JP2645708B2 - Electron-emitting device - Google Patents

Electron-emitting device

Info

Publication number
JP2645708B2
JP2645708B2 JP21032287A JP21032287A JP2645708B2 JP 2645708 B2 JP2645708 B2 JP 2645708B2 JP 21032287 A JP21032287 A JP 21032287A JP 21032287 A JP21032287 A JP 21032287A JP 2645708 B2 JP2645708 B2 JP 2645708B2
Authority
JP
Japan
Prior art keywords
electrode
electron
electron emission
emitting device
extraction electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21032287A
Other languages
Japanese (ja)
Other versions
JPS6454650A (en
Inventor
一郎 野村
幸次郎 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21032287A priority Critical patent/JP2645708B2/en
Publication of JPS6454650A publication Critical patent/JPS6454650A/en
Application granted granted Critical
Publication of JP2645708B2 publication Critical patent/JP2645708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子放出素子に関し、特に電子放出電極の突
端部より素子基板と平行に電子を放出せしめ、且つ偏向
電極により基板と直角方向に該電子を偏向させる電子放
出素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device, and more particularly, to an electron-emitting device, in which electrons are emitted from a tip end of an electron-emitting electrode in parallel with an element substrate. The present invention relates to an electron-emitting device that deflects electrons.

[従来の技術] 従来、電子発生源としては、熱陰極からの熱電子放出
が用いられていた。この様な熱陰極を利用した電子放出
は、加熱によるエネルギーロスが大きい点、加熱手段の
形成が必要である点、及び予備加熱にかなりの時間を要
する点や熱により系が不安定化しやすいという点で問題
があった。
[Prior Art] Conventionally, thermionic emission from a hot cathode has been used as an electron generating source. Electron emission using such a hot cathode is large in energy loss due to heating, requires formation of heating means, requires considerable time for preheating, and tends to be unstable due to heat. There was a problem in point.

そこで、加熱によらない電子放出素子の研究が進めら
れ、その中の一つに電解効果型(FE型)の電子放出素子
がある。
Therefore, research on electron-emitting devices that do not rely on heating has been promoted, and one of them is a field-effect (FE) electron-emitting device.

第6図は従来の電界効果型の電子放出素子の概略的構
成図である。
FIG. 6 is a schematic configuration diagram of a conventional field-effect type electron-emitting device.

同図に示すように、従来の電界効果型の電子放出素子
は、基体1上に設けられた、強電界を得るために先端を
鋭く尖らせた陰極チップ2と、基体1上の絶縁層3を介
して設けられ、且つ陰極チップ2の尖頭部を中心として
略円形状の開口部が形成された引き出し電極4とから構
成され、陰極チップ2と引き出し電極4との間に引き出
し電極4を高電位とすると電圧を印加し、電界強度の大
きくなる陰極チップ2の尖頭部から電子を放出させるも
のである。
As shown in FIG. 1, a conventional field-effect type electron-emitting device includes a cathode chip 2 provided on a base 1 and having a sharply sharpened tip for obtaining a strong electric field, and an insulating layer 3 on the base 1. And an extraction electrode 4 having a substantially circular opening centered on the pointed tip of the cathode chip 2. The extraction electrode 4 is provided between the cathode chip 2 and the extraction electrode 4. When a high potential is applied, a voltage is applied, and electrons are emitted from the tip of the cathode tip 2 where the electric field intensity increases.

[発明が解決しようとする問題点] しかしながら、上記の従来の電界効果型の電子放出素
子は陰極チップ2の先端を鋭く尖らせることが難しく、
一般的に陰極チップ2を作製する場合には、電界研摩を
行った後にリモルディングを行っていた。この工程は多
くの手間を要し煩雑であるとともに、経験的な要素が強
いために、機械化が難しく、製造条件にバラツキが生じ
やすく、品質が安定しない等の問題点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional field-effect type electron-emitting device, it is difficult to sharpen the tip of the cathode chip 2 sharply.
Generally, when manufacturing the cathode chip 2, remolding is performed after performing electric field polishing. This process requires a lot of labor and is complicated, and also has problems such as difficulties in mechanization, variation in manufacturing conditions and unstable quality due to strong empirical factors.

本発明の目的は、上記従来技術の問題に鑑みて、構成
が簡略で、かつ安定に再現性良く製造が可能な電界効果
型の電子放出素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a field-effect type electron-emitting device which has a simple structure and can be stably manufactured with good reproducibility in view of the above-mentioned problems of the prior art.

[問題点を解決するための手段] 上記の問題点は、電子放出素子を同一基板上に、放出
した電子の飛翔方向をほぼ垂直に偏向せしめる偏向電極
と、これを覆う絶縁層と、該絶縁層上の前記偏向電極に
ほぼ対応する位置に突端部を有する電子放出電極と、該
突端部に近接して対向した電気放出口を有する引き出し
電極とを有する構造とし、かかる前記突端部と前記引き
出し電極を微細加工技術により精度よく作製することに
より解決できる。
[Means for Solving the Problems] The above problems are caused by the fact that the electron-emitting device deflects the flight direction of emitted electrons on the same substrate almost vertically, an insulating layer covering the same, A structure having an electron emission electrode having a tip at a position substantially corresponding to the deflection electrode on the layer, and a lead electrode having an electric emission port close to and opposed to the tip; The problem can be solved by manufacturing the electrodes with high precision by a fine processing technique.

すなわち、本発明は、基板の同一面に沿って並設され
た、突端部を有する電子放出電極と、該突端部に対向し
た電子放出口を有する引き出し電極と、該電子放出電極
と該引き出し電極との下に設けられた絶縁層と、該絶縁
層の下面と基板との間に配設された、該引き出し電極よ
り該基板面に平行に引き出された電子の飛翔方向を該基
板面と垂直な上方に偏向する為の偏向電極とを有するこ
とを特徴とする電子放出素子に係るものである。
That is, the present invention provides an electron emission electrode having a protruding end, an extraction electrode having an electron emission port opposed to the prong, and an electron emission electrode and the extraction electrode, which are arranged side by side along the same surface of the substrate. An insulating layer provided below the insulating layer, and a flying direction of electrons, which is provided between the lower surface of the insulating layer and the substrate and is drawn in parallel with the substrate surface from the extraction electrode, is perpendicular to the substrate surface. And a deflection electrode for deflecting upward.

[作 用] 一般に、電界放出に必要な電界強度は107V/cm以上で
あり、この電界が印加されると、固体中の電子がトンネ
ル効果により、表面のポテンシャル障壁を通り抜けて電
子が放出される。
[Operation] In general, the electric field strength required for field emission is 10 7 V / cm or more. When this electric field is applied, electrons in the solid pass through the potential barrier on the surface due to the tunnel effect, and the electrons are emitted. Is done.

いま、対向する電子放出電極と対向電極との間に印加
する電圧をVとし、電子放出電極の電子放出部の曲率半
径をrとすると、曲率半径rが小さい場合、電子放出部
の電界強度Eは、 なる関係がある。
Now, assuming that the voltage applied between the opposing electron emitting electrode and the opposing electrode is V, and the radius of curvature of the electron emitting portion of the electron emitting electrode is r, when the radius of curvature r is small, the electric field intensity E of the electron emitting portion is obtained. Is There is a relationship.

電子放出を行わせる場合、電子の収束性を良くするに
は、放出電子のエネルギー幅を小さくすることが望まし
く、また低電圧で駆動することが望ましい。このため、
前記曲率半径rは極力小さくすることが望ましい。
When performing electron emission, in order to improve the convergence of the electrons, it is desirable to reduce the energy width of the emitted electrons, and it is desirable to drive at a low voltage. For this reason,
It is desirable that the radius of curvature r be as small as possible.

さらに、電子放出電圧のバラツキ等を抑えるために、
電子放出電極と対向電極との間の距離を精度よく形成す
ることが望まれる。
Furthermore, in order to suppress variations in the electron emission voltage,
It is desired to form the distance between the electron emission electrode and the counter electrode with high accuracy.

本発明では電子放出電極と引き出し電極とを同一面内
方向に配置することにより、後述する微細加工技術を用
いた精度の良い安定した電子放出部の形成が実現され
る。即ち、電子放出電極の突端部の曲率半径を極めて小
さく加工し、かつこの突端部の近接した位置に精度よく
引き出し電極を形成することができる。
In the present invention, by arranging the electron emission electrode and the extraction electrode in the same in-plane direction, an accurate and stable formation of the electron emission portion using the fine processing technique described later is realized. That is, the radius of curvature of the protruding end of the electron emission electrode can be processed to be extremely small, and the extraction electrode can be accurately formed at a position close to the protruding end.

引き出し電極により引き出された電子は、絶縁層を介
した位置に設けられている偏向電極に、電子放出電極に
対して負電圧を印加することにより、素子基板に対して
ほぼ垂直方向に偏向される。
The electrons extracted by the extraction electrode are deflected in a direction substantially perpendicular to the element substrate by applying a negative voltage to the electron emission electrode to a deflection electrode provided at a position via the insulating layer. .

また、偏向電極を絶縁層を介して電子放出電極及び引
き出し電極の下部に設けることができるので、素子を小
型化でき、集積度を上げることが可能となる。
Further, since the deflection electrode can be provided below the electron emission electrode and the extraction electrode via the insulating layer, the element can be reduced in size and the degree of integration can be increased.

[実施例] 以下、図面に示す実施例に基づいて本発明を詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

実施例1 第1図は本発明の電子放出素子の一実施例を示す構成
図であり、第2図はその平面図である。
Embodiment 1 FIG. 1 is a structural view showing one embodiment of the electron-emitting device of the present invention, and FIG. 2 is a plan view thereof.

同第1図に示すように、本発明の電子放出素子は、ガ
ラス等の絶縁基板6上に偏向電極9を設け、その上に絶
縁層6aを介して突端部7aを有する電子放出電極7と、前
記突端部7aに近接して対向する電子放出口を有する引き
出し電極8とを設けてなるものである。
As shown in FIG. 1, the electron-emitting device of the present invention comprises a deflection electrode 9 provided on an insulating substrate 6 made of glass or the like, and an electron-emitting electrode 7 having a protruding end 7a provided thereon via an insulating layer 6a. And a lead-out electrode 8 having an electron emission port which is opposed to and proximate to the protruding end 7a.

偏向電極9は非磁性の金属材料であることが望まし
く、一般的にはニッケル又は非磁性ステンレス材料が使
用できる。
The deflection electrode 9 is desirably a non-magnetic metal material, and generally nickel or a non-magnetic stainless material can be used.

本実施例ではニッケルをガラス基板6上に厚さが1000
Å以上になるようにスパッタ法により成膜した。絶縁層
6aはSiO2をスパッタ法により0.2〜3μmの厚さに形成
した。
In this embodiment, the thickness of nickel is 1000
成膜 A film was formed by a sputtering method so as to have a thickness of at least. Insulating layer
6a was formed by sputtering SiO 2 to a thickness of 0.2 to 3 μm.

電子放出電極7の突端部7aの形状は、極力、曲率半径
が小さくなるように集束イオンビーム技術等を用いて形
成する。その形状は三角形状、放物線形状等で、くさび
形の柱状体、放物線状の側面を有する柱状体等に形成す
ることが望ましい。
The shape of the protruding end 7a of the electron emission electrode 7 is formed by using a focused ion beam technique or the like so as to minimize the radius of curvature. The shape is a triangular shape, a parabolic shape, or the like, and is desirably formed into a wedge-shaped column, a column having a parabolic side surface, or the like.

電子放出電極7の材質は、上記のように電子放出電極
7の曲率半径が小さくなるように形成し、電流密度が大
きく、発熱量が大きくなるために、高融点材料であるこ
とが好ましく、また印加電圧を低減させるために低仕事
関数材料から構成されることが好ましい。例えば、W,Z
r,Ti,Au等の金属、TiC,ZrC,HfC等の金属炭化物、LaB6,S
mB6,GdB6等の金属ホウ化物、WSi2,TiSi2,ZrSi2,GdSi2
の金属シリサイド、又はSnO2,ITO等の半導体酸化物を用
いることができる。
The material of the electron-emitting electrode 7 is preferably formed of a material having a small radius of curvature as described above, and is preferably a high-melting-point material because the current density is large and the calorific value is large. It is preferable to use a low work function material to reduce the applied voltage. For example, W, Z
metals such as r, Ti, Au, metal carbides such as TiC, ZrC, HfC, LaB 6 , S
Metal borides such as mB 6 and GdB 6 , metal silicides such as WSi 2 , TiSi 2 , ZrSi 2 and GdSi 2 , and semiconductor oxides such as SnO 2 and ITO can be used.

電子の引き出し電極8は、第2図に示すように、前記
電子放出電極7の突端部7aに対向して電子放出口である
開口部8aを有する形状に、ステンレス材、ニッケル材等
の金属材料で形成する。
As shown in FIG. 2, the electron extraction electrode 8 is formed of a metal material such as a stainless steel material or a nickel material in a shape having an opening 8a which is an electron emission port facing the tip 7a of the electron emission electrode 7. Formed.

引き出し電極8は、電子放出電極7に近付けて形成す
ることが望ましく、又開口部8aの幅wは前記突端部7aと
同程度のスケールで設けることが望ましい。
The extraction electrode 8 is desirably formed close to the electron emission electrode 7, and the width w of the opening 8a is desirably provided on the same scale as the protruding end 7a.

本実施例では、電子放出電極7と引き出し電極8をAu
部材を用いてFIB装置により次のような形状に作成し
た。電子放出電極7の突端部7aを第2図に示すような略
2等辺三角形に加工し、前記曲率半径rを500Å以下に
形成した。又、引き出し電極8を電子放出電極7から、
0.5〜2.0μmの位置に(第2図のlの長さ)開口部8aの
wが0.5〜1.5μmとなるように加工した。
In this embodiment, the electron emission electrode 7 and the extraction electrode 8 are Au
The members were formed into the following shapes using a FIB device. The protruding end portion 7a of the electron emission electrode 7 was processed into a substantially isosceles triangle as shown in FIG. 2 to form the radius of curvature r of 500 ° or less. Also, the extraction electrode 8 is separated from the electron emission electrode 7 by
The opening 8a was processed at a position of 0.5 to 2.0 μm (length of 1 in FIG. 2) such that w of the opening 8a was 0.5 to 1.5 μm.

上記に説明したような本発明の電界型電子放出素子に
おいて、第1図に示すように、電子放出電極7に対し引
き出し電極8に電源10aにより電圧V1を、また偏向電極
9に電源10bにより電圧V2を印加する。通常V1は20V以上
であるが、望ましくは20〜100V、さらには20〜50Vの低
電圧が望ましい。電圧V1を100V以上で駆動すると放出電
流のゆらぎが大きくなり、寿命が短くなる。
In the above-described field emission type electron-emitting device of the present invention, as shown in FIG. 1 , a voltage V 1 is applied to the extraction electrode 8 by the power supply 10 a with respect to the electron emission electrode 7, and a voltage 10 b is applied to the deflection electrode 9 by the power supply 10 b. applying a voltage V 2. Usually, V1 is 20 V or more, but preferably 20 to 100 V, and more preferably a low voltage of 20 to 50 V. Fluctuation of the emission current and to drive the voltages V 1 at least 100V increases, life is shortened.

偏向電極9に印加する電圧V2は、電圧V1により変える
必要があるが、一般には電子放出電極7に対して0〜−
100Vが望ましい。
Voltage V 2 applied to the deflection electrode 9, it is necessary to change the voltage V 1, typically the electron-emitting electrode 7 0~-
100V is desirable.

本実施例において、電圧V1を30Vに固定し、電圧V2
変化させ表1に示す結果を得た。
In this embodiment, fixing the voltages V 1 to 30 V, to give the results shown in Table 1 by changing the voltage V 2.

本実施例による電子放出素子は電流のゆらぎ5%以
内、寿命1000時間以上の特性が得られ、電界型電子放出
素子としては優れた特性であることが確認できた。
The electron-emitting device according to the present example exhibited characteristics of a current fluctuation of 5% or less and a life of 1000 hours or more, confirming that the characteristics were excellent as a field-type electron-emitting device.

次に、本発明に用いる微細加工技術について説明す
る。
Next, the fine processing technology used in the present invention will be described.

通常、微細加工技術としては、レジストプロセスとエ
ッチングプロセスからなるリソグラフィー技術が用いら
れるが、マスクずれ等が生じるために、1.0μm以下の
微細加工は困難である。
Usually, a lithography technique including a resist process and an etching process is used as the fine processing technique. However, fine processing of 1.0 μm or less is difficult due to a mask shift or the like.

本発明に用いる微細加工技術は、1.0μm以下の微細
加工が可能なものをいい、例えば前述した集束イオンビ
ーム(FIB)が用いられる。
The fine processing technology used in the present invention refers to a technology capable of performing fine processing of 1.0 μm or less. For example, the above-mentioned focused ion beam (FIB) is used.

第3図はFIB装置の一例を示す構成図である。 FIG. 3 is a configuration diagram showing an example of the FIB device.

FIB技術は、サブミクロンに集束した金属イオンを走
査し、固体表面におけるスパッタリング現象を利用し
て、サブミクロンオーダの微細加工を行うものである。
The FIB technology scans metal ions focused on a submicron, and performs submicron-order fine processing by utilizing a sputtering phenomenon on a solid surface.

同図において、イオン源11は、引き出し電極8により
液体金属原子を放出させ、EXB質量分離器13によって所
望のイオンビームを選別し(合金系液体金属を用いる場
合)、対物レンズ14によって80keV程度に加速したイオ
ンビームを0.1μm程度まで集束し、ビーム偏向電極15
によって試料16上を走査する。なおイオンビームの位置
合わせは、試料ステージ17によって行われる。
In the figure, an ion source 11 emits liquid metal atoms by an extraction electrode 8, selects a desired ion beam by an EXB mass separator 13 (in the case of using an alloy-based liquid metal), and reduces the ion beam to about 80 keV by an objective lens 14. The accelerated ion beam is focused to about 0.1 μm and the beam deflection electrode 15
Scans the sample 16. The ion beam is positioned by the sample stage 17.

実施例2 第4図は本発明の第二の実施例を示す構成図である。Embodiment 2 FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

本実施例は、実施例1に於て、絶縁層6aに段差を設
け、その上段に電子放出電極7を作成し、下段に引き出
し電極8を一つの連続した金属より構成した。このよう
な素子構成によることにより、電子放出電極7の突端部
7aに電界を集中させ、かつ絶縁層6a上にチャージアップ
を防止する効果が得られる。
In the present embodiment, a step is provided in the insulating layer 6a, the electron emission electrode 7 is formed in the upper stage, and the extraction electrode 8 is formed of one continuous metal in the lower stage in the first embodiment. With such an element configuration, the tip of the electron emission electrode 7
The effect of concentrating the electric field on 7a and preventing charge-up on insulating layer 6a is obtained.

本実施例において、この様な効果が得られるのは、突
端部7a近傍の電界が絶縁基板内に存在する電解によって
弱められるためと考えられるが、本実施例の他にも、実
施例1に於て電子放出電極7と引き出し電極8の間の絶
縁層6aに凹部を設けても同一の効果が期待できる。
In the present embodiment, it is considered that such an effect is obtained because the electric field in the vicinity of the protruding end 7a is weakened by the electrolysis existing in the insulating substrate. In this case, the same effect can be expected even if a concave portion is provided in the insulating layer 6a between the electron emission electrode 7 and the extraction electrode 8.

実施例3 第5図は本発明の第三の実施例を示す構成図である。Embodiment 3 FIG. 5 is a block diagram showing a third embodiment of the present invention.

本実施例は、電子放出電極が突端部を複数個有し、か
つ該複数個の突端部の各々に対向する部分に近接して電
子放出口を有する引き出し電極が設けられている例を表
わし、実施例2の素子構成を用い、同一絶縁基板6上に
ピッチdが2.5μmで500個の電子放出素子を作成した。
このように作成することにより、単に500倍の電流量が
得られただけでなく、安定性も飛躍的に向上し、周波数
10〜106Hzのショットノイズがのほとんどなくなり、電
流のゆらぎが1.0%以内になった。
This embodiment represents an example in which the electron emission electrode has a plurality of protruding portions, and a lead electrode having an electron emission port is provided in proximity to a portion facing each of the plurality of protruding portions, Using the device configuration of Example 2, 500 electron-emitting devices having a pitch d of 2.5 μm were formed on the same insulating substrate 6.
By creating in this way, not only 500 times the amount of current was obtained, but also the stability was dramatically improved,
10 to 10 almost eliminated 6 Hz of shot noise is, the fluctuation of current is within 1.0%.

いずれの実施例においても、電子放出電極7と引き出
し電極8の電子放出部に外部からの電磁界による電気的
ノイズを防ぐためにシールド部材を設けることができ
る。(図示せず) シールド部材としては、厚さ2mm程度のステンレス部
材を用いて電子放出部を実質上囲むように絶縁基板6上
に設けると、外界からの電磁気的ノイズを防止する効果
がある。
In any of the embodiments, a shield member can be provided in the electron emission portions of the electron emission electrode 7 and the extraction electrode 8 in order to prevent electric noise due to an external electromagnetic field. If a stainless steel member having a thickness of about 2 mm is provided on the insulating substrate 6 so as to substantially surround the electron emitting portion (not shown), an electromagnetic noise from the outside can be prevented.

電磁気的ノイズはシールド部材を設けるだけでなく、
絶縁基板6の裏にシールド部材を貼り付けることによ
り、より強力な効果が期待できる。
Electromagnetic noise not only provides a shield member,
By attaching a shield member to the back of the insulating substrate 6, a stronger effect can be expected.

[発明の効果] 以上説明したように、本発明の電子放出素子によれ
ば、電子放出電極と引き出し電極を微細加工技術により
精度よく形成し、かつ絶縁層を介して偏向電極を設ける
ことにより、素子よりも電子放出させることができるだ
けでなく次のような効果がある。
[Effect of the Invention] As described above, according to the electron-emitting device of the present invention, the electron-emitting electrode and the extraction electrode are formed with high precision by the fine processing technique, and the deflection electrode is provided via the insulating layer. Electrons can be emitted more than the element, and the following effects can be obtained.

1)低電圧駆動が可能となり、放出される電子のエネル
ギーのバラツキを減少することができる。
1) Low-voltage driving is possible, and variations in the energy of emitted electrons can be reduced.

2)FIB等の微細加工技術によって、電子放出電極、引
き出し電極が、高精度に形成されるので、リモルディン
グ等の製造工程が不要であり、製造工程を簡易化するこ
とができる。
2) Since the electron emission electrode and the extraction electrode are formed with high precision by the fine processing technology such as FIB, a manufacturing process such as remolding is unnecessary, and the manufacturing process can be simplified.

3)電子放出電極及び引き出し電極が平面的に微細加工
されるので、薄型化、小型化、軽量化が容易である。
3) Since the electron emission electrode and the extraction electrode are finely processed in a plane, it is easy to reduce the thickness, size, and weight.

4)偏向電極に印加する電圧により素子より放出する電
子を偏向することができる。
4) Electrons emitted from the element can be deflected by the voltage applied to the deflection electrode.

5)偏向電極を絶縁層を介して電子放出電極と引き出し
電極の下部に設けることにより、素子全体を極めて小型
にすることができる。
5) By providing the deflection electrode below the electron emission electrode and the extraction electrode via the insulating layer, the entire device can be made extremely small.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電子放出素子の一実施例を示す構成
図、第2図はその平面図、第3図はFIB装置の一例を示
す構成図、第4図,第5図は各々本発明の他の実施例を
示す構成図および第6図は従来の電界効果型の電子放出
素子の概略的構成図である。 1……基体、2……陰極チップ 3,6a……絶縁層、4,8……引き出し電極 5,10a,10b……電源、6……絶縁基板 7……電子放出電極、7a……突端部 8a……開口部、9……偏向電極 11……イオン源、12……コンデンサレンズ 13……EXB質量分離器、14……対物レンズ 15……ビーム偏向電極、16……試料 17……試料ステージ
FIG. 1 is a block diagram showing an embodiment of the electron-emitting device of the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a block diagram showing an example of an FIB device, and FIGS. FIG. 6 and a schematic diagram showing another embodiment of the invention are schematic structural diagrams of a conventional field-effect type electron-emitting device. DESCRIPTION OF SYMBOLS 1 ... Base 2, Cathode chip 3, 6a ... Insulating layer, 4, 8 ... Extraction electrode 5, 10a, 10b ... Power supply, 6 ... Insulating substrate 7 ... Electron emission electrode, 7a ... Tip Section 8a: Opening, 9: Deflection electrode 11: Ion source, 12: Condenser lens 13: EXB mass separator, 14: Objective lens 15: Beam deflection electrode, 16: Sample 17 ... Sample stage

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の同一面に沿って並設された、突端部
を有する電子放出電極と、該突端部に対向した電子放出
口を有する引き出し電極と、該電子放出電極と該引き出
し電極との下に設けられた絶縁層と、該絶縁層の下面と
基板との間に配設された、該引き出し電極より該基板面
に平行に引き出された電子の飛翔方向を該基板面と垂直
な上方に偏向する為の偏向電極とを有することを特徴と
する電子放出素子。
1. An electron emission electrode having a protruding end, an extraction electrode having an electron emission port opposed to the protruding end, and an electron emission electrode and an extraction electrode arranged side by side along the same surface of the substrate. An insulating layer provided below, and a flying direction of electrons, which is disposed between the lower surface of the insulating layer and the substrate and is drawn out from the extraction electrode in parallel with the substrate surface, is perpendicular to the substrate surface. An electron-emitting device, comprising: a deflection electrode for deflecting upward.
JP21032287A 1987-08-26 1987-08-26 Electron-emitting device Expired - Fee Related JP2645708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032287A JP2645708B2 (en) 1987-08-26 1987-08-26 Electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032287A JP2645708B2 (en) 1987-08-26 1987-08-26 Electron-emitting device

Publications (2)

Publication Number Publication Date
JPS6454650A JPS6454650A (en) 1989-03-02
JP2645708B2 true JP2645708B2 (en) 1997-08-25

Family

ID=16587506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032287A Expired - Fee Related JP2645708B2 (en) 1987-08-26 1987-08-26 Electron-emitting device

Country Status (1)

Country Link
JP (1) JP2645708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793097B2 (en) * 1989-12-19 1995-10-09 松下電器産業株式会社 Electron-emitting device and manufacturing method thereof
US5063323A (en) * 1990-07-16 1991-11-05 Hughes Aircraft Company Field emitter structure providing passageways for venting of outgassed materials from active electronic area

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO145589C (en) * 1977-06-30 1982-04-21 Rosenblad Corp PROCEDURE FOR THE CONDENSATION OF STEAM IN A HEAT EXCHANGE AND A HEAT EXCHANGE FOR USE IN THE PROCEDURE
JPS5569941A (en) * 1978-11-20 1980-05-27 Matsushita Electric Ind Co Ltd Electron source for display unit
JPS5718324A (en) * 1980-07-07 1982-01-30 Mitsubishi Electric Corp Method of working
JPS5916255A (en) * 1982-07-19 1984-01-27 Nippon Telegr & Teleph Corp <Ntt> Electron gun

Also Published As

Publication number Publication date
JPS6454650A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
US6515640B2 (en) Electron emission device with gap between electron emission electrode and substrate
JP3235172B2 (en) Field electron emission device
JP2654012B2 (en) Electron emitting device and method of manufacturing the same
JPH0636680A (en) Electronic element using diamond film electron source
US4994711A (en) High brightness solid electrolyte ion source
Park et al. Lateral field emission diodes using SIMOX wafer
US4588928A (en) Electron emission system
JP2645708B2 (en) Electron-emitting device
US6924158B2 (en) Electrode structures
US4703256A (en) Faraday cups
JP2627622B2 (en) Electron-emitting device
JP2654013B2 (en) Electron emitting device and method of manufacturing the same
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
JP2770249B2 (en) Vacuum gauge
JP3407289B2 (en) Electron emission device and driving method thereof
JP2601091B2 (en) Electron-emitting device
EP0569671A1 (en) Field emission cold cathode and method for manufacturing the same
JP2835434B2 (en) Cold electron emission device
JP3198362B2 (en) Electron emitting device and image forming apparatus
JP3444943B2 (en) Cold cathode electron source device
JP3127054B2 (en) Field emission type vacuum tube
JP3468299B2 (en) Electron emission device
JP2002539580A (en) Field emission device and method of use
JPH04359831A (en) Electron emitting device
Golenitsky et al. Electron gun with field‐emission array cathodes for vacuum microwave devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees