JP2595809B2 - 鉛蓄電池極板用基体の製造方法 - Google Patents

鉛蓄電池極板用基体の製造方法

Info

Publication number
JP2595809B2
JP2595809B2 JP2327030A JP32703090A JP2595809B2 JP 2595809 B2 JP2595809 B2 JP 2595809B2 JP 2327030 A JP2327030 A JP 2327030A JP 32703090 A JP32703090 A JP 32703090A JP 2595809 B2 JP2595809 B2 JP 2595809B2
Authority
JP
Japan
Prior art keywords
alloy
powder
lead
substrate
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2327030A
Other languages
English (en)
Other versions
JPH04206152A (ja
Inventor
良成 森成
悟 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2327030A priority Critical patent/JP2595809B2/ja
Publication of JPH04206152A publication Critical patent/JPH04206152A/ja
Application granted granted Critical
Publication of JP2595809B2 publication Critical patent/JP2595809B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉛蓄電池、特に自動車用鉛蓄電池の極板に使
用される基体に関するものである。
〔従来の技術〕
従来自動車用鉛蓄電池の極板は、活物質と称される酸
化鉛の粉末を希硫酸で練ってペースト状にした発電物質
と、これを保持しかつ集電体としての役割を果す基体の
二要素から構成されている。基体の製造方法には大別し
て二種類ある。その一つは鋳造方式であり、他の一つは
エキスパンド方式である。(以下、鋳造方式によって製
造された基体を「鋳造基体」、エキスパンド方式によっ
て製造された基体を「エキスパンド基体」という)鋳造
基体はその大半がブックモールドタイプの鋳造機で一枚
づつ鋳造されているが、最近になってドラム状の鋳型を
用いた連続鋳造機が開発され、数百〜数千枚の基体が連
続した形で鋳造されている。エキスパンド方式は鉛合金
シートをエキスパンダーに送り込み、カッターでシート
に切れ目を入れると同時に引伸ばしてメッシュを形成す
るもので、連続鋳造基体と同じく数千枚の基体を連続的
に生産する。
一方、これらの基体に使用される鉛合金は大別して二
種類ある。すなわち、2〜3wt%のSbを含むPb−Sb系合
金と、0.05〜0.1%のCaを含むPb−Ca系合金である。前
者は鋳造方式には適用されているが、エキスパンド方式
には使用されていない。
さて、極板製造時のハンドリングや自動車に搭載され
ている間に受ける振動、さらには充放電に伴う活物質の
体積変化などから受ける力に耐えるため、基体にも相応
の強度が必要なことは言うまでもない。上記の合金は時
効硬化という手法でこれを確保している。これはSbやCa
などの合金元素のPbに対する固溶度が高温で大きく、常
温付近で非常に小さいことを利用したものである。すな
わち、高温、例えば融点直下で合金元素をPb中に十分に
固溶された後、合金を常温あるいはそれ以下の温度に急
冷し、合金元素の過飽和状態を作り出す。その後合金を
常温より多少高い温度に適当な時間保持することによっ
て合金元素を合金元素単体や金属間化合物などの粒子と
して生地中に析出させる。析出粒子は転移の移動を妨げ
るように働くため、これによって合金の強度が高められ
る。ここで重要なことは析出粒子径および粒子間の距離
が適当であることで、細かな粒子を均一に分散させた形
で析出させねばならない。急冷後の保持温度が高すぎた
り、保持時間が長すぎたりすると析出した粒子は凝集
し、粒子径、粒子間隔ともに大きくなるために強度は低
下してしまう。この現象を過時効と呼んでいる。
〔発明が解決しようとする課題〕
排気ガス清浄化対策、ターボあるいはスーパーチャー
ジャー装着によるエンジンの高出力化等によって、最近
の自動車、特に乗用車のエンジンルーム内は著しく高温
化しており、ここに置かれている自動車用鉛蓄電池の周
囲温度は90〜100℃に達することも珍しくない。
このような温度は前述した鉛合金にとっては種々な面
で限界に近いもので、このために従来あまり重要視され
なかった、あるいは全く認められなかった現象に起因し
たいくつかの問題が発生し、その対策に苦慮するような
状況となっている。その中で最も大きな問題の一つが基
体の高温での強度、特にクリープ強度の不足である。
Pb−Ca系合金の基体は陽極に使われた場合に電池使用
中に「伸び」を生じ、隣接する陰極板と接触して短絡を
起こしたり、活物質の脱落を促進して電池の寿命を短く
するという問題があることは良く知られている。これは
金属間化合物(Pb3Caなど)の析出が関与して生じる粒
界腐食が原因であるが、腐食生成物の体積膨張に伴なっ
て生じる力に、基体を構成している上記鉛合金が耐えら
れないことに因るものである。
上述した如く、Pb−Ca系合金は時効硬化合金であり、
過時効には注意が必要であるが、90〜100℃という温度
で電池が使用されれば過時効となり、基体の強度低下は
避けられない。またこの様な温度では粒界腐食の進行も
顕著になり、これにより発生する力も大きくなるため、
「伸び」の発生もますます顕著になる。
Pb−Sb系合金の場合にも過時効による強度低下の問題
はPb−Ca合金の場合とまったく同様である。さらに次の
ようなことも高温下での強度不足の一因となっている。
最近、自動車用鉛蓄電池は陽極にPb−Sb系合金、陰極に
Pb−Ca系合金を用いたハイブリッド電池が主流になりつ
つある。この電池は陽、陰両極ともPb−Ca系合金基体を
用いた電池(以下「カルシウム電池」という)よりもメ
ンテナンスフリー特性が劣るため、これを高めるため陽
極基体合金中のSb含有量を1%あるいはそれ以下まで下
げる傾向にある。時効硬化により得られる強度はSb含有
量に依存しており、含有量の低下とともに小さくなる。
従って、この様な動きはPb−Sb系合金基体の強度を最初
から低下させるものであり、高温下での強度不足を招く
ことは言うまでもない。さらにPb−Sb系合金もSb含有量
を下げてゆくとPb−Ca系合金のそれと同じような電気化
学的性質を示すようになる。それ故、極めてわづかであ
るために従来あまり問題とされなかった「伸び」も顕著
になるなど、Pb−Ca系合金基体の場合と同様な不都合が
発生することになる。
〔課題を解決するための手段〕
上述した問題を解決するには、90〜100℃といった高
温下での鉛合金の強度、とくにクリープ強度を高めなけ
ればならない。そのためには合金中にこの様な高温下で
も微細な粒子が適当量、均一に分散している状態をつく
り出し、転移の移動を阻止する必要がある。本発明は従
来の基体用合金がPbに対する固溶度の違いを利用して合
金元素を析出させ、これにより強度を確保していたのに
対して、基体鋳造時に溶湯中にPbに対する固溶度の小さ
い酸化物や硫化物の粉末を添加し、これを均一に分散さ
せることにより強度を確保しようというものである。す
なわち、Pb−Ca系合金やPb−Sb系合金に上記酸化物等の
粉末を添加することにより、高温下でのCaやSbをベース
にした析出粒子が凝集し過時効状態を呈しても、添加さ
れた粉末の分散粒子が強度の低下を補償するわけであ
る。
〔作用〕
基体鋳造時に溶湯中にPbに対する固溶度の小さい酸化
物や硫化物の粉末を添加し、これを均一に分散させるこ
とにより強度を確保し得る。
〔実施例〕
本発明の実施例について説明する。
第1図はドラム状の鋳型を用いた連続鋳造機(ベルト
キャスター)による基体の鋳造方法を示したものであ
る。表面に基体の形状に相当する彫込み1を有するドラ
ム2にベルト3を接触させて両者を回転させる。ドラム
2とベルト3が接触しはじめる部分を湯口4とし、ここ
にベースメタルである鉛合金からなる溶湯5を供給す
る。前記彫込み1を満たした溶湯5は、ドラム2とベル
ト3の両者に挟まれている間に凝固し、連続した基体6
として取出される。粉末7は湯口部で形成される湯だま
り8中に添加する。この粉末7の添加に際してはパウダ
ーフィーダ9を使用し、加圧した不活性ガスにより粉末
7を溶湯5中に噴射する。
添加する粉末7は、Pbより十分高い融点を持つ、剛性率
が大きい、溶湯5中での分散性が良い、直径が0.5ミク
ロン程度以下の微細な粒子として分散するなどの特性が
要求される。我々はこの様な観点から検討を重ねたとこ
ろ、ZrO2,SnO2,PbS,ThO2などが目的に合致した粉末7
であることを見出した。例えばPb−0.08Ca−0.5Sn合金
を520℃で鋳造、これに8〜13μmのZrO2粉末を体積比
で1.2%添加した時の平均粒径は0.21μm、平均粒子間
隔は、0.56μmであった。この様な分散状態はPb−0.08
Ca−0.5Sn合金のクリープ強度を明らかに向上させてお
り、80℃に於て1年間で1%の歪を発生させるのに必要
な応力は、粉末7を添加しない場合には0.19kg/mm2であ
るのに対し、粉末7を添加したもののそれは0.35kg/mm2
であった。
なお上記粉末7の比重はいづれもPbのそれよりも小さ
いので、添加後溶湯5の凝固速度が小さい、すなわち凝
固するまでの時間が長いと浮上していしまい、均一に分
散させにくい。この点第1図に示した連続鋳造の場合に
は凝固速度が大きいので、本発明による鉛合金の強化方
法を適用しやすい。また粉末7を均一分散させるには溶
湯5の流動性も重要な要因であり、例えばSnの添加は鉛
合金の流動性を大幅に増加させるので、均一分散にとっ
て有効である。
本発明の実施例として、Pb−0.065Ca−0.55Sn合金に
上記4種類の粉末7を添加した基体を連続鋳造で製作し
た。連続鋳造機は第1図に示した様なベルトキャスター
を使用した。前記合金の溶湯5の鋳込温度は550℃で、
ドラム2には55℃の温水を供給しこれを温調した。
粉末7の添加は、第1図に示した如く、ドラム2とベ
ルト3との間に杓から注ぎ込まれる溶湯5に直接添加す
る方法をとった。これは前述した如く、酸化物や硫化物
の粉末7が軽いために溶湯5の表面に浮上し、酸化物
(ドロス)と一緒になって溶湯5中に分散しなくなるの
を防ぐためである。なお参考のために、鉛合金の溶解釜
の中の溶湯5に添加する方法についても実験し、強化の
効果が減少するのかについても確認した。なおパウダー
フィーダーからの粉末7の噴射にはアルゴンガスを使用
した。
このようにして鋳造した基体の大きさは、縦115mm、
横145mm、厚さ1.6mmである。この基体を用いて55K23形
の電池を製作し80℃で、SAE規格による寿命試験相当の
充放電パターンのサイクル寿命試験を行ない、3000サイ
クル終了時点で電池を解体し、陽極基体の伸びを測定し
た。
第1表は上記4種類の粉末7について添加量の影響を
調べた結果である。
本発明による溶湯5中に粉末7を添加したものは4種
類とも1〜1.5vol%の添加によって陽極基体の伸びは無
添加(従来法)のそれの約1/2以下になっている。また
上記第1表には示さなかったが、本発明による方法で製
作した基体を用いた極板では、粉末無添加の基体を用い
た極板より活物質の脱落は明らかに少なかった。
第2表はZrO2粉末7に関してその添加方法(添加時
期)の影響をみたものである。
第2表から明らかな如く溶解釜中に添加した場合には
比重差により粉末7が浮上りドロス中にトラップされて
しまうため分散強加に有効に作用する粉末7の量が減少
するために好ましい結果が得られていないことがわか
る。
〔発明の効果〕 本発明は高温下で電池が使用された場合の基体の強度
低下を抑制し、基体の伸びを従来品のそれの半分以下に
することが出来る。この結果短絡等のトラブルが大幅に
減少し、電池の信頼性を大幅に向上させることが出来
る。
なお本実施例においては基体の連続鋳造に関して説明
してきたが、本発明はエキスパンド基体に使用する鉛合
金シートの製造にも適用可能であることは言うまでもな
い。
【図面の簡単な説明】
第1図は本発明による基体の製造方法を示したもので、
(a)は側面図、(b)は正面図である。 2はドラム、3はベルト、5は溶湯、6は基体、7は粉
末、8は湯だまり。

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】PbあるいはPb合金溶湯を鋳型に注入する際
    に該溶湯中に酸化物あるいは硫化物の微粉末を添加する
    ことを特徴とする鉛蓄電池極板用基体の製造方法。
  2. 【請求項2】PbあるいはPb合金溶湯を鋳型に注入する際
    に該溶湯中に酸化物あるいは硫化物の微粉末を添加して
    前記PbあるいはPb合金のシートを製作し、しかる後に該
    シートにエキスパンド加工あるいは打抜加工を施すこと
    を特徴とする鉛蓄電池極板用基体の製造方法。
  3. 【請求項3】基体の鋳造方法が連続鋳造であることを特
    徴とする請求項第1項記載の鉛蓄電池極板用基体の製造
    方法。
  4. 【請求項4】シートの鋳造方法が連続鋳造であることを
    特徴とした請求項第2項記載の鉛蓄電池極板用基体の製
    造方法。
JP2327030A 1990-11-28 1990-11-28 鉛蓄電池極板用基体の製造方法 Expired - Lifetime JP2595809B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327030A JP2595809B2 (ja) 1990-11-28 1990-11-28 鉛蓄電池極板用基体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327030A JP2595809B2 (ja) 1990-11-28 1990-11-28 鉛蓄電池極板用基体の製造方法

Publications (2)

Publication Number Publication Date
JPH04206152A JPH04206152A (ja) 1992-07-28
JP2595809B2 true JP2595809B2 (ja) 1997-04-02

Family

ID=18194528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327030A Expired - Lifetime JP2595809B2 (ja) 1990-11-28 1990-11-28 鉛蓄電池極板用基体の製造方法

Country Status (1)

Country Link
JP (1) JP2595809B2 (ja)

Also Published As

Publication number Publication date
JPH04206152A (ja) 1992-07-28

Similar Documents

Publication Publication Date Title
JP5567210B2 (ja) 二次電池負極集電体用圧延銅箔およびその製造方法
JPH01211858A (ja) 再充電可能電池
ZA200205709B (en) Alloy for thin positive grid for lead acid batteries and method for manufacture of grid.
JP4160856B2 (ja) 鉛蓄電池用鉛基合金及びこれを用いた鉛蓄電池
AU783324B2 (en) Alloy for thin positive grid for lead acid batteries and method for manufacture of grid
JP2595809B2 (ja) 鉛蓄電池極板用基体の製造方法
JP2002175798A (ja) 密閉型鉛蓄電池
JPH10284085A (ja) 鉛蓄電池用格子
JP4793518B2 (ja) 鉛蓄電池
JPH0326905B2 (ja)
JP3413930B2 (ja) 鉛蓄電池極板群の製造法
JP3397076B2 (ja) 鉛蓄電池用正極板
JPH10321236A (ja) 鉛蓄電池
JP6762975B2 (ja) 鉛蓄電池用正極格子体及び鉛蓄電池
JP2794745B2 (ja) 鉛蓄電池用格子体の製造方法
JPH04358035A (ja) 蓄電池用鉛基合金
JP2785633B2 (ja) 鉛蓄電池用格子の製造方法
JP3658871B2 (ja) 鉛蓄電池
JPS6321314B2 (ja)
JPS6325061B2 (ja)
JP2003100301A (ja) 正極用エキスパンド格子体及びその製造方法
JP2004139900A (ja) 電池用格子基板の製造方法
JPH09167611A (ja) 鉛蓄電池
JPH0817460A (ja) 鉛蓄電池
JPH0559548B2 (ja)