JP2574528B2 - High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same - Google Patents

High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same

Info

Publication number
JP2574528B2
JP2574528B2 JP2234536A JP23453690A JP2574528B2 JP 2574528 B2 JP2574528 B2 JP 2574528B2 JP 2234536 A JP2234536 A JP 2234536A JP 23453690 A JP23453690 A JP 23453690A JP 2574528 B2 JP2574528 B2 JP 2574528B2
Authority
JP
Japan
Prior art keywords
less
alloy
hardness
magnetic permeability
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2234536A
Other languages
Japanese (ja)
Other versions
JPH04116141A (en
Inventor
正勝 比内
昭八 沢谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP2234536A priority Critical patent/JP2574528B2/en
Publication of JPH04116141A publication Critical patent/JPH04116141A/en
Application granted granted Critical
Publication of JP2574528B2 publication Critical patent/JP2574528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い硬度を有して高応力に耐え、且つ透磁率
が低くて磁気を帯びない高硬度低透磁率非磁性機能合金
に関し、各種機械および電子機器等のバネ材等に使用さ
れる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-hardness, low-permeability non-magnetic functional alloy that has high hardness, withstands high stress, has low magnetic permeability, and does not have magnetism. Used as a spring material for machinery and electronic equipment.

(従来の技術) 従来、各種の機械、電子機器の機能材料として各種の
特殊合金があり、特殊合金は用途に応じた特性を発揮す
る組成配分として使用されている。これ等の特性とは機
械的硬さおよび強さ、磁気特性ならびに耐食性等であ
る。
(Prior Art) Conventionally, there are various special alloys as functional materials of various machines and electronic devices, and the special alloys are used as composition distributions exhibiting characteristics according to applications. These properties include mechanical hardness and strength, magnetic properties and corrosion resistance.

(発明が解決しようとする課題) 近年、産業の発展に伴い、機械および電子機器等の材
料には精密さが要求されてきており、従来の材料では反
応しきれないことが多くなっている。例えば、電子機器
の部材には周囲の磁界に影響されないこと、磁気を帯び
て周囲の部材に悪影響を与えないこと、ならびに組織的
に安定で機械的強さが高く、高応力に耐えて使用中変形
しないこと等が要求される。しかし、これまで上記の条
件に対応できるよう材料はあまり見出されていない。
(Problems to be Solved by the Invention) In recent years, with the development of industry, materials such as machines and electronic devices are required to be precise, and conventional materials are often unable to react. For example, components of electronic devices are not affected by the surrounding magnetic field, do not adversely affect the surrounding components due to magnetism, and are structurally stable, have high mechanical strength, withstand high stress and are in use. It is required not to be deformed. However, materials that can meet the above conditions have not been found so far.

透磁率が低い非磁性材料としてこれまでオーステナイ
ト鋼が使用されている。しかし、その透磁率が加工によ
り急激に増大するので、通常は急冷状態で使用され、そ
の機械的硬さはあまり高くない欠点がある。
Austenitic steel has been used as a non-magnetic material having a low magnetic permeability. However, since its magnetic permeability is sharply increased by processing, it is usually used in a quenched state, and its mechanical hardness is not so high.

(課題を解決するための手段) そこで本発明の目的は熱処理後の冷間加工および再加
熱により硬度を高くし、且つ組織的に安定になるような
組成とし、低い透磁率を有することによって、高応力に
耐え磁界の影響を受けない機能材料を提供することにあ
る。
(Means for Solving the Problems) Therefore, an object of the present invention is to increase the hardness by cold working and reheating after heat treatment, and to have a composition that is systematically stable and to have a low magnetic permeability, An object of the present invention is to provide a functional material that withstands high stress and is not affected by a magnetic field.

本発明の合金およびその製造方法の特徴とするところ
は次の点にある。
The features of the alloy of the present invention and the method for producing the same are as follows.

第1発明 重量比で、C 0.002〜0.3%と;CoおよびNi3〜27%なら
びにCu10%以下の少なくとも二種の合計10〜45%と;Cr1
0〜23%と;Mn,AlおよびSi2%以下、Ti1.5%以下のうち
の一種あるいは二種以上の合計0.3〜4%と;Mo,Wおよび
V10%以下、Nb5%以下、ZrおよびHf1%以下、Ta0.5%以
下のうちの一種あるいは二種以上1〜12%と、残部Feお
よび不可避的不純物とからなる合金を (A)750〜1200℃の温度で3〜600分間加熱後、200℃
以下の温度まで100℃/時間の速度以上で冷却した後、 (B)加工率10%で冷間加工することにより、高い硬度
および低い透磁率を有する結晶質合金を得ることを特徴
とする高硬度低透磁率非磁性機能合金の製造方法。
First invention C: 0.002 to 0.3% by weight; Co and Ni: 3 to 27%, and a total of at least two of 10% to 45% of Cu: 10% or less; Cr1
0 to 23%; Mn, Al and Si 2% or less, Ti 1.5% or less, one or more of 0.3 to 4% in total; Mo, W and
An alloy consisting of one or more of V 10% or less, Nb 5% or less, Zr and Hf 1% or less, Ta 0.5% or less, 1 to 12%, and the balance Fe and unavoidable impurities is (A) 750 to 1200 After heating for 3 to 600 minutes at a temperature of 200 ° C, 200 ° C
After cooling at a rate of 100 ° C./hour or more to the following temperature, (B) cold working at a working rate of 10% to obtain a crystalline alloy having high hardness and low magnetic permeability. A method for producing a non-magnetic functional alloy having a low hardness and low magnetic permeability.

第2発明 重量比で、C 0.002〜0.3%と;CoおよびNi3〜27%なら
びにCu10%以下の少なくとも二種の合計10〜45%と;Cr1
0〜23%と;Mn,AlおよびSi2%以下、Ti1.5%以下のうち
の一種あるいは二種以上の合計0.3〜4%と;Mo,Wおよび
V10%以下、Nb5%以下、ZrおよびHf1%以下、Ta0.5%以
下のうちの一種あるいは二種以上の合計1〜12%と、残
部Feおよび不可避的不純物とからなる合金を (A)750〜1200℃の温度で3〜600分間加熱後、200℃
以下の温度まで100℃/時間の速度以上で冷却した後、 (B)加工率10%以上で冷間加工し、さらに (C)350〜750℃の温度で1〜1200分間再加熱すること
により、高い硬度および低い透磁率を有する結晶質合金
を得ることを特徴とする高硬度低透磁率非磁性機能合金
の製造方法。
Second invention C 0.002 to 0.3% by weight; Co and Ni 3 to 27% and a total of at least two of 10 to 45% of Cu 10% or less; Cr1
0 to 23%; Mn, Al and Si 2% or less, Ti 1.5% or less, one or more of 0.3 to 4% in total; Mo, W and
(A) 750 200 ℃ after heating at ~ 1200 ℃ for 3 ~ 600 minutes
After cooling to the following temperature at a rate of 100 ° C./hour or more, (B) cold working at a working rate of 10% or more, and (C) reheating at a temperature of 350 to 750 ° C. for 1 to 1200 minutes A method for producing a high-hardness, low-permeability non-magnetic functional alloy, characterized by obtaining a crystalline alloy having high hardness and low magnetic permeability.

第3発明 重量比で、C 0.002〜0.3%と;CoおよびNi3〜27%なら
びにCu10%以下の少なくとも二種の合計10〜45%と;Cr1
0〜23%と;Mn,AlおよびSi2%以下、Ti1.5%以下のうち
の一種あるいは二種以上の合計0.3〜4%と;Mo,Wおよび
V10%以下、Nb5%以下、ZrおよびHf1%以下、Ta0.5%以
下のうちの一種あるいは二種以上の1〜12%と、残部Fe
および不可避的不純物とからなり、高い硬度および低い
透磁率を有する結晶質合金よりなることを特徴とする高
硬度低透磁率非磁性機能合金。
Third invention C: 0.002 to 0.3% by weight; Co and Ni: 3 to 27% and a total of at least two of 10 to 45% of Cu: 10% or less; Cr1
0 to 23%; Mn, Al and Si 2% or less, Ti 1.5% or less, one or more of 0.3 to 4% in total; Mo, W and
V1% or less, Nb5% or less, Zr and Hf1% or less, Ta0.5% or less, 1 or more of 1 to 12%, and the balance Fe
And a non-magnetic functional alloy having high hardness and low magnetic permeability, comprising a crystalline alloy having high hardness and low magnetic permeability.

(作 用) 従来のオーステナイト鋼は急冷の熱処理により準安定
状態になっているので、応力および熱等が加わると変態
を起こす材料である。その相の安定度は熱処理後に加工
を加えて透磁率を測定することによって求められる。こ
こで透磁率が低いほど安定な相を有する材料となるし、
また透磁率が1.2より高くなると磁石に付くようにな
る。
(Operation) Conventional austenitic steel is in a metastable state by rapid cooling heat treatment, and is a material that undergoes transformation when stress, heat, or the like is applied. The stability of the phase is determined by processing after heat treatment and measuring the magnetic permeability. Here, the lower the magnetic permeability, the more stable the material becomes.
If the magnetic permeability is higher than 1.2, it will stick to the magnet.

そこで本発明は重量比で、C 0.002〜0.3%と;Coおよ
びNi 3〜27%ならびにCu 10%以下の少なくとも二種の
合計10〜45%と;Cr 10〜23%と;Mn,AlおよびSi 2%以
下、Ti 1.5%以下のうちの一種あるいは二種以上の合計
0.3〜4%と;Mo,WおよびV10%以下、Nb 5%以下、Zrお
よびHf 1%以下、Ta 0.5%以下のうちの一種あるいは二
種以上の合計1〜12%と、残部Feおよび不可避的不純物
とからなる合金について、合金組成を限定し、熱処理後
の冷間加工および再加熱によりビッカース硬度Hv=280
以上の高い硬度および透磁率μ=1.02以下の低い透磁率
を有す高硬度低透磁率非磁性機能合金を得るものであ
る。
Therefore, the present invention relates to a mixture of 0.002-0.3% by weight of C; 3-27% of Co and Ni and 10-45% of at least two of not more than 10% of Cu; 10-23% of Cr; Mn, Al and Total of one or more of Si 2% or less and Ti 1.5% or less
0.3 to 4%; Mo, W and V 10% or less, Nb 5% or less, Zr and Hf 1% or less, Ta or 0.5% or less, or a total of 1 to 12% or more, and the balance Fe and inevitable Alloys composed of natural impurities are limited in alloy composition, and Vickers hardness Hv = 280 by cold working and reheating after heat treatment.
It is intended to obtain a high-hardness, low-permeability nonmagnetic functional alloy having the above-mentioned high hardness and low magnetic permeability of μ = 1.02 or less.

以下に本発明合金の組成を限定した理由について述べ
る。
The reason for limiting the composition of the alloy of the present invention will be described below.

(1) C:0.002〜0.3%; Cは機械的強度を大きくする元素であるが、0.3%以
上では冷間加工性が悪くなり、0.002%以下では製造上
経済的でないので0.3%を上限とし、0.002%を下限とし
た。
(1) C: 0.002 to 0.3%; C is an element that increases the mechanical strength, but if it is more than 0.3%, the cold workability deteriorates. , 0.002% as the lower limit.

(2) CoおよびNi 3〜27%およびCu 10%以下の少な
くとも二種以上10〜45%; これ等はオーステナイト化元素であり、硬さを高め、
非磁性とする重要な元素である。しかしCu 10%以上は
その加工性に悪影響があるのでCuの上限を10%とし、Co
およびNiは多量に添加すると経済的に不利になるため27
%を上限とし、またこれ等の少なくとも二種の合計の上
限を45%とした。またこれ等の少なくとも二種の合計10
%以下では組織が不安定であり硬さが不充分になるので
これ等元素の合計量の下限を10%とした。
(2) at least two or more 10 to 45% of Co and Ni 3 to 27% and Cu 10% or less; these are austenitizing elements and increase the hardness,
It is an important element to be non-magnetic. However, if Cu is 10% or more, its workability is adversely affected.
And Ni are economically disadvantageous when added in large amounts.
%, And the upper limit of the total of at least two of them is 45%. Also, at least two of these total 10
% Or less, the structure becomes unstable and the hardness becomes insufficient. Therefore, the lower limit of the total amount of these elements is set to 10%.

(3) Cr:10〜23%; Crは非磁性を得ることと耐食性をよくするために少な
くとも10%を必要とするのでその下限を10%とし、これ
が23%以上では加工性等が悪くなるのでその上限を23%
とした。
(3) Cr: 10 to 23%; Cr requires at least 10% in order to obtain non-magnetism and improve corrosion resistance. Therefore, the lower limit is set to 10%. So its upper limit is 23%
And

(4) Mn,AlおよびSi 2%以下ならびにTi1.5%以下の
一種あるいは二種以上の合計0.3〜4%; これ等元素はいずれも機械的強度を高め、脱酸剤とし
て効果がある。しかしこれ等のうちの一種あるいは二種
以上の合計0.3%以下では効果が少なく、また2%以上
のMn,Al,Si、1.5%以上のTiおよびこれ等のうちの一種
あるいは二種以上の合計が4%以上になると加工性が悪
くなるのでそれ等の合計4%をその上限とした。
(4) One or two or more of Mn, Al and Si 2% or less and Ti 1.5% or less 0.3 to 4% in total; all of these elements increase mechanical strength and are effective as deoxidizing agents. However, one or two or more of these have little effect when the total is less than 0.3%, and Mn, Al, Si of more than 2%, Ti of 1.5% or more, and the total of one or more of these. Is 4% or more, the workability deteriorates. Therefore, the total of these 4% was set as the upper limit.

(5) Mo,WおよびV10%以下、Nb 5%以下、ZrおよびH
f 1%以下ならびにTa 0.5%以下の一種あるいは二種以
上の合計1〜12%; これ等はフェライト化元素であるが、硬度等の機械的
強度および耐食性を高める。しかし10%以上のMo,Wおよ
びV、5%以上のNb、1%以上のZrおよびHf、0.5%以
上のTaまたはこれ等のうちの一種あるいは二種以上の合
計が12%以上では加工性に悪影響が生じ、高価となり経
済的にも不利となるのでこれ等元素の上限を12%とし
た。またこれ等元素の合計量が1%以下では効果が少な
いので、その下限を1%とした。
(5) Mo, W and V 10% or less, Nb 5% or less, Zr and H
f 1% or less and Ta or 0.5% or less, or a total of 1 to 12% of two or more kinds; these are ferritizing elements, but enhance mechanical strength such as hardness and corrosion resistance. However, at least 10% of Mo, W and V, 5% or more of Nb, 1% or more of Zr and Hf, 0.5% or more of Ta, or one or more of these two or more at a total workability of 12% or more Therefore, the upper limit of these elements is set to 12% because of the adverse effect on the cost and the economical disadvantage. If the total amount of these elements is 1% or less, the effect is small, so the lower limit is set to 1%.

次に本発明の合金の製造方法について記述する。まず
上記の組成範囲の合金を空気中もしくは不活性ガス中、
または真空中において通常の溶解炉によって溶解した
後、砂型や金型に鋳造して鋳塊を造る。なお、溶解する
際に、空気の遮断材として通常のフラックスおよび全量
1%程度の脱酸剤を用いてもよい。
Next, a method for producing the alloy of the present invention will be described. First, alloy in the above composition range in air or inert gas,
Alternatively, it is melted in a normal melting furnace in a vacuum, and then cast into a sand mold or a mold to form an ingot. At the time of dissolution, a normal flux and a deoxidizer having a total amount of about 1% may be used as an air blocking material.

次にこの鋳塊を、低温(冷間)および高温において鍛
造、圧延、押し出し、スエージング、引き抜きあるいは
プレス等により所定の形状に加工する。ここで鍛造、圧
延、押し出し、スエージング、引き抜きあるいはプレス
等の加工は所定の形状にするための手段であるので、場
合によっては一部の工程は省略することができる。
Next, the ingot is processed into a predetermined shape at low (cold) and high temperatures by forging, rolling, extruding, swaging, drawing or pressing. Here, processing such as forging, rolling, extrusion, swaging, drawing or pressing is a means for forming a predetermined shape, and accordingly, some steps can be omitted in some cases.

次に所定の形状の合金に次のごとき工程を施す。 Next, the following steps are performed on the alloy having a predetermined shape.

(A)750〜1200℃の温度で3〜600分間加熱後、200℃
以下の温度まで100℃/時間の速度以上で冷却する (B)工程(A)に続いて、加工率10%以上で冷間加工
する。
(A) After heating at a temperature of 750 to 1200 ° C for 3 to 600 minutes, 200 ° C
Cooling to the following temperature at a rate of 100 ° C./hour or more (B) Following the step (A), cold working is performed at a working rate of 10% or more.

(C)さらに、350〜750℃の温度で1〜1200分間再加熱
する。
(C) Further, reheating is performed at a temperature of 350 to 750 ° C for 1 to 1200 minutes.

工程(A)において750〜1200℃の温度で3〜600分間
加熱するのは、合金の加工歪みの除去、結晶粒の調整お
よびオーステナイト化のためで、200℃以下の温度まで1
00℃/時間の速度以上で冷却するのは、この温度以下あ
るいはこの速度以上であれば析出等があまり起こらずに
次の冷間加工が容易となるからである。しかし、透磁率
を小さくするには冷却速度はできるかぎり大きい方が望
ましい。
In the step (A), heating at a temperature of 750 to 1200 ° C. for 3 to 600 minutes is for the purpose of removing working strain of the alloy, adjusting crystal grains, and austenitizing.
The cooling at the rate of 00 ° C./hour or more is because if the temperature is not more than this temperature or not less than this rate, precipitation or the like does not occur much and the next cold working becomes easy. However, in order to reduce the magnetic permeability, it is desirable that the cooling rate be as high as possible.

工程(B)において、加工率10%以上で冷間加工する
のは、加工による歪みにより合金を硬化させるためであ
り、一般的に加工率が大きいほど硬さが高くなるので下
限を10%とした。
In the step (B), the cold working at a working ratio of 10% or more is for hardening the alloy by strain due to the working. Generally, the higher the working ratio, the higher the hardness, so the lower limit is 10%. did.

工程(C)で、350〜750℃の温度で1〜1200分間再加
熱するのは、工程(B)により硬化した合金に金属間化
合物を析出させて、析出効果により一層硬度を高めるた
めである。
The reason for reheating at a temperature of 350 to 750 ° C. for 1 to 1200 minutes in the step (C) is to precipitate an intermetallic compound on the alloy hardened in the step (B) and further increase the hardness by the effect of precipitation. .

(実施例) 次に本発明の合金の実施例を比較例とともに説明す
る。
(Examples) Next, examples of the alloy of the present invention will be described together with comparative examples.

試料を得るために原材料を高周波電気炉により溶解
し、鋳型に鋳込んで直径25mmφの鋳塊を得た。
In order to obtain a sample, raw materials were melted by a high-frequency electric furnace and cast into a mold to obtain an ingot having a diameter of 25 mmφ.

次に鋳塊を1100℃の温度で6mmφまで鍛造した後、冷
間スエージングおよび引き抜きにより0.8mmφの線にし
て試料とした。透磁率μは直流磁気特性測定装置により
求め、ビッカース硬度Hvはマイクロビッカース硬度計に
より求めた。
Next, the ingot was forged to a diameter of 6 mm at a temperature of 1100 ° C., and a 0.8 mm φ wire was formed by cold swaging and drawing to obtain a sample. The magnetic permeability μ was determined by a DC magnetic property measuring device, and the Vickers hardness Hv was determined by a micro-Vickers hardness meter.

本発明の合金の実施例の試料No.1〜6および比較例の
合金の試料No.7〜9の組織を重量比(%)で第1表に示
す。ここで比較例の試料No.7はSUS303、No.8はSUS304お
よびNo.9はSUS316と呼ばれるものである。
Table 1 shows the structures of Samples Nos. 1 to 6 of Examples of the alloy of the present invention and Samples Nos. 7 to 9 of the alloys of Comparative Examples in terms of weight ratio (%). Here, the sample No. 7 of the comparative example is called SUS303, the sample No. 8 is called SUS304, and the sample No. 9 is called SUS316.

本発明合金の機械的硬さはかなり高い。それは熱処理
後の加工によって、その歪みにより合金が硬化されてい
るからである。その様子を1100℃で60分間加熱後水中冷
却した実施例の試料No.3について、第1図にビッカース
硬度Hvの冷間加工率RAによる変化を示す。加工歪みは冷
間加工率の増大とともに多くなるから硬度Hvは加工とと
もに急激に高くなる。
The mechanical hardness of the alloy according to the invention is quite high. This is because the alloy is hardened by the strain due to the processing after the heat treatment. FIG. 1 shows the change in the Vickers hardness Hv depending on the cold working rate RA for the sample No. 3 of the example, which was heated at 1100 ° C. for 60 minutes and then cooled in water. Since the working distortion increases with an increase in the cold working ratio, the hardness Hv increases rapidly with the working.

第1図に見るように、通常の合金を加工すると硬度が
高くなるが、透磁率が小さいままとは限らない。第2図
には実施例試料No.3および比較例試料No.7〜9を1100℃
あるいは1050℃の温度で60分間加熱してから水中冷却し
た後に加工を施したときの透磁率μ(磁場の強さ200 O
e)と冷間加工率RA(%)との関係を示す。これ等の合
金は急激にの熱処理状態ではオーステナイト組織で透磁
率が1.003〜1.006程度で小さく、非磁性を示すが、組織
的に不安定な合金ほど熱処理後の加工によって加工変態
を起こして透磁率が高くなる。透磁率の増加の度合は比
較例の試料No.7,No.8,No.9の順に大きく、比較例の鋳で
度合が一番小さい試料No.9でも加工率が60%で透磁率が
1.058になるのに対して実施例試料No.3の透磁率は冷間
加工率が96%のときでも1.005で非常に小さい。このこ
とから本発明合金は加工応力による変態が少なく、組織
的に非常に安定で磁気を帯びることがないことか判る。
As shown in FIG. 1, when a normal alloy is processed, the hardness increases, but the magnetic permeability does not always remain low. FIG. 2 shows Example Sample No. 3 and Comparative Example Samples Nos. 7 to 9 at 1100 ° C.
Alternatively, it is heated at a temperature of 1050 ° C for 60 minutes, then cooled in water, and then processed to give a magnetic permeability μ (magnetic field strength of 200 O
The relationship between e) and the cold work rate RA (%) is shown. These alloys have an austenitic structure with a magnetic permeability of about 1.003 to 1.006 and are small and non-magnetic in a rapidly heat-treated state, but exhibit non-magnetic properties. Will be higher. The degree of increase in magnetic permeability increases in the order of Samples No. 7, No. 8, and No. 9 of the comparative example.
In contrast to 1.058, the magnetic permeability of Example Sample No. 3 is extremely low at 1.005 even when the cold working ratio is 96%. From this, it can be seen that the alloy of the present invention has little transformation due to processing stress, is very stable in structure and does not have magnetism.

そして第2表に第1表の合金を表示の高温度で60分間
加熱し、水中冷却した後、加工したときの冷間加工率R
A、透磁率μおよびビッカース硬度Hvの関係を示す。実
施例および比較例のいずれの試料とも熱処理後の冷間加
工によって加工硬化し硬度が高い。しかし、本発明合金
は硬度が高くなっても透磁率が低いままであるが、比較
合金は硬度が高くなるにつれて透磁率が非常に大きくな
ることが判る。
Then, the alloys shown in Table 1 were heated at the indicated high temperature for 60 minutes, cooled in water, and then cold worked R
A shows the relationship among A, magnetic permeability μ, and Vickers hardness Hv. Both of the samples of Examples and Comparative Examples are work hardened by cold working after heat treatment and have high hardness. However, although the magnetic permeability of the alloy of the present invention remains low even when the hardness increases, it can be seen that the magnetic permeability of the comparative alloy becomes extremely large as the hardness increases.

さらに本発明合金の硬さは冷間加工した後に再加熱す
ることにより一層高くなる。第3表は表示と高温度で60
分間加熱加工を施し、さらに表示の各温度で再加熱した
ときの冷間加工率RA、再加熱温度およびビッカース硬度
Hvの関係を示す。このような加工後の再加熱によって硬
度が非常に高くなっている。これは、(Fe1-aXa(M
o1-bYb)等の擬二元系金属間化合物(X=Ni,Cu,Y=W,
V,Zr,Nb等、aとbは組成比)を析出させ、その析出硬
化により、冷間加工で硬化した合金をさらに硬化できる
ことを現している。
Further, the hardness of the alloy of the present invention is further increased by reheating after cold working. Table 3 shows the indication and 60 at high temperature
Minutes of heat treatment, followed by reheating at each temperature indicated, cold work rate RA, reheating temperature and Vickers hardness
The relationship between Hv is shown. The hardness is extremely increased by reheating after such processing. This is (Fe 1-a X a ) 2 (M
o 1-b Y b ) and other pseudo-binary intermetallic compounds (X = Ni, Cu, Y = W,
V, Zr, Nb, etc., a and b are deposited, and the precipitation hardening shows that the alloy hardened by cold working can be further hardened.

(発明の効果) 本発明合金の特徴は上述のように透磁率が低く、硬度
が大きい上に冷間加工性が良好であることである。従っ
て、本発明合金は各種の電子機器の構成部品、磁界中で
作動する部品、精密機器等の構造材料に応用するのに非
常に適している。
(Effects of the Invention) The features of the alloy of the present invention are low magnetic permeability, high hardness and good cold workability as described above. Therefore, the alloy of the present invention is very suitable for application to structural components of various electronic devices, components operating in a magnetic field, and precision devices.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例合金の試料No.3について、ビッカース硬
度Hvと冷間加工率との関係を示す特性図、 第2図は実施例の試料No.3および比較例の試料No.7〜9
の透磁率μ(磁場の強さ200 Oe)と冷間加工率RA(%)
との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the Vickers hardness Hv and the cold working ratio for the sample No. 3 of the example alloy, and FIG. 2 is a sample No. 3 of the example and sample Nos. 7 to 7 of the comparative example. 9
Permeability μ (magnetic field strength 200 Oe) and cold working rate RA (%)
FIG. 4 is a characteristic diagram showing a relationship between

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比で、C 0.002〜0.3%と;CoおよびNi3
〜27%ならびにCu10%以下の少なくとも二種の合計10〜
45%と;Cr10〜23%と;Mn,AlおよびSi2%以下、Ti1.5%
以下のうちの一種あるいは二種以上の合計0.3〜4%と;
Mo,WおよびV10%以下、Nb5%以下、ZrおよびHf1%以
下、Ta0.5%以下のうちの一種あるいは二種以上の1〜1
2%と、残部Feおよび不可避的不純物とからなる合金を (A)750〜1200℃の温度で3〜600分間加熱後、200℃
以下の温度まで100℃/時間の速度以上で冷却した後、 (B)加工率10%以上で冷間加工することにより、高い
硬度および低い透磁率を有する結晶質合金を得ることを
特徴とする高硬度低透磁率非磁性機能合金の製造方法。
(1) C-0.002 to 0.3% by weight; Co and Ni3
~ 27% and a total of at least two of 10% or less of Cu10 ~
45%; Cr 10-23%; Mn, Al and Si 2% or less, Ti 1.5%
0.3 to 4% of one or more of the following:
One or more of Mo, W and V 10% or less, Nb 5% or less, Zr and Hf 1% or less, Ta 0.5% or less, 1-1
(A) An alloy composed of 2% and the balance of Fe and inevitable impurities is heated at a temperature of 750 to 1200 ° C. for 3 to 600 minutes, and then heated to 200 ° C.
(B) cold working at a working rate of 10% or more to obtain a crystalline alloy having a high hardness and a low magnetic permeability A method for producing a high hardness, low magnetic permeability non-magnetic functional alloy.
【請求項2】重量比で、C 0.002〜0.3%と;CoおよびNi3
〜27%ならびにCu10%以下の少なくとも二種の合計10〜
45%と;Cr10〜23%と;Mn,AlおよびSi2%以下、Ti1.5%
以下のうちの一種あるいは二種以上の合計0.3〜4%と;
Mo,WおよびV10%以下、Nb5%以下、ZrおよびHf1%以
下、Ta0.5%以下のうちの一種あるいは二種以上の1〜1
2%と、残部Feおよび不可避的不純物とからなる合金を (A)750〜1200℃の温度で3〜600分間加熱後、200℃
以下の温度まで100℃/時間の速度以上で冷却した後、 (B)加工率10%以上で冷間加工し、さらに (C)350〜750℃の温度で1〜1200分間再加熱すること
により、高い硬度および低い透磁率を有する結晶質合金
を得ることを特徴とする高硬度低透磁率非磁性機能合金
の製造方法。
2. The composition according to claim 1, wherein the weight ratio of C is 0.002-0.3%;
~ 27% and a total of at least two of 10% or less of Cu10 ~
45%; Cr 10-23%; Mn, Al and Si 2% or less, Ti 1.5%
0.3 to 4% of one or more of the following:
One or more of Mo, W and V 10% or less, Nb 5% or less, Zr and Hf 1% or less, Ta 0.5% or less, 1-1
(A) An alloy composed of 2% and the balance of Fe and inevitable impurities is heated at a temperature of 750 to 1200 ° C. for 3 to 600 minutes, and then heated to 200 ° C.
After cooling to the following temperature at a rate of 100 ° C./hour or more, (B) cold working at a working rate of 10% or more, and (C) reheating at a temperature of 350 to 750 ° C. for 1 to 1200 minutes A method for producing a high-hardness, low-permeability non-magnetic functional alloy, characterized by obtaining a crystalline alloy having high hardness and low magnetic permeability.
【請求項3】重量比で、C 0.002〜0.3%と;CoおよびNi3
〜27%ならびにCu10%以下の少なくとも二種の合計10〜
45%と;Cr10〜23%と;Mn,AlおよびSi2%以下、Ti1.5%
以下のうちの一種あるいは二種以上の合計0.3〜4%と;
Mo,WおよびV10%以下、Nb5%以下、ZrおよびHf1%以
下、Ta0.5%以下のうちの一種あるいは二種以上の1〜1
2%と、残部Feおよび不可避的不純物とからなり、高い
硬度および低い透磁率を有する結晶質合金よりなること
を特徴とする高硬度低透磁率非磁性機能合金。
3. The composition according to claim 1, wherein C is 0.002-0.3% by weight; Co and Ni3
~ 27% and a total of at least two of 10% or less of Cu10 ~
45%; Cr 10-23%; Mn, Al and Si 2% or less, Ti 1.5%
0.3 to 4% of one or more of the following:
One or more of Mo, W and V 10% or less, Nb 5% or less, Zr and Hf 1% or less, Ta 0.5% or less, 1-1
A high-hardness, low-permeability nonmagnetic functional alloy comprising 2%, the balance being Fe and unavoidable impurities, and a crystalline alloy having high hardness and low magnetic permeability.
JP2234536A 1990-09-06 1990-09-06 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same Expired - Fee Related JP2574528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234536A JP2574528B2 (en) 1990-09-06 1990-09-06 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234536A JP2574528B2 (en) 1990-09-06 1990-09-06 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04116141A JPH04116141A (en) 1992-04-16
JP2574528B2 true JP2574528B2 (en) 1997-01-22

Family

ID=16972566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234536A Expired - Fee Related JP2574528B2 (en) 1990-09-06 1990-09-06 High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2574528B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424028A (en) * 1993-12-23 1995-06-13 Latrobe Steel Company Case carburized stainless steel alloy for high temperature applications
DE19629977C2 (en) * 1996-07-25 2002-09-19 Schmidt & Clemens Gmbh & Co Ed Austenitic nickel-chrome steel alloy workpiece
JP2019011515A (en) * 2013-08-23 2019-01-24 大同特殊鋼株式会社 Maraging steel excellent in fatigue characteristic
JP6653113B2 (en) 2013-08-23 2020-02-26 大同特殊鋼株式会社 Maraging steel with excellent fatigue properties
CN115319106B (en) * 2022-08-26 2024-02-27 西安理工大学 Powder core wire material and method for manufacturing flange for transformer based on arc additive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin

Also Published As

Publication number Publication date
JPH04116141A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
US20110056589A1 (en) Iron-nickle alloy
JP2012516390A (en) Stainless austenitic low Ni steel alloy
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP3169978B2 (en) Precipitation hardening high strength non-magnetic stainless steel
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPH0321622B2 (en)
EP0445094B1 (en) High strength stainless steel
JP3614869B2 (en) High strength non-magnetic low thermal expansion alloy
JP2002038244A (en) Highly hardened stainless steel for screw for use in magnetic hard disk drive
JP2007262582A (en) Superconducting magnetic component
US5242655A (en) Stainless steel
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JP2008179864A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY
JPS6326192B2 (en)
JPH11279717A (en) Free cutting corrosion resistant soft magnetic material
JPH036354A (en) Damping alloy having high hardness and high damping capacity and its manufacture
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JPH04116142A (en) Nonmagnetic functional alloy having high rigidity and low magnetic permeability and its manufacture
JPH07107187B2 (en) High Mn non-magnetic steel with low susceptibility to stress corrosion cracking
JP6459078B2 (en) Fe-Mn-based constant elastic / insensitive magnetic alloy
JPS6123750A (en) Nonmagnetic steel
JP4295371B2 (en) Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees