JP2563438B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP2563438B2
JP2563438B2 JP63038096A JP3809688A JP2563438B2 JP 2563438 B2 JP2563438 B2 JP 2563438B2 JP 63038096 A JP63038096 A JP 63038096A JP 3809688 A JP3809688 A JP 3809688A JP 2563438 B2 JP2563438 B2 JP 2563438B2
Authority
JP
Japan
Prior art keywords
magnet
rare earth
anisotropic
earth magnet
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63038096A
Other languages
Japanese (ja)
Other versions
JPH01212418A (en
Inventor
昭彦 井端
清司 小嶋
滋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63038096A priority Critical patent/JP2563438B2/en
Publication of JPH01212418A publication Critical patent/JPH01212418A/en
Application granted granted Critical
Publication of JP2563438B2 publication Critical patent/JP2563438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希土類磁石の製造法に関し、特に、高性能
な多極着磁用の鉄(F)−希土類元素(R)−ホウ素
(B)系の異方性永久磁石の製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth magnet, and more particularly, to an iron (F) -rare earth element (R) -boron (B) system for high-performance multipole magnetization. The present invention relates to a method of manufacturing an anisotropic permanent magnet.

従来の技術 従来R,Fe,B系からなる非晶質あるいは結晶質の微細な
粒子状からなる合金を用いて永久磁石を得る方法として
は、例えば特開昭60−100402号公報に示されているよう
に塑性加工として高温圧縮,高温ダイ−アップセット,
押出,鍛造,あるいはローラーかけ等が開示されてい
る。さらに、このような高温処理(塑性加工)した磁石
の最大の磁気特性は、処理の方向に平行(流れの方向に
垂直)に配列することも示されている。
2. Description of the Related Art Conventionally, as a method of obtaining a permanent magnet using an amorphous or crystalline fine particle alloy composed of R, Fe, B system, it is disclosed in, for example, JP-A-60-100402. As for plastic working, high temperature compression, high temperature die-up set,
Extrusion, forging, rolling, etc. are disclosed. Further, it has been shown that the maximum magnetic characteristics of such high temperature treated (plastic working) magnets are arranged parallel to the treatment direction (perpendicular to the flow direction).

発明が解決しようとする課題 しかし、前記公知例では、高性能なモータ用の異方性
磁石が得られていない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above-mentioned known example, a high-performance anisotropic magnet for a motor has not been obtained.

本発明は、前述したようなR,Fe,B系からなる非晶質あ
るいは結晶質の微細な粒子状からなる合金を用いて、永
久磁石を得る方法において、前記従来例でみられるよう
に高性能なモータ用の異方性磁石が得られていない点を
解決するものである。
The present invention is a method for obtaining a permanent magnet by using an amorphous or crystalline fine particle alloy made of the R, Fe, B system as described above, and has a high temperature This is to solve the problem that an anisotropic magnet for a high-performance motor has not been obtained.

課題を解決するための手段 以上の課題を解決するために本発明は、FeとRとBを
主成分とする合金を用いて得られた磁石に、軸方向には
引張ひずみを与え、さらに、外周部あるいは内周部を周
方向に沿って、軸方向に垂直な平面に平行な方向(径方
向)に圧縮ひずみを強く与えるA部とこのA部よりも弱
い圧縮ひずみを与えるB部とを繰り返し形成するような
押出加工を行うものである。または同合金からなる任意
の平面に平行な方向に磁化優位方向を有する異方性磁石
に、外周部あるいは内周部を周方向に沿って、平面に平
行な方向(径方向)に圧縮ひずみを強く与えるA部とこ
のA部より弱く圧縮ひずみを与えるB部とを繰り返し形
成するような塑性加工を施すことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a magnet obtained by using an alloy containing Fe, R, and B as main components with a tensile strain in the axial direction. The outer peripheral portion or the inner peripheral portion along the circumferential direction, the A portion which gives a compressive strain strongly in the direction (radial direction) parallel to the plane perpendicular to the axial direction and the B portion which gives a weaker compressive strain than this A portion. The extrusion process is performed so as to be repeatedly formed. Or an anisotropic magnet made of the same alloy and having a magnetization dominant direction in a direction parallel to an arbitrary plane is subjected to compressive strain in the direction parallel to the plane (radial direction) along the outer or inner circumference along the circumferential direction. It is characterized in that the plastic working is performed such that the A portion which is strongly given and the B portion which is weaker than the A portion and which gives a compressive strain are repeatedly formed.

作用 前述した方法によって、つまり外周部あるいは内周部
を周方向に沿って、径方向に圧縮ひずみを強く与えるA
部とこのA部よりも弱い圧縮ひずみを与えるB部とを繰
り返し形成することによって、多極着磁した場合に優れ
た磁気特性を示す異方性磁石を得ることができる。
Action By the above-mentioned method, that is, the outer peripheral portion or the inner peripheral portion is given a strong compressive strain in the radial direction along the circumferential direction.
By repeatedly forming the portion and the portion B which gives a compressive strain weaker than that of the portion A, it is possible to obtain an anisotropic magnet exhibiting excellent magnetic characteristics when multipolarized.

実施例 本発明の一つは、Fe,R(例えばNdあるいはPr)および
Bを主成分とする合金を用いて得られた磁石に軸方向に
は引張ひずみを与え、さらに、外周部あるいは円周部を
周方向に沿って、軸方向に垂直な平面に平行な方向(径
方向)に圧縮ひずみを強く与えるA部と、このA部より
も弱い圧縮ひずみを与えるB部とを繰り返し形成するよ
うな押出加工を施す。また本発明の第2の実施態様とし
ては同合金からなる任意の平面に平行な方向に磁化優位
方向を有する異方性磁石に、外周部あるいは内周部を周
方向に沿って、平面に平行な方向(径方向)に圧縮ひず
みを強く与えるA部と、このA部よりも弱い圧縮ひずみ
を与えるB部とを繰り返し形成するような塑性加工を施
すことによって、多極着磁時の磁気特性を向上させるも
のである。
EXAMPLE One of the present invention is to apply a tensile strain in the axial direction to a magnet obtained by using an alloy containing Fe, R (for example, Nd or Pr) and B as the main components, A part is repeatedly formed along the circumferential direction in such a manner that part A that gives a strong compressive strain in a direction (radial direction) parallel to the plane perpendicular to the axial direction and part B that gives a weaker compressive strain than this part A are repeatedly formed. Extrude. As a second embodiment of the present invention, an anisotropic magnet having a magnetization dominant direction in a direction parallel to an arbitrary plane made of the same alloy is used, and the outer peripheral portion or the inner peripheral portion is parallel to the plane along the circumferential direction. Magnetic properties at the time of multi-pole magnetization by performing plastic working such that an A part that gives a strong compressive strain in a different direction (radial direction) and a B part that gives a weaker compressive strain than this A part are repeatedly formed. Is to improve.

第1の方法では、軸方向に引張ひずみを与えることに
よって、第2の加工初期とほぼ同じ状態の異方性構造に
する。
In the first method, a tensile strain is applied in the axial direction to obtain an anisotropic structure in the same state as in the initial stage of the second processing.

A部に施す塑性加工では、加工によって異方性構造を
変えることができるため、複合構造の異方性磁石を得る
ことが可能となる。例えば、加工前の磁石が任意の平面
に垂直な軸を中心とする同心円の周方向に磁化優位方向
を有する磁石、つまり周異方性磁石であれば、本発明の
塑性加工を行なうことによって、加工した部分は径方向
の磁気特性が向上し、径方向が磁化容易方向となり、B
部は周異方性構造を保存する。さらに、両者の境界部で
は、異方性方向が徐々に変化する中間部となるため、大
きく分けて3つの異なる異方性構造を有する複合構造の
異方性磁石が得られる。より、正確には多極着磁した場
合の磁石内部に形成される磁路に沿った方向に異方性化
した構造となる。
In the plastic working performed on the portion A, the anisotropic structure can be changed by the working, so that it is possible to obtain an anisotropic magnet having a composite structure. For example, if the magnet before processing is a magnet having a magnetization dominant direction in the circumferential direction of a concentric circle centered on an axis perpendicular to an arbitrary plane, that is, a circumferential anisotropic magnet, it is processed by performing the plastic working of the present invention. In the part, the magnetic properties in the radial direction are improved, and the radial direction becomes the direction of easy magnetization.
The part preserves the circumferentially anisotropic structure. Further, at the boundary between the two, it is an intermediate part in which the anisotropy direction gradually changes, so that an anisotropic magnet having a composite structure having three different anisotropic structures can be obtained. More precisely, the structure is anisotropy in the direction along the magnetic path formed inside the magnet when magnetized with multiple poles.

加工前の異方性磁石が任意の平面内の全ての方向に平
行に磁化容易方向を有するものであれば、多極着磁した
時に、磁極となる部分をA部とすれば着磁時の表面磁束
密度は改善される。さらに、加工前の磁石が任意の平面
に平行な放射状の方向に磁化優位方向を有する径異方性
磁石であっても同様である。
If the unprocessed anisotropic magnet has a direction of easy magnetization parallel to all the directions in an arbitrary plane, when a multi-pole is magnetized, if a portion serving as a magnetic pole is set to A part, The surface magnetic flux density is improved. Further, the same applies to the case where the unprocessed magnet is a radial anisotropic magnet having a magnetization dominant direction in a radial direction parallel to an arbitrary plane.

さらに、前記の磁石の実用的な形状は一般には円柱体
あるいは円筒体である。また、実用的な面から円柱状の
磁石の外周部,内周部あるいは中心部に他の異種金属等
が存在する状態で共に塑性加工を行なっても良い。こう
することにより最終形状の磁石に加工するにあたり、シ
ャフトを取付けやすくしたり、強度向上を計ったりある
いは不要な磁石量を軽減したりすることが可能である。
Further, the practical shape of the magnet is generally a cylinder or cylinder. Further, from a practical point of view, the plastic working may be performed in the state where other dissimilar metals or the like exist in the outer peripheral portion, the inner peripheral portion or the central portion of the cylindrical magnet. By doing so, it is possible to easily attach the shaft, to improve the strength, or to reduce the amount of unnecessary magnet when processing the magnet into the final shape.

本発明で示しているFe,R(例えばNdあるいはPr)およ
びBを主成分とする合金とは、前記公知技術に示されて
いるような、公知の永久磁石用組成のR−Fe−B系の合
金磁石組成であればよい。Fe以外にはFeとCo,Ni,Crある
いはMn(の内1つまたは2つ以上)であり、さらに基本
3元素以外に磁気特性の向上あるいは各種の性質改善の
ための各種の添加元素あるいは若干の不純物からなる合
金でも良い。
The alloy containing Fe, R (for example, Nd or Pr) and B as the main components shown in the present invention means the R-Fe-B system of the known composition for permanent magnets as shown in the above-mentioned prior art. The above-mentioned alloy magnet composition may be used. Other than Fe, it is Fe and Co, Ni, Cr, or Mn (one or more of which are two or more), and in addition to the basic three elements, various additive elements for improving magnetic properties or various properties or slightly It may be an alloy composed of the impurities.

塑性加工条件としては、500℃〜1100℃の温度範囲に
おいて加工は行なえたが、900℃以上では磁石の保磁力
はかなり低下した。望ましくは600℃〜800℃の温度範囲
である。
As for the plastic working condition, the working could be done in the temperature range of 500 ℃ ~ 1100 ℃, but the coercive force of the magnet decreased considerably above 900 ℃. Desirably, the temperature range is 600 ° C to 800 ° C.

次に本発明の更に具体的な実施例について説明する。 Next, more specific examples of the present invention will be described.

(実施例1) 分析組成で68.4mass%(以下%とする)のFe、29.2%
のNd、0.77%のBおよび1.60%のPrからなる外径30mm、
内径10mm、長さ20mmの円筒状の合金磁石1を第1図に示
したような金型を用いて円筒磁石の外周部にA部とB部
を形成した。
(Example 1) 68.4 mass% (hereinafter referred to as%) Fe in the analytical composition, 29.2%
Of Nd, 0.77% B and 1.60% Pr with an outer diameter of 30 mm,
A cylindrical alloy magnet 1 having an inner diameter of 10 mm and a length of 20 mm was formed with an A portion and a B portion on the outer peripheral portion of the cylindrical magnet by using a mold as shown in FIG.

用いた円筒磁石1は試料Aが周異方性磁石であり、試
料Bが径方向と周方向を含む全ての方向に磁化優位方向
を有する磁石(面異方性磁石)であり、試料Cが径異方
性磁石であった。
In the cylindrical magnet 1 used, the sample A is a circumferential anisotropic magnet, the sample B is a magnet having a magnetization dominant direction in all directions including the radial direction and the circumferential direction, and the sample C is different in diameter. It was a direction magnet.

第1図において、ダイス2の下部(断面は第1図bに
示す)の凸部2aの内径は26mmであり、ポンチ4の直径は
18mmであった。加工は、700℃の温度で行なった。なお
3もポンチである。
In FIG. 1, the inner diameter of the convex portion 2a at the bottom of the die 2 (the cross section is shown in FIG. 1b) is 26 mm, and the diameter of the punch 4 is
It was 18 mm. The processing was performed at a temperature of 700 ° C. Note that 3 is also a punch.

本発明によって得られた磁石と公知の単純な径異方性
磁石をそれぞれ外径26mmにして、外周面に10極の外周着
磁を行なった。着磁は、2000μFのオイルコンデンサー
を用い、1500Vでパルス着磁した。外周表面の表面磁束
密度をホール素子で測定した。
The magnet obtained by the present invention and a known simple diameter anisotropic magnet were each made to have an outer diameter of 26 mm, and the outer peripheral surface was magnetized with 10 poles. For the magnetization, a 2000 μF oil condenser was used and pulsed at 1500 V. The surface magnetic flux density on the outer peripheral surface was measured with a Hall element.

以上の両者の値を比較すると、本発明の方法で得た磁
石の表面磁束密度の値は、加工前の磁石のそれの試料A
では、約1.4倍で、試料Bでは、約1.3倍で、試料Cで
は、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is as follows:
Was about 1.4 times, Sample B was about 1.3 times, and Sample C was about 1.2 times.

さらに、磁気トルク測定等の詳細な実験の結果、本発
明によって得られた磁石は磁石内部に形成される磁路に
沿った方向に異方性化した磁石であった。この磁石は、
鉄−希土類元素−ホウ素系磁石において、これまでに類
のない高性能な異方性永久磁石である。
Further, as a result of detailed experiments such as measurement of magnetic torque, the magnet obtained by the present invention was a magnet anisotropy in the direction along the magnetic path formed inside the magnet. This magnet
It is an iron-rare earth element-boron-based magnet with high-performance anisotropic permanent magnet that has never been seen before.

(実施例2) 実施例1と同様に、試料Aが周異方性磁石であり、試
料Bが面異方性磁石であり、試料Cが径異方性磁石であ
る3つのタイプの外径が30mm、内径が12mm、長さが10mm
の円筒状の磁石に第2図に示すような金型を用いて内周
部にA部とB部を形成するような塑性加工を施した。
(Example 2) Similar to Example 1, the outer diameters of the three types in which the sample A is a circumferential anisotropic magnet, the sample B is a plane anisotropic magnet, and the sample C is a diameter anisotropic magnet have an outer diameter of 30 mm. , Inner diameter 12mm, length 10mm
Using a die as shown in FIG. 2, the cylindrical magnet of No. 1 was subjected to plastic working so as to form the A portion and the B portion on the inner peripheral portion.

第2図において、マンドレル5の下部の凸部5aの径は
16mmであり、外型6の内径は30mmであった。加工は、70
0℃の温度で行なった。なお4aはポンチである。
In FIG. 2, the diameter of the lower convex portion 5a of the mandrel 5 is
It was 16 mm, and the inner diameter of the outer mold 6 was 30 mm. Processing is 70
It was carried out at a temperature of 0 ° C. Note that 4a is a punch.

(実施例1)と同様にして、径異方性磁石と本発明に
よって得られた加工後の磁石をそれぞれ内径16mmにし
て、内周面に8極の内周着磁を行ない、内周表面の表面
磁束密度を測定した。
In the same manner as in (Example 1), the diameter anisotropic magnet and the processed magnet obtained according to the present invention each have an inner diameter of 16 mm, and the inner peripheral surface is magnetized with 8 poles. The surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得た磁
石の表面磁束密度の値は、加工前の磁石のそれの試料A
では、約1.4倍で、試料Bでは、約1.3倍で、試料Cで
は、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is as follows:
Was about 1.4 times, Sample B was about 1.3 times, and Sample C was about 1.2 times.

さらに、磁気トルク測定等の詳細な実験の結果、本発
明によって得られた磁石は内周面に多極着磁した場合
に、磁石内部に形成される磁路に沿った方向に異方性化
した磁石であった。この磁石は、鉄−希土類元素−ホウ
素系磁石において、これまでに類のない高性能な異方性
永久磁石である。
Further, as a result of detailed experiments such as measurement of magnetic torque, the magnet obtained according to the present invention has anisotropy in the direction along the magnetic path formed inside the magnet when the inner peripheral surface is multi-pole magnetized. It was a magnet. This magnet is an iron-rare earth element-boron-based magnet that is a high-performance anisotropic permanent magnet that is unprecedented.

(実施例3) 実施例1で示した同じ分析組成からなる外径34mm、内
径10mm、長さ20mmの円筒状の合金磁石を第1図に示した
ような金型を用いて押出加工した。
Example 3 A cylindrical alloy magnet having the same analytical composition as in Example 1 and having an outer diameter of 34 mm, an inner diameter of 10 mm and a length of 20 mm was extruded using a mold as shown in FIG.

用いた円筒磁石は等方性であった。 The cylindrical magnet used was isotropic.

第1図において、ダイス2の下部の凸部の内径は26mm
であり、ポンチ4の直径は10mmであった。加工は、700
℃の温度で行なった。
In Fig. 1, the inner diameter of the lower convex part of the die 2 is 26 mm.
And the diameter of the punch 4 was 10 mm. Processing is 700
Performed at a temperature of ° C.

本発明によって得られた磁石を(実施例1)と同様
に、外径26mmにして、外周面に10極の外周着磁を行な
い、表面磁束密度を測定した。
Similarly to (Example 1), the outer diameter of the magnet obtained by the present invention was set to 26 mm, the outer peripheral surface was magnetized with 10 poles, and the surface magnetic flux density was measured.

本実施例の方法で得た磁石は、(実施例1)での試料
Cと同様の表面磁束密度値を示した。
The magnet obtained by the method of this example showed a surface magnetic flux density value similar to that of the sample C in (Example 1).

さらに、磁気トルク測定等の詳細な実験の結果、(実
施例1)での試料Cと同様の異方性化した磁石であっ
た。
Further, as a result of detailed experiments such as measurement of magnetic torque, the magnet was an anisotropic magnet similar to the sample C in (Example 1).

発明の効果 本発明は、実施例によって述べたように、Fe,R(例え
ばNdあるいはPr)およびBを主成分とする合金磁石を
(あるいは任意の平面に平行な方向に磁化優位方向を有
する異方性磁石を)、外周部あるいは内周部を周方向に
沿って、径方向に圧縮ひずみを強く与えるA部と、この
A部より弱い圧縮ひずみを与えるB部とを繰り返し形成
するような加工を施すことにより、非常に優れた高性能
な多極着磁用の異方性磁石を得るものである。
EFFECTS OF THE INVENTION As described in the embodiments, the present invention uses an alloy magnet mainly composed of Fe, R (for example, Nd or Pr) and B (or a magnet having a magnetization dominant direction in a direction parallel to an arbitrary plane). A process of repeatedly forming an A magnet), an A portion which strongly applies a compressive strain in the radial direction along an outer peripheral portion or an inner peripheral portion along the circumferential direction, and a B portion which gives a compressive strain weaker than the A portion. By carrying out the above, an extremely excellent and highly efficient anisotropic magnet for multipolar magnetization is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図、および第2図は本発明の塑性加工の一例を示す
金型の一部の断面図である。 1……磁石、2……ダイス、3,4,4a……ポンチ、5……
マンドレル、6……外型。
FIG. 1 and FIG. 2 are sectional views of a part of a mold showing an example of plastic working of the present invention. 1 ... Magnet, 2 ... Die, 3,4,4a ... Punch, 5 ...
Mandrel, 6 ... External type.

フロントページの続き (56)参考文献 特開 昭62−10260(JP,A) 特開 昭62−247055(JP,A) 特開 平1−151215(JP,A)Continuation of front page (56) References JP 62-10260 (JP, A) JP 62-247055 (JP, A) JP 1-151215 (JP, A)

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄と希土類元素とホウ素を主成分とする合
金を用いて得られた磁石に、軸方向には引張ひずみを与
え、さらに、外周部あるいは円周部を周方向に沿って、
軸方向に垂直な平面に平行な方向(径方向)に圧縮ひず
みを強く与えるA部とこのA部よりも弱い圧縮ひずみを
与えるB部とを繰り返し形成するような押出加工を行う
希土類磁石の製造法。
1. A magnet obtained by using an alloy containing iron, a rare earth element, and boron as a main component is subjected to a tensile strain in the axial direction, and further, an outer peripheral portion or a circumferential portion along the circumferential direction,
Manufacture of a rare earth magnet that is subjected to extrusion processing such that an A portion that strongly gives a compressive strain in a direction parallel to a plane perpendicular to the axial direction (a radial direction) and a B portion that gives a weaker compressive strain than this A portion are repeatedly formed. Law.
【請求項2】異方性磁石の形状が円柱体である特許請求
の範囲第1項に記載の希土類磁石の製造法。
2. The method for producing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a cylindrical shape.
【請求項3】異方性磁石の形状が円筒体である特許請求
の範囲第1項に記載の希土類磁石の製造法。
3. The method for producing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a cylindrical shape.
【請求項4】異方性磁石が任意の平面内の全ての方向に
平行に磁化容易方向を有する特許請求の範囲第1項に記
載の希土類磁石の製造法。
4. The method for producing a rare earth magnet according to claim 1, wherein the anisotropic magnet has an easy magnetization direction parallel to all directions in an arbitrary plane.
【請求項5】異方性磁石が任意の平面に平行な放射状の
方向に磁化優位方向を有する特許請求の範囲第1項に記
載の希土類磁石の製造法。
5. The method of manufacturing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a magnetization dominant direction in a radial direction parallel to an arbitrary plane.
【請求項6】異方性磁石が任意の平面に垂直な軸を中心
とする同心円の周方向に磁化優位方向を有する特許請求
の範囲第1項に記載の希土類磁石の製造法。
6. The method for manufacturing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a magnetization dominant direction in a circumferential direction of a concentric circle centered on an axis perpendicular to an arbitrary plane.
【請求項7】鉄と希土類元素とホウ素を主成分とする合
金を用いて得られた任意の平面に平行な方向に磁化優位
方向を有する異方性磁石に、外周部あるいは内周部を周
方向に沿って、軸方向に垂直な平面に平行な方向(径方
向)に圧縮ひずみを強く与えるA部とこのA部よりも弱
い圧縮ひずみを与えるB部とを繰り返し形成するような
押出加工を行う希土類磁石の製造法。
7. An anisotropic magnet having a magnetization dominant direction in a direction parallel to an arbitrary plane, which is obtained by using an alloy containing iron, a rare earth element, and boron as a main component, is surrounded by an outer peripheral portion or an inner peripheral portion. Along the direction, extrusion processing is performed to repeatedly form an A part that strongly gives a compressive strain in a direction (radial direction) parallel to a plane perpendicular to the axial direction and a B part that gives a weaker compressive strain than this A part. Rare earth magnet manufacturing method.
【請求項8】異方性磁石の形状が円柱体である特許請求
の範囲第7項に記載の希土類磁石の製造法。
8. The method for producing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a cylindrical shape.
【請求項9】異方性磁石の形状が円筒体である特許請求
の範囲第7項に記載の希土類磁石の製造法。
9. The method for producing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a cylindrical shape.
【請求項10】異方性磁石が任意の平面内の全ての方向
に平行に磁化容易方向を有する特許請求の範囲第7項に
記載の希土類磁石の製造法。
10. The method for producing a rare earth magnet according to claim 7, wherein the anisotropic magnet has an easy magnetization direction parallel to all directions in an arbitrary plane.
【請求項11】異方性磁石が任意の平面に平行な放射状
の方向に磁化優位方向を有する特許請求の範囲第7項に
記載の希土類磁石の製造法。
11. The method for producing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a magnetization dominant direction in a radial direction parallel to an arbitrary plane.
【請求項12】異方性磁石が任意の平面に垂直な軸を中
心とする同心円の周方向に磁化優位方向を有する特許請
求の範囲第7項に記載の希土類磁石の製造法。
12. The method for producing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a magnetization dominant direction in a circumferential direction of a concentric circle centered on an axis perpendicular to an arbitrary plane.
JP63038096A 1988-02-19 1988-02-19 Rare earth magnet manufacturing method Expired - Lifetime JP2563438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038096A JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038096A JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01212418A JPH01212418A (en) 1989-08-25
JP2563438B2 true JP2563438B2 (en) 1996-12-11

Family

ID=12515944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038096A Expired - Lifetime JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2563438B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639675B2 (en) * 1985-07-05 1994-05-25 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
JPH0663071B2 (en) * 1986-04-17 1994-08-17 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
JP2563407B2 (en) * 1987-12-08 1996-12-11 松下電器産業株式会社 Rare earth magnet manufacturing method

Also Published As

Publication number Publication date
JPH01212418A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
US4648915A (en) Permanent Mn-Al-C alloy magnets
JP2563438B2 (en) Rare earth magnet manufacturing method
JP2563407B2 (en) Rare earth magnet manufacturing method
JP2558760B2 (en) Anisotropic permanent magnet
JP2563404B2 (en) Anisotropic permanent magnet
JPH0663071B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0821496B2 (en) Anisotropic permanent magnet
JPH0479122B2 (en)
JPH0821495B2 (en) Anisotropic permanent magnet
JPH0434804B2 (en)
JPH01115104A (en) Manufacture of rare earth magnet
JPH0311521B2 (en)
JPH0311527B2 (en)
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0663073B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247056A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0311523B2 (en)
JPH0663075B2 (en) Method for producing manganese-aluminum-carbon alloy magnet