JP4103513B2 - Extremely low carbon steel wire rod with excellent cold workability and magnetic properties - Google Patents

Extremely low carbon steel wire rod with excellent cold workability and magnetic properties Download PDF

Info

Publication number
JP4103513B2
JP4103513B2 JP2002265693A JP2002265693A JP4103513B2 JP 4103513 B2 JP4103513 B2 JP 4103513B2 JP 2002265693 A JP2002265693 A JP 2002265693A JP 2002265693 A JP2002265693 A JP 2002265693A JP 4103513 B2 JP4103513 B2 JP 4103513B2
Authority
JP
Japan
Prior art keywords
steel
less
cold workability
low carbon
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002265693A
Other languages
Japanese (ja)
Other versions
JP2004100005A (en
Inventor
明博 松崎
昌義 石田
浩 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002265693A priority Critical patent/JP4103513B2/en
Publication of JP2004100005A publication Critical patent/JP2004100005A/en
Application granted granted Critical
Publication of JP4103513B2 publication Critical patent/JP4103513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車および家電製品等の電装部品に使用される極低炭素鋼線材(棒鋼を含む。以下同じ)に関し、特にかかる部品の製造過程で要求される鍛造性等の冷間加工性および磁気特性の有利な改善を図ったものである。
【0002】
【従来の技術】
自動車および家電製品等の電装部品の磁気回路を構成する部材には、磁界に順応し易い軟質磁性材料が使用される。すなわち、小さな外部磁場によって容易に磁化し、かつ保磁力が小さいという磁気特性が要求される。
従来、このような鋼材としては、炭素量が0.01〜0.1 mass%程度の低炭素鋼が用いられてきた。これらの鋼材は、熱間圧延したのち、焼鈍、潤滑処理を行ってから、伸線や鍛造などの冷間加工および切削加工を行い、ついで最終成形完了後に磁気焼鈍等が施されるのが一般的であった。
【0003】
しかしながら、近年、省エネルギーの観点から、焼鈍を施すことなしに冷間加工を施すことのできる鋼材に対する要求が高まりつつある。
すなわち,熱間加工後に焼鈍を行わずとも、良好な冷間加工性を有する鋼材の開発が望まれていた。
【0004】
また、これらの部材に要求される磁気応答性を確保するためには、低磁場での磁束密度例えば磁場:100 A/m 時における磁束密度が高い鋼材が有効である。
しかしながら、上記したような冷間加工性と低磁場域での高磁束密度は、鋼材の化学成分の観点からは相反する特性である。すなわち、Si,P,Alは固溶強化により鋼を硬くして冷間加工性を低下させる反面、 低磁場域での磁束密度は上昇させる。
従って、電装部品として、上記した2つの特性を兼ね備えた鋼材の開発が望まれていた。
【0005】
熱間加工鋼材の変形抵抗を低下させて冷間加工性を改善する技術として、CやNの低減を図ると共に、B等の特殊元素を添加する技術が提案されている(例えば、特許文献1参照)。
しかしながら、この技術においては、Cが0.04〜0.10mass%程度含有されているため、ひずみ時効硬化の抑制にはそれなりの効果はあるが、加工硬化を低減するという観点からはなお不十分であり、変形抵抗を必ずしも極限まで低下させ得たものとは言えなかった。しかも、電装部材の応答性すなわち低磁場域での磁束密度の改善策については何も示されていない。
【0006】
また、圧延のままで良好な冷鍛性が得られ、かつ磁気焼鈍を施した製品段階で優れた磁気特性を示す鋼棒、線材を得る技術として、C,Si,P,S,Nを低減すると共に、AlやCr,Zrを添加する技術が提案されている(例えば、特許文献2参照)。
しかしながら、この技術においては、低磁場域での磁束密度を十分に得ることができない。
【0007】
なお、かかる鋼材は、磁気特性向上の観点からフェライト粒径を粗大化させて使用するのが一般的であった。しかしながら、結晶粒の粗大化は、鋼の延性および靭性を損なうために、加工性を低下させる。
従って、磁気特性と加工性を兼備するために,フェライト粒径の適正化も望まれていた。
【0008】
【特許文献1】
特開昭59−215463号公報(特許請求の範囲)
【特許文献2】
特開平4−285143号公報(特許請求の範囲)
【0009】
【発明が解決しようとする課題】
本発明は、上記の実状に鑑み開発されたもので、熱間圧延ままで良好な冷間加工性が得られ、かつ磁気焼鈍後の製品段階で優れた低磁場特性を呈する、冷間加工性および磁気特性に優れた極低炭素鋼線材を提案することを目的とする。
【0010】
【課題を解決するための手段】
すわなち、本発明は、質量%で、
C:0.0034%以下、
Si:0.10〜0.50%、
Mn:0.10〜0.30%、
P:0.01〜0.10%、
S:0.006 %以下、
Al:0.35%以下、
N:0.01%以下、
O:0.015 %以下
を、Si,P,Alが次式
Si+P+Al≦0.6 %
を満足する範囲で含有し、 残部はFeおよび不可避的不純物の組成になることを特徴とする、冷間加工性および磁気特性に優れた極低炭素鋼線材である。
【0011】
本発明において、フェライトの平均結晶粒径は 0.2mm未満とすることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.0034%以下
Cは、鋼材の強度と延性のバランスを支配する基本的元素であり、含有量が少ないほど強度は低下し、冷間加工性は向上する。また磁気特性の面からしても極力低減することが望ましい。そこで、これらの観点から、C量は0.0034%以下に制限した。
【0013】
Si:0.10〜0.50%
Siは、低磁場域での鋼の磁束密度を向上させる作用があり、そのためには0.10%以上の添加が必要であるが、多すぎると固溶強化により鋼の冷間加工性が低下するので、Si量は0.10〜0.50%の範囲に限定した。
【0014】
Mn:0.10〜0.30%
Mnは、Sの固定により熱間加工性を向上させる効果があり、そのためには0.10%以上の添加を必要とするが、0.30%を超えて含有されると、鋼の強度が上昇して冷間加工性の低下を招くので、Mn量は0.10〜0.30%の範囲に限定した。
【0015】
P:0.01〜0.10%
Pは、Siと同様、低磁場域での磁束密度の向上に有効に寄与するので、0.01%以上含有させるが、多すぎると固溶強化により鋼の冷間加工性が低下するので、P量は0.01〜0.10%の範囲に限定した。
【0016】
S:0.006 %以下
Sは、硫化物系介在物を形成して延性を低下させるだけでなく、磁気特性の面でも有害な元素であるので、極力低減することが望ましいが、0.006 %以下であれば許容できる。
【0017】
Al:0.35%以下
Alは、低磁場域における磁束密度を向上させる上で有効な元素である。しかしながら、含有量が多すぎると固溶強化により鋼の冷間加工性が低下するので、Alは0.35%以下で含有させるものとした。
【0018】
N:0.01%以下
Nは、固溶により冷間加工性の低下を引き起こすので、できるだけ少ない方が好ましい。従って、上限を0.01%とした。
【0019】
O:0.015 %以下
Oは、鋼の清浄化に有害であるだけでなく、磁気特性も低下させるので、できるだけ少ない方が望ましい。従って、上限を0.015 %とした。
【0020】
Si+P+Al≦0.6 %
上述したとおり、Si,PおよびAlはいずれも、鋼の低磁場域における磁束密度を向上させるのに有効な元素であり、それぞれ上述した範囲で含有させる必要がある。しかしながら、いずれも固溶強化により鋼の冷間加工性を低下させるので、合計量の上限を 0.6%とした。
【0021】
フェライトの平均結晶粒径:0.2 mm未満
本発明では、鋼の成分組成を上述した適正範囲に制御することによってその効果が発揮されるが、さらにフェライトの平均結晶粒径を小さくすることにより、その効果が一層向上する。
すなわち、線材のフェライト粒径を微細化することにより、鋼の延性および靭性が向上して、鋼の冷間加工性が一層向上する。そのためには、フェライトの平均結晶粒径を 0.2 mm 未満にすることが重要である。
【0022】
なお、フェライトの平均結晶粒径を 0.2mm未満にする方法としては、鋼を線材に圧延するに際し、900 ℃以下での圧下量を断面減少率で20%以上とする方法が挙げられる。
【0023】
【実施例】
表1に示す組成になる溶鋼100kg を、真空炉で溶製したのち、150mm 角ビレットに熱間鍛造し、これを加熱後、直径:50mmの棒鋼に圧延した。なお、表1中、No.3については、圧延終了温度が 900℃を超えるようにして、フェライト粒径が大きめになるようにした。No.3以外については、900 ℃以下で20%以上の断面減少率が得られるように圧延温度を調整した。
かくして得られた棒鋼の冷間加工性および磁気特性について調べた結果を、表1に併記する。
なお、棒鋼の冷間加工性については、得られた棒鋼から、該棒鋼の表面から径方向に12.5mmの深さ位置が中心軸となるように、平行部の直径:6mm,長さ:30mmの丸棒引張試験片を作成し、引張試験を行って求めた引張強さおよび破断絞り値により評価した。
また、得られた棒鋼から組織観察用の試料を採取し、光学顕微鏡観察により、フェライトの平均結晶粒径を求めた。
一方、磁気的応答性の指標としては、棒鋼から外径:45mmφ、内径:33mmφ、高さ:5mmのリング状試験片を作成し、800 ℃, 1時間の焼鈍を施した後、印加磁場:100 A/m の時の磁束密度(B1 )により評価した。
【0024】
【表1】

Figure 0004103513
【0025】
同表に示したとおり、No.1, 2の発明例はそれぞれ、引張強さも十分に低値であり、絞り値も良好であるだけでなく、低磁場域での磁束密度も高い値を示している。また、No.3の発明例は、フェライト粒径が好適範囲を外れているため、絞り値がやや低いけれども、依然として良好な値を示しており、また磁束密度B1も高い値であった。
【0026】
これに対し、No.4の比較例は、個々の成分は本発明の適正範囲を満足しているものの、Si+P+Al量が本発明の上限値を超えているため、磁束密度は優れているが、 鋼の強度が高くなり、 絞り値が大きく低下しており、 冷間加工性が劣化している。
No.5〜7 の比較例はそれぞれ、Si,Al, Pのいずれかが本発明の適正範囲を逸脱しているため、磁束密度は優れているものの、鋼の強度が高くなり、絞り値が大きく低下しており、冷間加工性が劣化している。
No.8,9の比較例は、C,Mn,S,N, O等が本発明の適正範囲を逸脱しているため、磁束密度が低下すると共に、絞り値も大きく低下しており、磁気特性および冷間加工性がともに劣化していることが分かる。
No.10 の比較例は、Si量が本発明の下限に満たないので、磁束密度が低下している。
【0027】
【発明の効果】
かくして、本発明によれば、自動車や家電製品等の電装部品に供して好適な、冷間加工性と磁気特性に優れた極低炭素鋼線材を安定して得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-low carbon steel wire rod (including bar steel; the same shall apply hereinafter) used for electrical parts such as automobiles and home appliances, and in particular, cold workability such as forgeability required in the manufacturing process of such parts and This is an advantageous improvement of the magnetic properties.
[0002]
[Prior art]
A soft magnetic material that easily adapts to a magnetic field is used as a member constituting a magnetic circuit of an electrical component such as an automobile or home appliance. That is, magnetic properties are required that are easily magnetized by a small external magnetic field and have a small coercive force.
Conventionally, low carbon steel having a carbon content of about 0.01 to 0.1 mass% has been used as such a steel material. These steel materials are generally hot-rolled, annealed and lubricated, then cold-worked and cut, such as wire drawing and forging, and then magnetically annealed after the final forming is completed. It was the target.
[0003]
However, in recent years, from the viewpoint of energy saving, there is an increasing demand for steel materials that can be cold worked without being annealed.
In other words, it has been desired to develop a steel material having good cold workability without annealing after hot working.
[0004]
In order to ensure the magnetic response required for these members, a steel material having a high magnetic flux density in a low magnetic field, for example, a magnetic flux density at a magnetic field of 100 A / m is effective.
However, cold workability as described above and high magnetic flux density in a low magnetic field range are contradictory properties from the viewpoint of the chemical composition of the steel material. That is, Si, P, and Al harden the steel by solid solution strengthening to reduce cold workability, but increase the magnetic flux density in the low magnetic field region.
Therefore, it has been desired to develop a steel material having the above two characteristics as an electrical component.
[0005]
As a technique for improving the cold workability by reducing the deformation resistance of the hot-worked steel material, a technique for reducing C and N and adding a special element such as B has been proposed (for example, Patent Document 1). reference).
However, in this technique, since C is contained in an amount of about 0.04 to 0.10 mass%, there is a certain effect in suppressing strain age hardening, but it is still insufficient from the viewpoint of reducing work hardening. It could not be said that the deformation resistance could be reduced to the limit. In addition, nothing is shown about measures for improving the responsiveness of the electrical component, that is, the magnetic flux density in the low magnetic field region.
[0006]
In addition, C, Si, P, S, and N are reduced as a technology for obtaining steel rods and wires that exhibit excellent magnetic properties at the stage of products that have been subjected to magnetic annealing and that have achieved good cold forgeability while being rolled. In addition, a technique for adding Al, Cr, or Zr has been proposed (see, for example, Patent Document 2).
However, this technique cannot sufficiently obtain the magnetic flux density in the low magnetic field region.
[0007]
In addition, it was common to use such steel materials with a coarsened ferrite grain size from the viewpoint of improving magnetic properties. However, the coarsening of the crystal grains deteriorates the workability because the ductility and toughness of the steel are impaired.
Therefore, in order to have both magnetic properties and workability, it has been desired to optimize the ferrite grain size.
[0008]
[Patent Document 1]
JP 59-215463 A (Claims)
[Patent Document 2]
JP-A-4-285143 (Claims)
[0009]
[Problems to be solved by the invention]
The present invention has been developed in view of the above-mentioned actual conditions, and it is possible to obtain good cold workability as it is in hot rolling, and to exhibit excellent low magnetic field characteristics at the product stage after magnetic annealing. And it aims at proposing the ultra-low carbon steel wire rod excellent in magnetic characteristics.
[0010]
[Means for Solving the Problems]
That is, the present invention is in mass%,
C: 0.0034% or less,
Si: 0.10 to 0.50%,
Mn: 0.10-0.30%
P: 0.01-0.10%,
S: 0.006% or less,
Al: 0.35% or less,
N: 0.01% or less,
O: 0.015% or less, Si, P, Al is the following formula
Si + P + Al ≦ 0.6%
Is a very low carbon steel wire wire excellent in cold workability and magnetic properties, characterized in that the balance is the composition of Fe and inevitable impurities.
[0011]
In the present invention, the average crystal grain size of ferrite is preferably less than 0.2 mm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.0034% or less C is a basic element that governs the balance between strength and ductility of the steel material. The smaller the content, the lower the strength and the cold workability is improved. It is also desirable to reduce as much as possible from the viewpoint of magnetic characteristics. Therefore, from these viewpoints, the C content is limited to 0.0034% or less.
[0013]
Si: 0.10 to 0.50%
Si has the effect of improving the magnetic flux density of steel in a low magnetic field region. To that end, addition of 0.10% or more is necessary, but if too much, the cold workability of the steel decreases due to solid solution strengthening. , Si amount was limited to the range of 0.10 to 0.50%.
[0014]
Mn: 0.10 to 0.30%
Mn has the effect of improving hot workability by fixing S, and for that purpose, addition of 0.10% or more is required. However, if it is contained in excess of 0.30%, the strength of the steel increases and the steel becomes cold. Since the interworkability is lowered, the Mn content is limited to the range of 0.10 to 0.30%.
[0015]
P: 0.01-0.10%
P, like Si, effectively contributes to the improvement of the magnetic flux density in the low magnetic field region. Therefore, P is contained in an amount of 0.01% or more, but if it is too much, the cold workability of steel decreases due to solid solution strengthening. Is limited to a range of 0.01 to 0.10%.
[0016]
S: 0.006% or less S is an element that not only reduces the ductility by forming sulfide inclusions but also detrimental in terms of magnetic properties, so it is desirable to reduce it as much as possible, but 0.006% or less Acceptable.
[0017]
Al: 0.35% or less
Al is an element effective in improving the magnetic flux density in a low magnetic field region. However, if the content is too large, the cold workability of the steel decreases due to the solid solution strengthening, so Al is included at 0.35% or less.
[0018]
N: 0.01% or less N is preferably as small as possible because it causes a decrease in cold workability due to solid solution. Therefore, the upper limit was made 0.01%.
[0019]
O: 0.015% or less O is not only detrimental to steel cleaning, but also deteriorates magnetic properties, so it is desirable that O be as small as possible. Therefore, the upper limit was made 0.015%.
[0020]
Si + P + Al ≦ 0.6%
As described above, Si, P, and Al are all effective elements for improving the magnetic flux density in the low magnetic field region of steel, and must be contained within the above-described ranges. However, all of them lowered the cold workability of the steel by solid solution strengthening, so the upper limit of the total amount was set to 0.6%.
[0021]
Average grain size of ferrite: less than 0.2 mm In the present invention, the effect is exhibited by controlling the steel component composition within the above-mentioned appropriate range, but by further reducing the average grain size of ferrite, The effect is further improved.
That is, by reducing the ferrite grain size of the wire, the ductility and toughness of the steel are improved, and the cold workability of the steel is further improved. For that purpose, it is important that the average grain size of ferrite is less than 0.2 mm.
[0022]
An example of a method for setting the average crystal grain size of ferrite to less than 0.2 mm is a method of reducing the amount of reduction at 900 ° C. or lower to 20% or more in terms of the cross-sectional reduction when rolling steel into a wire rod.
[0023]
【Example】
100 kg of molten steel having the composition shown in Table 1 was melted in a vacuum furnace, hot forged into a 150 mm square billet, heated, and then rolled into a steel bar having a diameter of 50 mm. In Table 1, for No. 3, the rolling end temperature exceeded 900 ° C., and the ferrite grain size was made larger. Except for No. 3, the rolling temperature was adjusted so that a cross-section reduction rate of 20% or more was obtained at 900 ° C. or lower.
The results of examining the cold workability and magnetic properties of the steel bars thus obtained are also shown in Table 1.
Regarding the cold workability of the steel bar, the diameter of the parallel part is 6 mm and the length is 30 mm so that the central axis is a depth position of 12.5 mm in the radial direction from the surface of the steel bar. A round bar tensile test piece was prepared and evaluated by the tensile strength and the drawing value obtained by conducting a tensile test.
Further, a sample for structure observation was collected from the obtained steel bar, and the average crystal grain size of ferrite was determined by observation with an optical microscope.
On the other hand, as an index of magnetic responsiveness, a ring-shaped test piece having an outer diameter: 45 mmφ, an inner diameter: 33 mmφ, and a height: 5 mm was prepared from a steel bar, annealed at 800 ° C. for 1 hour, and then applied magnetic field: The magnetic flux density (B 1 ) at 100 A / m was evaluated.
[0024]
[Table 1]
Figure 0004103513
[0025]
As shown in the table, each of the inventive examples No. 1 and 2 has a sufficiently low tensile strength and a good aperture value, as well as a high magnetic flux density in a low magnetic field region. ing. In the invention example No. 3, the ferrite grain size was out of the preferred range, so the aperture value was slightly low, but it still showed a good value, and the magnetic flux density B 1 was also high.
[0026]
On the other hand, in the comparative example of No. 4, although each component satisfies the appropriate range of the present invention, the amount of Si + P + Al exceeds the upper limit of the present invention, so the magnetic flux density is excellent. The strength of the steel has increased, the drawing value has greatly decreased, and cold workability has deteriorated.
In each of the comparative examples of No. 5 to 7, since any one of Si, Al, and P deviates from the appropriate range of the present invention, although the magnetic flux density is excellent, the strength of the steel is increased and the aperture value is reduced. It is greatly reduced and cold workability is deteriorated.
In the comparative examples of Nos. 8 and 9, since C, Mn, S, N, O and the like deviate from the appropriate range of the present invention, the magnetic flux density is reduced and the aperture value is also greatly reduced. It can be seen that both properties and cold workability are degraded.
In the comparative example of No. 10, since the Si amount is less than the lower limit of the present invention, the magnetic flux density is lowered.
[0027]
【The invention's effect】
Thus, according to the present invention, it is possible to stably obtain an ultra-low carbon steel wire material excellent in cold workability and magnetic properties, which is suitable for use in electrical components such as automobiles and home appliances.

Claims (2)

質量%で、
C:0.0034%以下、
Si:0.10〜0.50%、
Mn:0.10〜0.30%、
P:0.01〜0.10%、
S:0.006 %以下、
Al:0.35%以下、
N:0.01%以下、
O:0.015 %以下
を、Si,P,Alが次式
Si+P+Al≦0.6 %
を満足する範囲で含有し、 残部はFeおよび不可避的不純物の組成になることを特徴とする、冷間加工性および磁気特性に優れた極低炭素鋼線材。
% By mass
C: 0.0034% or less,
Si: 0.10 to 0.50%,
Mn: 0.10-0.30%
P: 0.01-0.10%,
S: 0.006% or less,
Al: 0.35% or less,
N: 0.01% or less,
O: 0.015% or less, Si, P, Al is the following formula
Si + P + Al ≦ 0.6%
An ultra-low carbon steel wire rod excellent in cold workability and magnetic properties, characterized in that the balance is a composition of Fe and inevitable impurities.
フェライトの平均結晶粒径が 0.2mm未満であることを特徴とする請求項1記載の極低炭素鋼線材。2. The ultra-low carbon steel wire according to claim 1, wherein the average crystal grain size of ferrite is less than 0.2 mm.
JP2002265693A 2002-09-11 2002-09-11 Extremely low carbon steel wire rod with excellent cold workability and magnetic properties Expired - Lifetime JP4103513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265693A JP4103513B2 (en) 2002-09-11 2002-09-11 Extremely low carbon steel wire rod with excellent cold workability and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265693A JP4103513B2 (en) 2002-09-11 2002-09-11 Extremely low carbon steel wire rod with excellent cold workability and magnetic properties

Publications (2)

Publication Number Publication Date
JP2004100005A JP2004100005A (en) 2004-04-02
JP4103513B2 true JP4103513B2 (en) 2008-06-18

Family

ID=32264763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265693A Expired - Lifetime JP4103513B2 (en) 2002-09-11 2002-09-11 Extremely low carbon steel wire rod with excellent cold workability and magnetic properties

Country Status (1)

Country Link
JP (1) JP4103513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915763B2 (en) * 2004-04-09 2012-04-11 独立行政法人物質・材料研究機構 High-strength steel wire or steel bar excellent in cold workability, high-strength molded article, and production method thereof
CN112442631B (en) * 2019-08-30 2022-03-18 宝山钢铁股份有限公司 Control method for titanium-containing ultra-low carbon steel cold-rolled steel defects

Also Published As

Publication number Publication date
JP2004100005A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
EP0176272A1 (en) Shape memory alloy and method for producing the same
JP5171197B2 (en) Duplex stainless steel wire for high strength and high corrosion resistance bolts excellent in cold forgeability, steel wire and bolt, and method for producing the same
CN110546292A (en) high-strength low-thermal expansion alloy wire
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH0321622B2 (en)
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JP2968430B2 (en) High strength low thermal expansion alloy
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JP3536139B2 (en) Method for producing high strength low thermal expansion alloy wire
JP2022138809A (en) Invar alloy and Invar alloy wire
JP6812460B2 (en) High-strength low thermal expansion alloy
JP2003064416A (en) Method for producing precipitation hardening type martensitic stainless steel having excellent cold forgeability and warm forgeability
JP2005154850A (en) High strength beta-type titanium alloy
JP4772703B2 (en) Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
JP4222111B2 (en) Steel bar or wire rod excellent in machinability and low magnetic field magnetic properties and method for producing the same
JP3627393B2 (en) Wire rod steel with excellent cold-cutability
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP3387235B2 (en) Precipitation hardening stainless steel
JP4026355B2 (en) Steel material for strong cold work and method for producing the same
JP2003306720A (en) Method of producing ferritic stainless bar steel or wire rod having excellent cold forgeability, and bar steel or wire rod
JP3738534B2 (en) Age-hardening steel bar with excellent cold forgeability
JP2004018879A (en) Steel for cold forging superior in swarf treatment property
JP4222740B2 (en) Electromagnetic stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4103513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term