JP2604778B2 - Matrix resin composition - Google Patents

Matrix resin composition

Info

Publication number
JP2604778B2
JP2604778B2 JP63022850A JP2285088A JP2604778B2 JP 2604778 B2 JP2604778 B2 JP 2604778B2 JP 63022850 A JP63022850 A JP 63022850A JP 2285088 A JP2285088 A JP 2285088A JP 2604778 B2 JP2604778 B2 JP 2604778B2
Authority
JP
Japan
Prior art keywords
resin
weight
parts
component
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63022850A
Other languages
Japanese (ja)
Other versions
JPH01201321A (en
Inventor
武寿 鎌瀬
美樹男 島
幹人 牧
栄記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12094193&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2604778(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63022850A priority Critical patent/JP2604778B2/en
Priority to CN89100628A priority patent/CN1031718C/en
Priority to KR1019890001277A priority patent/KR890013120A/en
Publication of JPH01201321A publication Critical patent/JPH01201321A/en
Application granted granted Critical
Publication of JP2604778B2 publication Critical patent/JP2604778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマトリックス樹脂組成物に係り、さらに詳し
くは耐熱性と伸度とのバランスがとれ、かつ成形硬化時
の耐レジンフロー性に優れたコンポジット物性を得るこ
とのできる炭素繊維強化プラスチック用樹脂組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a matrix resin composition, and more particularly, to a resin composition having a good balance between heat resistance and elongation and excellent resin flow resistance during molding and curing. The present invention relates to a resin composition for carbon fiber reinforced plastic capable of obtaining composite physical properties.

〔従来の技術〕[Conventional technology]

炭素繊維は軽量であり、しかも高強度、高弾性率を有
するため、樹脂との複合材として、いわゆるプリプレグ
の形で、例えば釣竿、ゴルフクラブやバドミントンのシ
ャフト等のスポーツレジャー用品、板バネやハニカム構
造材等の工業材料、さらには自動車用、航空機用、或い
は医療材料用等の素材として、成形材料の分野で広く利
用されているのが現状である。
Since carbon fiber is lightweight, and has high strength and high elastic modulus, it is used as a composite material with a resin in the form of a so-called prepreg, such as a fishing rod, a sporting goods such as a golf club or a badminton shaft, a leaf spring or a honeycomb. At present, it is widely used in the field of molding materials as industrial materials such as structural materials, and further as materials for automobiles, aircraft, medical materials, and the like.

所で従来このような炭素繊維強化プラスチック(以下
CFRPと略す。)に用いられる樹脂組成としては、数多く
の特許が出願されている。そして主組成としては、例え
ば特公昭60−58420号公報、或は特公昭58−167625号公
報などに見られるように、フェノールノボラック型エポ
キシ樹脂が50%以上、又はフェノールノボラック型及び
クレゾールノボラック型エポキシ樹脂などのノボラック
型エポキシ樹脂の混合物にビスフェノールA型エポキシ
樹脂が配合使用されるものが知られている。所でこのよ
うなCFRPは種々の製品に成形する際、切削加工が行なわ
れ、その時の温度上昇に耐えるため、通常150℃程度の
ガラス転移温度(Tg)が必要となる。そこで、耐熱性の
良いノボラック型エポキシ樹脂を多く配合した樹脂組成
物が従来用いられて来た。しかしノボラック型エポキシ
樹脂の割合が多いと成形物が脆化してしまう傾向があ
る。
Conventionally, such carbon fiber reinforced plastics (hereinafter referred to as
Abbreviated as CFRP. Many patents have been filed for the resin composition used in (1). As the main composition, for example, as disclosed in JP-B-60-58420 or JP-B-58-167625, the phenol novolak type epoxy resin is 50% or more, or the phenol novolak type and the cresol novolak type epoxy resin are used. It is known that a mixture of a novolak type epoxy resin such as a resin and a bisphenol A type epoxy resin is used. In the meantime, when such CFRP is formed into various products, cutting is performed, and a glass transition temperature (Tg) of usually about 150 ° C. is required to withstand the temperature rise at that time. Therefore, a resin composition containing a large amount of a novolak epoxy resin having good heat resistance has been conventionally used. However, when the proportion of the novolak type epoxy resin is large, the molded article tends to become brittle.

また、ノボラック型エポキシ樹脂の割合が多い樹脂組
成物で成形品を作ると、炭素繊維の配列方向が同一の場
合さほど問題は無いが、CFRPとして使用する場合、CFRP
が示す異方性を少なくする目的で繊維の配列方向が0゜
/±45゜/0゜の如くなるのが普通である。所がこのよう
に積層した後硬化させると、繊維方向の違いに起因する
熱収縮の差に伴って応力が発生し、そのため繊維が交叉
する層間において剥離が生じ、著しい場合はクラックを
発生する。これはノボラック型エポキシ樹脂の割合が多
い樹脂組成物の伸度がノボラック型エポキシ樹脂の割合
が少ない樹脂組成物と比べて低いためだと考えられる。
Also, when a molded article is made of a resin composition having a high proportion of novolak type epoxy resin, there is no problem when the arrangement direction of carbon fibers is the same, but when used as CFRP, CFRP is used.
Is usually 0 ° / ± 45 ° / 0 ° in order to reduce the anisotropy indicated by When the layers are cured in this way after the lamination, a stress is generated due to a difference in thermal shrinkage caused by a difference in fiber direction, and therefore, separation occurs between layers where fibers intersect, and cracks are generated in severe cases. This is considered to be because the elongation of the resin composition having a high proportion of the novolak type epoxy resin is lower than that of the resin composition having a low proportion of the novolak type epoxy resin.

また、炭素繊維が持つ高強度かつ高弾性の特性を十分
に引き出すには、マトリックス樹脂はある程度の伸度が
必要である。
In addition, the matrix resin needs to have a certain degree of elongation in order to sufficiently bring out the high strength and high elastic properties of carbon fibers.

これら樹脂の伸度を向上させる為に、例えばゴム質重
合体等を添加した樹脂組成が提案されているが、この様
な組成では、樹脂の伸度は向上するものの弾性率が低下
したり、ガラス転移温度が降下し、前記した様に成形後
の2次加工時の耐熱性不足という問題が残ってしまう。
In order to improve the elongation of these resins, for example, a resin composition to which a rubbery polymer or the like is added has been proposed.In such a composition, the elongation of the resin is improved but the elastic modulus is reduced, The glass transition temperature drops, and the problem of insufficient heat resistance during secondary processing after molding remains as described above.

又、ビスフェノールA(BPA)型、フェノールノボラ
ック(PN)型、クレゾールノボラック(CN)型エポキシ
樹脂を1種、或いは2種以上を適当な割合で混合した樹
脂を、ジシアンジアミドおよび硬化促進剤で、徐々に熱
を加え硬化する場合、最低粘度が低くなりすぎるという
欠点がある。最低粘度が低すぎる樹脂を炭素繊維に含浸
させたプリプレグを用い、パイプ成形品を作る場合、加
熱硬化時に流れ出る樹脂量が多くなる。
In addition, bisphenol A (BPA) type, phenol novolak (PN) type, or cresol novolak (CN) type epoxy resin, or a resin obtained by mixing two or more kinds at an appropriate ratio, is gradually mixed with dicyandiamide and a curing accelerator. However, there is a disadvantage that the minimum viscosity becomes too low when the composition is cured by heating. When a pipe molded product is made using a prepreg obtained by impregnating carbon fiber with a resin having a too low minimum viscosity, the amount of resin flowing out during heating and curing increases.

流れ出る樹脂量が多いと、パイプ成形品の重量にばら
つきが生じたり、炭素繊維と樹脂の分布が不均一とな
り、この為著しい場合、パイプ成形品にそりが生じる。
更に、特開昭62−1721号公報には、炭素繊維に対する含
浸性が良好で、かつ、コンポジット物性に、特に層間せ
ん断強度(ILSS)が高いものとなるエポキシ樹脂組成物
が開示されている。しかしながら、この樹脂組成物にお
いては、その含浸性を良好にするために、ビスフェノー
ルF型エポキシ樹脂やグリジジルアミン型エポキシ樹脂
のような常温で液状のエポキシ樹脂成分を必須としてお
り、このために、この樹脂組成物を用いて製造されたプ
リプレグから例えばパイプ成形品等を成形する際に、そ
の重量バラツキや樹脂分布の不均一化が避け難く、得ら
れた成形品にそり等の問題が発生する。
If the amount of the resin flowing out is large, the weight of the pipe molded product varies, and the distribution of the carbon fiber and the resin becomes non-uniform.
Further, Japanese Patent Application Laid-Open No. Sho 62-1721 discloses an epoxy resin composition having good impregnating property with respect to carbon fibers and having particularly high interlaminar shear strength (ILSS) in composite properties. However, in this resin composition, in order to improve the impregnation property, an epoxy resin component which is liquid at room temperature, such as a bisphenol F type epoxy resin or a glycidylamine type epoxy resin, is indispensable. For example, when molding a pipe molded product or the like from a prepreg manufactured using this resin composition, it is difficult to avoid uneven weight distribution and uneven resin distribution, and problems such as warpage occur in the obtained molded product. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このようにCFRPのマトリックス樹脂については、伸度
の高いこと、および耐熱性が必要であること、成形品の
流出レジン量が少ない事が条件であった。
As described above, the CFRP matrix resin was required to have high elongation, to have heat resistance, and to have a small amount of resin flowing out of the molded article.

しかしCFRPの成形品の脆化を防ぐためにマトリックス
樹脂の伸度を上げる目的でゴム成分を添加すると、耐熱
温度が下がる。これとは逆に耐熱性を向上させれば、マ
トリックス樹脂の脆化の原因となる。又、BPA型、PN
型、CN型エポキシ樹脂を単に混合使用するだけでは、最
低粘度が低くなり流出する樹脂量が増加し先述した様な
問題が生じる。本発明はマトリックス樹脂組成物を改良
し、耐熱性を低下させる事なく、伸度が高く、しかも加
熱硬化時の最低粘度が高いという性能を有するマトリッ
クス樹脂組成物を提供することを目的とするものであ
る。
However, if a rubber component is added for the purpose of increasing the elongation of the matrix resin in order to prevent embrittlement of a molded product of CFRP, the heat resistance temperature decreases. Conversely, if the heat resistance is improved, it will cause the matrix resin to become brittle. Also, BPA type, PN
Simply mixing and using the epoxy resin and the CN-type epoxy resin lowers the minimum viscosity, increases the amount of resin flowing out, and causes the above-described problem. An object of the present invention is to improve a matrix resin composition and provide a matrix resin composition having high elongation without deteriorating heat resistance and having a property of having a high minimum viscosity during heat curing. It is.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、前記の目的を達成すべく鋭意検討を行
った結果、本発明を完成したものであって、その要旨と
する所は下記A、B、C、D及びE成分を必須成分と
し、A、B及びC成分の総量100重量部に対してD成分
を1〜10重量部、E成分を1〜10重量部配合してなるマ
トリックス樹脂組成物にある。
The present inventors have conducted intensive studies to achieve the above object, and as a result, have completed the present invention. The gist of the present invention is that the following A, B, C, D, and E components are essential components. And a matrix resin composition comprising 1 to 10 parts by weight of the component D and 1 to 10 parts by weight of the component E based on 100 parts by weight of the total amount of the components A, B and C.

但し A.クレゾールノボラック型エポキシ樹脂 10〜70重量部 B.ビスフェノールA型エポキシ樹脂 10〜70重量部 C.フェノキシ樹脂またはそのエポキシ変成樹脂のどちら
か一方、或いは両者の混合物 10〜40重量部 D.ジシアンジアミド E.硬化促進剤 である。以下本発明を詳細に説明する。
A. Cresol novolak type epoxy resin 10 to 70 parts by weight B. Bisphenol A type epoxy resin 10 to 70 parts by weight C. Phenoxy resin or one of its epoxy modified resins, or a mixture of both 10 to 40 parts by weight D. Dicyandiamide E. Curing accelerator. Hereinafter, the present invention will be described in detail.

まず、本発明においてA成分として用いられるクレゾ
ールノボラック型エポキシ樹脂としては例えば市販品と
して知られる日本チバガイギー(株)製のECN−1273、E
CN−1280、或いは住友化学工業(株)製のESCN−220シ
リーズ、更にはこれら相当品を適宜選択して用いること
ができる。これらエポキシ樹脂はいずれもエポキシ当量
が小さく架橋密度が高くなるため、得られる硬化後の成
形体は弾性率ならびに耐熱性に優れた成形品が得られる
反面、過剰に用いた場合はいずれも成形体の伸度を低下
させ、脆化の原因となる。そこでこのような特性を考慮
して組成物中の配合量として、A成分、B成分及びC成
分の総量のうち10〜70重量部、望ましくは20〜50重量部
添加するものである。A成分の樹脂が10重量部より少な
いと充分な弾性率或いは耐熱性をCFRP硬化体に付与する
ことができない。一方70重量部より多くなると、夫々の
CFRP硬化体の伸度が低下し、材質が脆化する。
First, as the cresol novolak type epoxy resin used as the component A in the present invention, for example, ECN-1273, E available from Nippon Ciba Geigy Co., Ltd.
CN-1280 or ESCN-220 series manufactured by Sumitomo Chemical Co., Ltd., and their equivalents can be appropriately selected and used. Since all of these epoxy resins have a small epoxy equivalent and a high crosslink density, the resulting cured product can be obtained as a molded product with excellent elastic modulus and heat resistance, but when used excessively, any molded product can be obtained. This reduces the elongation and causes embrittlement. Therefore, in consideration of such properties, the composition is added in an amount of 10 to 70 parts by weight, preferably 20 to 50 parts by weight based on the total amount of the components A, B and C in the composition. If the resin of the component A is less than 10 parts by weight, sufficient elastic modulus or heat resistance cannot be imparted to the CFRP cured product. On the other hand, if it exceeds 70 parts by weight,
The elongation of the CFRP cured product decreases and the material becomes brittle.

又、B成分として用いられるビスフェノールA型エポ
キシ樹脂とは具体的にはエピコート828、エピコート83
4、エピコート1001、エピコート1004(油化シェルエポ
キシ(株)製)、アラルダイトCY205、CY230、GY250、G
Y260、アラルダイト6071(日本チバガイギー(株)製)
などがあり、更にはこれらの相当品を適宜選択して用い
ることができる。
The bisphenol A type epoxy resin used as the component B is specifically Epicoat 828, Epicoat 83.
4, Epicoat 1001, Epicoat 1004 (made by Yuka Shell Epoxy Co., Ltd.), Araldite CY205, CY230, GY250, G
Y260, Araldite 6071 (Nippon Ciba Geigy Co., Ltd.)
And the like, and these equivalents can be appropriately selected and used.

これらB成分であるビスフェノールA型エポキシ樹脂
は分子量の差により、固形から液状までの種々のグレー
ドがあり、プリプレグ用マトリックス樹脂に配合する場
合、適宜これらを混合する事により粘度調整を行う事が
でき、また硬化後の成形体の伸度もA成分であるノボラ
ック型エポキシよりも高い。しかしながら耐熱性がおと
る。そこでB成分はA成分とB成分とC成分の総量のう
ち10重量部から70重量部、望ましくは、20〜50重量部を
添加するものである。B成分の重量が10重量部よりも少
ないと十分な伸度が得られず、70重量部よりも多いと十
分な耐熱性を付与する事ができない。
There are various grades of bisphenol A type epoxy resin, which is the B component, from solid to liquid, depending on the difference in molecular weight. When blended in a matrix resin for prepreg, the viscosity can be adjusted by mixing these as appropriate. Also, the elongation of the molded article after curing is higher than that of the novolak type epoxy as the component A. However, heat resistance is low. Therefore, the component B is used by adding 10 to 70 parts by weight, preferably 20 to 50 parts by weight of the total amount of the components A, B and C. If the weight of the component B is less than 10 parts by weight, sufficient elongation cannot be obtained, and if it is more than 70 parts by weight, sufficient heat resistance cannot be imparted.

次に、本発明に用いられるC成分であるフェノキシ樹
脂は線状高分子であり、エポキシ樹脂とも相溶性が良く
又、極性が大きくしかも分子中に水酸基のような官能基
を含有しており、さらには分子量が高いことから粘度の
温度依存性が鈍く、先述したA+B成分に添加する事に
より、最低粘度を上昇させることができるという特性を
もっているためプリプレグ用マトリックスとして良好な
特性を与える。
Next, the phenoxy resin, which is the C component used in the present invention, is a linear polymer, has good compatibility with the epoxy resin, has high polarity, and contains a functional group such as a hydroxyl group in the molecule. Further, since the molecular weight is high, the temperature dependency of the viscosity is low, and by adding to the above-mentioned A + B component, the minimum viscosity can be increased, so that the prepreg matrix has good characteristics.

これらA、B、C3成分を混合し、D、E成分にて硬化
を行った成形体は完全な三次元網目構造ではなく、架橋
高分子と線状高分子が絡み合う構造となり、得られた成
形体は、耐熱性に優れ、伸度も高く、しかも流出レジン
量が少ない事から均一な製品となる。
The molded product obtained by mixing the components A, B and C3 and curing with the components D and E is not a complete three-dimensional network structure, but has a structure in which a crosslinked polymer and a linear polymer are entangled. Since the body is excellent in heat resistance, high in elongation, and has a small amount of resin flowing out, it is a uniform product.

又、成形体の使用状況に応じて例えば耐溶剤性が必要
な場合には、フェノキシ樹脂をエポキシ変成した樹脂を
用いれば良い。エポキシ変成したフェノキシ樹脂を用い
たとしても、上述した優れた特性は変化しない。この場
合、C成分のどちらか一方、或いは両者を混合して用い
得ることはいうまでもない。C成分を添加したプリプレ
グ用のマトリックス樹脂の粘度の温度依存性は、A,B成
分だけの混合樹脂よりも鈍くなる。
If, for example, solvent resistance is required depending on the use condition of the molded article, a resin obtained by epoxy-modified phenoxy resin may be used. Even if an epoxy-modified phenoxy resin is used, the above-mentioned excellent properties do not change. In this case, it goes without saying that either one of the C components or a mixture of both can be used. The temperature dependency of the viscosity of the matrix resin for prepreg to which the C component is added is lower than that of the mixed resin containing only the A and B components.

この事は、室温下でプリプレグを積層する場合、作業
場の2〜3℃程度の温度差に対しても粘度変化が少なく
作業性(タック性、ドレープ性)が変化しにくいという
利点を持つ。
This has the advantage that when laminating prepregs at room temperature, the change in viscosity is small and the workability (tackiness, drapability) is unlikely to change even with a temperature difference of about 2 to 3 ° C. in the workplace.

又、先述した様に加熱成形する場合、最低粘度が高
く、従来プリプレグで問題とされてきた流出レジンの量
をC成分の添加量により制御する事ができる。この事に
より成形品の重量をコントロールでき、品質管理上非常
に優位性をもっており、又、C成分の添加量により流出
するレジンのない、いわゆるノンブリードの成形品を得
る事も可能である。C成分の組成物中の配合量として、
これらA+B+C成分の総量100重量部のうち、C成分
は10〜40重量部である。配合量が10重量部より少ない場
合、上記したような効果は得られず、40重量部を越える
と粘度が高くなり、プリプレグ用マトリックス樹脂とし
て使用不可能となる。なおここでC成分として用いられ
るフェノキシ樹脂とは、平均分子量が通常10,000〜100,
000程度の高分子量エポキシ樹脂を指すものであり、具
体的な市販品としては、エピコートOL−53−B−40、エ
ピコートOL−55−B40(油化シェルエポキシ(株)
製)、DER684EK40(ダウケミカル(株)製)、フェノト
ートYP50EX40(東都化成(株)製)、PKHH、PKHM−30
(UCC(株)製)等があり、更にはこれらの相当品を適
宜選択して用いることができる。
Further, as described above, in the case of thermoforming, the minimum viscosity is high, and the amount of resin flowing out which has been a problem in the conventional prepreg can be controlled by the addition amount of the C component. This makes it possible to control the weight of the molded product, which is extremely superior in quality control, and it is also possible to obtain a so-called non-bleed molded product without resin flowing out due to the added amount of the C component. As the compounding amount of the component C in the composition,
The component C is 10 to 40 parts by weight of the total 100 parts by weight of the components A + B + C. If the amount is less than 10 parts by weight, the above-mentioned effects cannot be obtained. If the amount is more than 40 parts by weight, the viscosity increases, and the resin cannot be used as a matrix resin for prepreg. The phenoxy resin used as the component C herein has an average molecular weight of usually 10,000 to 100,
It refers to a high molecular weight epoxy resin of about 000, and specific commercial products include Epikot OL-53-B-40, Epikot OL-55-B40 (Yuka Kasper Epoxy Co., Ltd.)
DER684EK40 (manufactured by Dow Chemical Co., Ltd.), Phenotote YP50EX40 (manufactured by Toto Kasei Co., Ltd.), PKHH, PKHM-30
(Manufactured by UCC Co., Ltd.), and their equivalents can be appropriately selected and used.

なお、本発明においては、マトリックス樹脂成分とし
て上記A、B及びC成分を必須とするものであって、そ
の目的、特に成形硬化時の耐レジンフロー性等を達成す
る限り、他のマトリックス樹脂成分の配合を排除するも
のではないが、例えば特開昭62−1721号公報で開示され
ているビスフェノールF型エポキシ樹脂やグリシジルア
ミン型エポキシ樹脂のような常温で液状のエポキシ樹脂
を配合してはならない。このような常温で液状のエポキ
シ樹脂の配合は樹脂組成物の最低粘度の低下につなが
り、本発明がその目的とする成形硬化時の耐レジンフロ
ー性等を阻害する。
In the present invention, the above-mentioned components A, B and C are essential as matrix resin components, and other matrix resin components may be used as long as the object, particularly resin flow resistance during molding and curing, is achieved. Although it is not intended to exclude blending of epoxy resin, for example, epoxy resin which is liquid at normal temperature such as bisphenol F type epoxy resin or glycidylamine type epoxy resin disclosed in JP-A-62-1721 should not be blended. . The mixing of the epoxy resin liquid at room temperature leads to a decrease in the minimum viscosity of the resin composition, and the present invention impairs the resin flow resistance and the like at the time of molding and curing, which is the object of the present invention.

次に上述したA、B、C成分からなるマトリックス樹
脂に対し、本発明においてはD成分としてジシアンジア
ミドを硬化剤として、前記マトリックス樹脂A+B+C
成分の総量100重量部に対し1〜10重量部配合するもの
である。この場合、1重量部より少ないと硬化速度が遅
く、成形に時間を要し、一方10重量部より多いと、積層
プリプレグ成形体とした場合の層間せん断強度等の特性
が低下するようになる。
Next, in the present invention, the matrix resin A + B + C is used for the matrix resin composed of the components A, B, and C described above.
1 to 10 parts by weight is added to 100 parts by weight of the total amount of the components. In this case, if the amount is less than 1 part by weight, the curing speed is slow, and molding takes time. On the other hand, if the amount is more than 10 parts by weight, characteristics such as interlayer shear strength in the case of a laminated prepreg molded article are deteriorated.

このD成分のジシアンジアミドは本発明においてE成
分とする硬化促進剤と併用することにより所望の効果を
発揮するものである。即ち、ジシアンジアミドの硬化促
進剤となりうる適当な化合物を併用することにより140
℃以下の低温硬化が可能となり、且つシェルフライフも
20℃で2ケ月以上を保つ事ができるようになる。このよ
うな硬化促進剤としては、イミダゾール誘導体、たとえ
ば四国化成工業(株)製のキュアゾール2P4MHZ、或いは
イミダゾールのカルボン酸塩や金属錯塩等、又は尿素化
合物、たとえば3−(3,4−ジクロロフェニル)−1,1−
Nジメチル尿素等がE成分として優れた効果を示すもの
である。この場合E成分のA+B+Cの樹脂総量100重
量部に対する配合量は1〜10重量部であって、1重量部
より少ないとD成分硬化剤の硬化速度を促進させること
がむつかしく、10重量部より多いと硬化成形体の強度が
低下するようになる。
The dicyandiamide of the component D exhibits a desired effect when used in combination with the curing accelerator used as the component E in the present invention. That is, by using an appropriate compound that can be a curing accelerator for dicyandiamide, 140
Low-temperature curing below ℃ and shelf life
It will be able to keep more than 2 months at 20 ℃. Examples of such a curing accelerator include an imidazole derivative, for example, Curazole 2P4MHZ manufactured by Shikoku Chemicals Co., Ltd., or a carboxylate or metal complex salt of imidazole, or a urea compound, for example, 3- (3,4-dichlorophenyl)- 1,1−
N-dimethylurea and the like exhibit excellent effects as the E component. In this case, the amount of the component E is from 1 to 10 parts by weight based on 100 parts by weight of the total of A + B + C. When the amount is less than 1 part by weight, it is difficult to accelerate the curing speed of the component D curing agent, and the amount is more than 10 parts by weight. And the intensity | strength of a hardening molding falls.

本発明の組成物は以上述べたA、B、C、DおよびE
成分を必須とするものであるが、本発明においては必要
により無水シリカ、顔料等を添加することもできる。
The composition of the present invention comprises A, B, C, D and E as described above.
Although components are essential, in the present invention, anhydrous silica, pigments and the like can be added as necessary.

又、本発明のマトリックス樹脂組成物と共に使用する
炭素繊維としてはレーヨン系、ポリアクリロニトリル
系、ピッチ系などのいずれの炭素繊維(広義には黒鉛繊
維)であっても差支えない。
The carbon fibers used with the matrix resin composition of the present invention may be any of rayon-based, polyacrylonitrile-based and pitch-based carbon fibers (graphite fibers in a broad sense).

〔実施例〕〔Example〕

以下実施例により本発明について更に詳細に説明す
る。A成分のクレゾールノボラック型エポキシ樹脂とし
て、日本チバガイギー(株)製のECN−1273、B成分の
ビスフェノールA型エポキシ樹脂として、日本チバガイ
ギー(株)製のアラルダイト6071、油化シェルエポキシ
(株)製のエピコート828、C成分のフェノキシ樹脂と
してはUCC(株)製のPKHM−30、D成分の硬化剤として
ジシアンジアミド(以下DICY)、E成分の硬化促進剤と
して3−(3,4−ジクロロフェニル)−1,1−Nジメチル
尿素(以下DCMU)を夫々用い、第1表に示す配合のプリ
プレグ用マトリックス樹脂組成物を単純混合により得
た。
Hereinafter, the present invention will be described in more detail with reference to examples. ECN-1273 manufactured by Ciba-Geigy Co., Ltd. as an A-component cresol novolac type epoxy resin; Araldite 6071 manufactured by Ciba-Geigy Co., Ltd. of Japan as an epoxy resin of B-component; Epicoat 828, PKHM-30 manufactured by UCC as a phenoxy resin for component C, dicyandiamide (DICY) as a curing agent for component D, and 3- (3,4-dichlorophenyl) -1 as a curing accelerator for component E. And 1-N dimethyl urea (hereinafter referred to as DCMU), respectively, to obtain a matrix resin composition for prepreg having the composition shown in Table 1 by simple mixing.

次に市販のポリアクリロニトリル系炭素繊維ANC高強
度タイプ(旭日本カーボン(株)製)に前記混合物をホ
ットメルト法により含浸させ、一方向性炭素繊維プリプ
レグを得た。
Next, a commercially available polyacrylonitrile-based carbon fiber ANC high-strength type (manufactured by Asahi Nippon Carbon Co., Ltd.) was impregnated with the mixture by a hot melt method to obtain a unidirectional carbon fiber prepreg.

次にこのようにして得られたプリプレグについて、一
方では繊維方向が0゜方向になるように厚さ2mm、幅約1
3mmの平板に積層してガラス転移温度(Tg)の測定用試
験材とし、他方では繊維方向が0゜方向と45゜方向にな
るように交互に積層して厚さ2mm、内径25mmのパイプ状
に捲き、流出レジン量測定用試験材とした。平板の場合
8kg/cm2の面圧で、パイプの場合、4kg fのテンションが
かかる様、ラッピングテープをプリプレグの上に捲きつ
け、これらについていずれも140℃、120分の硬化を行っ
た。
Next, on the prepreg thus obtained, on the other hand, the thickness was 2 mm and the width was about 1 so that the fiber direction was 0 °.
It is laminated on a 3mm flat plate to make a test material for measuring glass transition temperature (Tg). On the other hand, it is alternately laminated so that the fiber direction is 0 ° direction and 45 ° direction, and is 2mm thick, 25mm inner diameter pipe And used as a test material for measuring the amount of resin flowing out. For a flat plate
At a surface pressure of 8 kg / cm 2 , in the case of a pipe, a wrapping tape was wound on a prepreg so as to apply a tension of 4 kgf, and all of them were cured at 140 ° C. for 120 minutes.

これらの測定結果を第1表に併せて示す。 Table 1 also shows the results of these measurements.

〔発明の効果〕 以上の実施例からも明らかな通り、本発明によれば、
耐熱性と伸度のバランスがとれ、かつ成形硬化時の耐レ
ジンフロー性に優れたCFRPを得ることが可能となるもの
であり、産業の発展に貢献する所、極めて大なるものが
ある。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention,
This makes it possible to obtain CFRP with a good balance between heat resistance and elongation and excellent resin flow resistance during molding and curing, and there is an extremely large portion that contributes to industrial development.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 71:00) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C08L 71:00)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記A、B、C、D及びE成分を必須成分
とし、A、B及びC成分の総量100重量部に対してD成
分を1〜10重量部、E成分を1〜10重量部配合してなる
マトリックス樹脂組成物。 A.クレゾールノボラック型エポキシ樹脂 10〜70重量部 B.ビスフェノールA型エポキシ樹脂 10〜70重量部 C.フェノキシ樹脂又はそのエポキシ変性樹脂のどちらか
一方、或いは両者の混合物 10〜40重量部 D.ジシアンジアミド E.硬化促進剤
1. The following components A, B, C, D and E are essential components, 1 to 10 parts by weight of component D and 1 to 10 parts by weight of E based on a total of 100 parts by weight of components A, B and C. A matrix resin composition formulated by weight. A. Cresol novolak type epoxy resin 10 to 70 parts by weight B. Bisphenol A type epoxy resin 10 to 70 parts by weight C. Either phenoxy resin or its epoxy modified resin, or a mixture of both 10 to 40 parts by weight D. Dicyandiamide E. curing accelerator
JP63022850A 1988-02-04 1988-02-04 Matrix resin composition Expired - Fee Related JP2604778B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63022850A JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition
CN89100628A CN1031718C (en) 1988-02-04 1989-02-03 Parent resinous compositions
KR1019890001277A KR890013120A (en) 1988-02-04 1989-02-03 Matrix Resin Sintered Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022850A JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition

Publications (2)

Publication Number Publication Date
JPH01201321A JPH01201321A (en) 1989-08-14
JP2604778B2 true JP2604778B2 (en) 1997-04-30

Family

ID=12094193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022850A Expired - Fee Related JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition

Country Status (3)

Country Link
JP (1) JP2604778B2 (en)
KR (1) KR890013120A (en)
CN (1) CN1031718C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276024C (en) * 2004-09-30 2006-09-20 北京科技大学 Strengthening carbon fiber composite material and method for repairing defective pipeline
CN1853847B (en) * 2005-04-15 2010-12-08 北京安科管道工程科技有限公司 Method for repairing and reinforcing weld seam defects
CN101903437B (en) * 2007-12-20 2012-09-26 日立化成工业株式会社 Film-like resin composition for encapsulation filling, method for manufacturing semiconductor package or semiconductor device using the same, and semiconductor device
KR101530754B1 (en) * 2009-03-25 2015-06-22 도레이 카부시키가이샤 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
CN104945885A (en) * 2015-07-14 2015-09-30 江苏兆鋆新材料股份有限公司 Preparing method of epoxy resin carbon fiber prepreg
CN111133051A (en) * 2017-09-29 2020-05-08 日铁化学材料株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same
KR20200128416A (en) * 2018-03-01 2020-11-12 사이텍 인더스트리스 인코포레이티드 Fast-cure resin formulation with consistent handling properties
EP3814398A1 (en) * 2018-06-27 2021-05-05 3M Innovative Properties Company Curable compositions and related methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621721A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPS62127317A (en) * 1985-11-28 1987-06-09 Toray Ind Inc Epoxy resin composition for prepreg
JPH0653791B2 (en) * 1985-12-02 1994-07-20 東レ株式会社 Epoxy resin composition with improved moldability

Also Published As

Publication number Publication date
CN1036972A (en) 1989-11-08
KR890013120A (en) 1989-09-21
CN1031718C (en) 1996-05-01
JPH01201321A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
US4714648A (en) Prepregs and method for production thereof
JP2604778B2 (en) Matrix resin composition
Jang et al. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites
JPH0639519B2 (en) Epoxy resin composition and prepreg
JPH0365812B2 (en)
JPS6236421A (en) Epoxy resin composition for prepreg
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JPH08337707A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPH024607B2 (en)
JPH07228716A (en) Prepreg
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JPS621720A (en) Epoxy resin composition
JPS592446B2 (en) Flame-retardant epoxy resin composition for carbon fiber reinforcement
JPH07118414A (en) Prepreg excellent in tack retentivity
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JPS59174616A (en) Epoxy resin composition and prepreg
JPH0365814B2 (en)
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPS6360056B2 (en)
JPH04153252A (en) Matrix resin composition
JP3066907B2 (en) Resin composition for composite material, intermediate material and composite material
JPH03243619A (en) Epoxy resin composition
JPH069802A (en) Prepreg

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees