace metal element in test solution in real time and in-line
JP2865771B2 (en) Automatic liquid management device
Ehmann et al. Monitoring the quality of ultra-pure water in the semiconductor industry by online ion chromatography
JP4085122B2 (en) Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample
KR100983102B1 (en) Apparatus and method for measurement of hydrofluoric acid in cleaning solutions
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system
JPS58162852A (en) Analyzing apparatus of automatic titration
JP3911820B2 (en) Ion concentration measuring device
JPH11304711A (en) Automatic calibration method and apparatus in three-phase nitrogen analysis in water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970506