JPS62247056A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62247056A
JPS62247056A JP8855686A JP8855686A JPS62247056A JP S62247056 A JPS62247056 A JP S62247056A JP 8855686 A JP8855686 A JP 8855686A JP 8855686 A JP8855686 A JP 8855686A JP S62247056 A JPS62247056 A JP S62247056A
Authority
JP
Japan
Prior art keywords
billet
magnet
axial direction
compressive strain
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8855686A
Other languages
Japanese (ja)
Other versions
JPH0663072B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8855686A priority Critical patent/JPH0663072B2/en
Publication of JPS62247056A publication Critical patent/JPS62247056A/en
Publication of JPH0663072B2 publication Critical patent/JPH0663072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled alloy magnet which shows high magnetic properties when subjected to inside peripheral multipolar magnetization, by subjecting a hollow billet composed of Mn-Al-C magnetic alloy to compression working in the axial direction so that compressive strain is lower in the outside peripheral part than in the inside peripheral part. CONSTITUTION:The above-mentioned hollow billet 1 is subjected to compression working in the axial direction with holding at least the outside peripheral and a part of inside periphery free by the use of punches 2 and 3 whose surfaces to be in contact with the billet 1 are inclined planes, respectively. The above working is carried out with regulating the temp. to 530-830 deg.C. The height of the billet 1 after compression working is regulated so that it is greater at the outside peripheral surface than at the inside peripheral surface, by which compressive strain of the billet 1 is lower in the outside peripheral part than in the inside peripheral part. In this way, the Mn-Al-C alloy magnet having a direction of easy magnetization in the diameter direction in the inside of magnet and also having a direction of easy magnetization in the peripheral direction in the outside peripheral part can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに−結晶マン
ガン−アルミニウム−炭素(Mn −Ag−C)系合金
磁石による多極着磁用Mn−AILc系合金磁石の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing permanent magnets, and in particular to a method for producing permanent magnets, particularly Mn- The present invention relates to a method for manufacturing an AILc alloy magnet.

従来の技術 Mn −41−C系磁石用合金は、68〜73質量係(
以下単にチで表わす)のMnと(1/1oMn−e、e
) 〜(1/3Mn−22,2)t4 のCと残部のム
eからなり、不純物以外に添加元素を含まない3元系及
び少量の添加元素を含む4元系以上の多元系磁石用合金
が知られており、これらを総称するものである。同様に
、Mn−ムl−C系合金磁石は、主として強磁性相であ
る面心正方晶(τ相、L10型規則格子)の組織で構成
され、Cを必須構成元素として含むものであり、不純物
以外に添加元素を含まない3元系及び少量の添加元素を
含む4元系以上の多元系合金磁石が知られており、これ
らを総称するものである。
Conventional technology Mn-41-C alloy for magnets has a mass coefficient of 68 to 73 (
Mn (hereinafter simply expressed as CH) and (1/1oMn-e, e
) ~ (1/3Mn-22,2)t4 A multi-component alloy for magnets consisting of C in t4 and the balance e, including ternary systems containing no additional elements other than impurities, and quaternary or higher alloys containing small amounts of additional elements. are known, and these are collectively called. Similarly, the Mn-Ml-C alloy magnet is mainly composed of a face-centered tetragonal (τ phase, L10 type regular lattice) structure, which is a ferromagnetic phase, and contains C as an essential constituent element. Multi-component alloy magnets are known, including ternary alloy magnets that do not contain any additive elements other than impurities, and quaternary or higher alloy magnets that contain a small amount of additive elements.

その製造法としては、鋳造・熱処理によるもの以外に押
出加工等の塑性加工工程を含むものが知られている。特
に後者は、高い磁気特性1機械的強度、耐候性1機械加
工性等の優れた性質を有する異方性磁石の製造法として
知られている。
As for the manufacturing method, there are known methods including plastic working steps such as extrusion processing in addition to those using casting and heat treatment. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

また、Mn−Ad−C系磁石用合金を用いた多極着磁用
合金磁石の製造法としては、等方性磁石、圧縮加工によ
るもの(特許第1011473号)、及びMn−人6−
c系磁石用合金からなる中空体状のビレットに特定の圧
縮加工を施すもの(特開昭58−192303号公報)
が知られている。
In addition, methods for producing multipolar magnetized alloy magnets using Mn-Ad-C based magnet alloys include isotropic magnets, compression processing (Patent No. 1011473), and Mn-Man 6-
A hollow billet made of a C-based magnet alloy subjected to a specific compression process (Japanese Patent Application Laid-Open No. 192303/1983)
It has been known.

発明が解決しようとする問題点 前述したMn−人l−G系磁石用合金からなる中空体状
のビレットに特定の圧縮加工を施すもの(特に、特開昭
58−192303号公報)では、つまり、Mn−ムl
−1系磁石用合金からなる中空体状のビレットに、少な
くともビレットの外周および内周の一部分を自由にした
状態で、ビレットの軸方向に圧縮加工を施す方法では、
得られた磁石は径方向に磁化容易方向を有する。この異
方性構造は外周あるいは内周面に多極着磁して用いるの
に必ずしも望ましい異方性構造ではない。
Problems to be Solved by the Invention In the above-mentioned method in which a hollow billet made of an Mn-G magnet alloy is subjected to a specific compression process (in particular, Japanese Patent Laid-Open No. 192303/1983), , Mn-mul
- A method in which a hollow billet made of an alloy for magnets of the -1 series is compressed in the axial direction of the billet with at least a portion of the outer circumference and inner circumference of the billet free.
The resulting magnet has an easy magnetization direction in the radial direction. This anisotropic structure is not necessarily a desirable anisotropic structure for use with multipolar magnetization on the outer or inner circumferential surface.

問題点を解決するための手段 以上述べてきた問題点を解決するために本発明は、Mn
−ムl−C系磁石用合金からなる中空体状のビレットに
、少なくともビレットの外周および内周の一部分を自由
にした状態で、ビレ・ストの外周部の圧縮ひずみが内周
部の圧縮ひずみより小さくなるようにビレットの軸方向
に圧縮加工を施すものである。
Means for Solving the Problems In order to solve the problems described above, the present invention provides Mn
- In a hollow billet made of an alloy for Ml-C magnets, with at least a portion of the outer and inner circumferences of the billet free, the compressive strain on the outer circumference of the billet is equal to the compressive strain on the inner circumference. The billet is compressed in the axial direction to make it smaller.

作用 前述した方法によって、つまシ前述した特定の圧縮加工
において、ビレットの外周部の圧縮ひずみが内周部の圧
縮ひずみより小さくなるようにビレットの軸方向に圧縮
加工を施すことによって、これまでの公知の特定の圧縮
加工を施す方法と異なり、磁石の内周部では径方向に磁
化容易方向を有し、外周部では周方向に磁化容易方向を
有する。
Effect: In the above-mentioned specific compression process, the compression process is performed in the axial direction of the billet so that the compression strain on the outer circumference of the billet is smaller than the compression strain on the inner circumference. Unlike known specific compression processing methods, the inner circumferential portion of the magnet has an easy magnetization direction in the radial direction, and the outer circumferential portion has an easy magnetization direction in the circumferential direction.

実施例 本発明は、Mn−ムl−C系磁石用合金からなる中空体
状のビレットに、830〜830℃の温度で、少なくと
もビレットの外周および内周の一部分を自由にした状態
で、ビレットの外周部の圧縮ひずみが内周部の圧縮ひず
みより小さくなるようV +/ +71. にの1市嘴
而j笛畠欠力TITル→廂す東部でも入へ本発明の製造
法の大部分は、前記の公知技術(特開昭58−1923
03号公報)と同様である。
EXAMPLE The present invention is a hollow billet made of an Mn-Ml-C alloy for magnets. V +/ +71. so that the compressive strain at the outer circumference is smaller than the compressive strain at the inner circumference. Most of the manufacturing method of the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 58-1923).
This is the same as Publication No. 03).

前記公知技術の圧縮加工は、少なくともビレットの外周
および内周の一部分を自由にした状態で、ビレットの軸
方向に圧縮加工を施すものである。
In the compression processing of the known technique, compression processing is performed in the axial direction of the billet with at least a portion of the outer periphery and inner periphery of the billet free.

一方、本発明の圧縮加工は前記の圧縮加工において、さ
らにビレットの外周部の圧縮ひずみが内周部の圧縮ひず
みより小さくなるようにビレットの軸方向に圧縮加工を
施すものである。
On the other hand, in the compression processing of the present invention, in addition to the compression processing described above, compression processing is further performed in the axial direction of the billet so that the compression strain at the outer circumference of the billet is smaller than the compression strain at the inner circumference.

この圧縮加工の具体的な例を以下に示す。まず第1の方
法は、円筒ビレットの軸方向に第1図に示したポンチ2
.3よシなる金型を用いて自由圧縮加工を施す方法であ
る。第1図はaに加工前の状態の断面を示す。1はビレ
ット、2,3はポンチである。第1図乙に示すように、
前記公知技術と異なる点は、ポンチ2およびポンチ3の
ビレットと接触する面(ポンチ端面)が平面ではなく傾
斜面であることである。このポンチ2およびポンチ3を
用いて、ビレット1の軸方向に加圧することによって、
ビレット1は軸方向に圧縮加工されて第1図すに示す状
態になる。第1図すに示したように圧縮加工後のビレッ
ト1の外周部の高さは内周部の高さより高い。つまり、
ビレット1の外周部の圧縮ひずみが内周部の圧縮ひずみ
より小さくなるようにビレット1の軸方向に圧縮加工を
施したことになる。圧縮ひずみとは、ビレット1の軸方
向のひずみをいう。
A specific example of this compression process is shown below. The first method is to punch the punch 2 shown in Figure 1 in the axial direction of the cylindrical billet.
.. This is a method of performing free compression processing using three different molds. In FIG. 1, a shows a cross section before processing. 1 is billet, 2 and 3 are punch. As shown in Figure 1 B,
The difference from the prior art is that the surfaces of punches 2 and 3 that contact the billet (punch end surfaces) are not flat surfaces but sloped surfaces. By applying pressure to the billet 1 in the axial direction using the punches 2 and 3,
The billet 1 is axially compressed into the state shown in FIG. As shown in FIG. 1, the height of the outer periphery of the billet 1 after compression processing is higher than the height of the inner periphery. In other words,
This means that the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion. Compressive strain refers to strain in the axial direction of billet 1.

第1の方法の別の圧縮加工の例をビレット1の断面形状
をリング状として説明すると、第2図aに第1図と同様
に加工前の状態の断面を示す。第2図aに示すように第
1図と異なる点は、ポンチ2およびポンチ3のポンチ端
面は平面であり、圧縮加工前のビレット1の外周部の高
さが内周部の高さより小さいことである。第2図すに加
工後の状態を示す。加工後のビレット1はほぼ円筒体状
となり、ビレット1の外周部の高さと内周部の高さはほ
ぼ一致する。この場合も同様に、ビレット1の外周部の
圧縮ひずみが内周部の圧縮ひずみより小さくなるように
ビレット1の軸方向に圧縮加工を施したことになる。
Another compression processing example of the first method will be described assuming that the billet 1 has a ring-shaped cross-section. FIG. 2a shows a cross-section of the billet before processing, similar to FIG. 1. As shown in Fig. 2a, the difference from Fig. 1 is that the punch end faces of punches 2 and 3 are flat, and the height of the outer circumference of billet 1 before compression processing is smaller than the height of the inner circumference. It is. Figure 2 shows the state after processing. After processing, the billet 1 has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet 1 and the height of the inner circumferential portion of the billet 1 substantially match. In this case as well, the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion.

第2の方法は、第1の方法で得た、圧縮加工を施したビ
レット1の一部分に軸方向に圧縮加工を施す方法であり
、この方法は前記公知技術と同じである。
The second method is a method in which a portion of the compressed billet 1 obtained in the first method is subjected to compression processing in the axial direction, and this method is the same as the above-mentioned known technique.

第3の方法は、ビレット1の外周部の圧縮ひずみが内周
部の圧縮ひずみより小さくなるようにビレット1の軸方
向に自由圧縮加工(圧縮加工1)を施した後、ビレット
1の外周を拘束した状態で、しかも内周を自由にした状
態で、ビレット1の軸方向に圧縮加工(圧縮加工2)す
る方法で、この一連の圧縮加工の一例を第3図に示す。
The third method is to perform free compression processing (compression processing 1) in the axial direction of the billet 1 so that the compression strain on the outer circumference of the billet 1 is smaller than the compression strain on the inner circumference, and then the outer circumference of the billet 1 is An example of this series of compression processing is shown in FIG. 3, in which the billet 1 is compressed in the axial direction (compression processing 2) in a restrained state but with the inner periphery free.

第3図はaに加工前の状態の断面を示す。1はビレット
、2.3はポンチ、4は外型である。第3図aに示すよ
うに、前記公知技術と異なる点は、ポンチ2およびポン
チ3のポンチ端面が平面ではなく傾斜面であることであ
る。このポンチ2.3を用いて、ビレット1の軸方向に
加圧することによって、ビ、レット1は軸方向に圧縮加
工されて第1図すに示す状態(圧縮加工1終了)になり
、更に圧縮加工を行なうと第3図Cに示したようになる
。圧縮加工後のビレット1の外周部の高さは内周部の高
さより大きい。つまり、この場合もビレット1の外周部
の圧縮ひずみが内周部の圧縮ひずみより小さくなるよう
にビレット1の軸方向に圧縮加工を施したことになる。
In FIG. 3, a shows a cross section before processing. 1 is a billet, 2.3 is a punch, and 4 is an outer mold. As shown in FIG. 3a, the difference from the prior art is that the punch end faces of punches 2 and 3 are not flat but sloped. By applying pressure in the axial direction of the billet 1 using this punch 2.3, the billet 1 is compressed in the axial direction to the state shown in Figure 1 (compression processing 1 completed), and then further compressed. After processing, the result will be as shown in FIG. 3C. The height of the outer periphery of the billet 1 after compression processing is greater than the height of the inner periphery. In other words, in this case as well, the billet 1 was compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 was smaller than the compressive strain on the inner circumferential portion.

第3の方法の別の例をビレット1の断面形状をリング状
として説明すると、第4図aに第3図と同様に加工前の
状態の断面を示す。第4図乙に示すように第3図と異な
る点は、ポンチ2.3のポンチ端面は平面であり、加工
前のビレット1の外周部の高さが内周部の高さより小さ
いことである。
Another example of the third method will be explained assuming that the cross-sectional shape of the billet 1 is ring-shaped. FIG. 4a shows a cross-section of the billet before processing, similar to FIG. 3. As shown in Figure 4 B, the difference from Figure 3 is that the punch end face of punch 2.3 is flat, and the height of the outer periphery of the billet 1 before processing is smaller than the height of the inner periphery. .

第4図すに圧縮加工1の加工後の状態を示す。加工後の
ビレット1はほぼ円筒体状となり、ビレット1の外周部
の高さと内周部の高さはほぼ一致する。この場合も同様
に、ビレット1の外周部の圧縮ひずみが内周部の圧縮ひ
ずみより大きくなるようにビレット1の軸方向に圧縮加
工を施したことになる。さらに、圧縮加工を行なうと第
4図Cに示した状態になる。
Figure 4 shows the state after compression processing 1. After processing, the billet 1 has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet 1 and the height of the inner circumferential portion of the billet 1 substantially match. In this case as well, the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is greater than the compressive strain on the inner circumferential portion. Further, when compression processing is performed, the state shown in FIG. 4C is obtained.

第4の方法は、第3の方法で得たビレット1を更に、ビ
レット1の一部分に軸方向に圧縮加工を施す方法であり
、この方法は前記公知技術と同じである。
The fourth method is a method in which a portion of the billet 1 obtained by the third method is further compressed in the axial direction, and this method is the same as the above-mentioned known technique.

以上述べてきた様に、本発明は前記公知技術(特開昭6
8−192308号公報)に示された圧縮加工とほとん
ど同じであるがビレット1端面を傾斜面あるいはポンチ
2.3端面を傾斜面にすることによって、この特定の圧
縮加工において、ビレット1の外周部の圧縮ひずみが内
周部の圧縮ひずみより小さくなるようにビレット1の軸
方向に圧縮加工を施すことができ、これによって、磁石
の内周部では径方向に磁化容易方向を有し、外周部では
周方向に磁化容易方向を有する異方性構造となり、内周
多極着磁に適した磁石が得られる。
As described above, the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 6
8-192308), but by making the end face of the billet 1 an inclined surface or the end face of the punch 2.3 an inclined surface, in this particular compression processing, the outer peripheral part of the billet 1 is It is possible to perform compression processing in the axial direction of the billet 1 so that the compressive strain of In this case, an anisotropic structure having an easy magnetization direction in the circumferential direction is obtained, and a magnet suitable for internal multi-pole magnetization can be obtained.

前記の二つの例の組み合わせでも、ビレット1の外周部
の圧縮ひずみが内周部の圧縮ひずみより小さくなるよう
にビレット1の軸方向に圧縮加工を施すことができる。
Even in a combination of the above two examples, the billet 1 can be compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion.

つまり、第1図に示した金型(ポンチ端面が傾斜面)を
用いて、第2図に示したビレット(ビレット端面が傾斜
面)を圧縮加エする方法である。
That is, this is a method of compressing the billet shown in FIG. 2 (the billet end surface is an inclined surface) using the mold shown in FIG. 1 (the punch end surface is an inclined surface).

前述した例では、ポンチ2.3端面あるいはビレット1
端面が傾斜面であったが他に階段状面椴付き形状)、平
面+傾斜面あるいは以上の組み合わせなどあり、さらに
凹凸状にするポンチ2.3あるいはビレット1端面は両
面でも片面でもよい。
In the above example, the punch 2.3 end face or billet 1
Although the end face is a sloped surface, there are other shapes such as a stepped surface (with a stepped surface), a flat surface + a sloped surface, or a combination of the above.Furthermore, the end surface of the punch 2.3 or the billet 1 that is made into an uneven shape may be on both sides or on one side.

必要なことはビレット1の外周部の圧縮ひずみが内周部
の圧縮ひずみより小さくなるようにビレット1の軸方向
に圧縮加工を施すことである。これによって、磁石の内
周部では径方向に磁化容易方向を有し、外周部では周方
向に磁化容易方向を有する異方性構造となり、内周多極
着磁に適した磁石が得られる。
What is necessary is to compress the billet 1 in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion. This results in an anisotropic structure in which the inner circumference of the magnet has an easy magnetization direction in the radial direction and the outer circumference has an easy magnetization direction in the circumferential direction, and a magnet suitable for inner circumference multipole magnetization can be obtained.

前述したような圧縮加工の可能な温度範囲については、
530〜830’Cの温度領域において、加工が行えた
が、780’Cを越える温度では、磁気特性がかなり低
下した。より望ましい温度範囲としては560〜760
 ’Cであった。
Regarding the possible temperature range of compression processing as mentioned above,
Processing was possible in the temperature range of 530 to 830'C, but at temperatures above 780'C, the magnetic properties were significantly degraded. A more desirable temperature range is 560-760
'C.

次に本発明の更に具体的な実施例について説明°  す
る。
Next, more specific embodiments of the present invention will be described.

実施例1(第2図) 配合組成で69.5 %のMn、29.3 %の人e1
0、5 %のC及び0.7%のNiを溶解鋳造し、外径
30M1l、内径16屑り外周部の長さ2o朋、内周部
の長さ25jrlの両端面が傾斜面のビレット1を作製
した。このビレット1に1100’Cで2時間保持した
後、600°Ctで風冷し、600’Cで30分間保持
した後、室温まで放冷する熱処理を施した。次に、潤滑
剤を介して、第2図に示したようなポンチ2.3よりな
る金型を用いてビレット1の外周および内周を自由な状
態にして、680°Cの温度で、ビレット1の長さが1
2ffまでの圧縮加工を行った。
Example 1 (Figure 2) Mixture composition: 69.5% Mn, 29.3% Man e1
Billet 1 is made by melting and casting 0.5% C and 0.7% Ni, and has an outer diameter of 30M1l, an inner diameter of 16 pieces, a length of the outer circumference of 2omm, a length of the inner circumference of 25jrl, and both end surfaces are inclined surfaces. was created. This billet 1 was heat-treated by being held at 1100'C for 2 hours, air-cooled at 600°C, held at 600'C for 30 minutes, and then allowed to cool to room temperature. Next, the outer and inner peripheries of the billet 1 are made free using a mold consisting of a punch 2.3 as shown in Fig. 2 through a lubricant, and the billet is heated at a temperature of 680°C. The length of 1 is 1
Compression processing up to 2ff was performed.

加工後のビレット1を内径24fiに切削加工した後、
内周表面に24極の内周着磁した。着磁は2000μF
のオイルコンデンサーを用い、1600Vでパルス着磁
した。内周表面の表面磁束密度をホール素子で測定した
After cutting the processed billet 1 to an inner diameter of 24fi,
The inner circumferential surface was magnetized with 24 poles. Magnetization is 2000μF
Pulse magnetization was performed at 1600V using an oil condenser. The surface magnetic flux density on the inner peripheral surface was measured using a Hall element.

比較のために、前記と同じ配合組成のMn 、ムl。For comparison, Mn and mulch with the same composition as above.

CおよびN1を溶解鋳造し、外径30ff、内径1θ酊
、長さ22.5ffの円筒ビレットを作製し、前記と同
じ熱処理を行った。次に、潤滑剤を介して、長さが12
0までの前記と同じ圧縮加工を行った。
C and N1 were melted and cast to produce a cylindrical billet with an outer diameter of 30 ff, an inner diameter of 1θ, and a length of 22.5 ff, and the same heat treatment as above was performed. Next, through the lubricant, length 12
The same compression process as above was performed up to 0.

さらに前記と同様に切削加工した後、着磁し、表面磁束
密度を測定した。
Furthermore, after cutting in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を第5図に示す
ような拘束金型6、可動ポンチ、下型7よりなる金型を
用いて、680′Cの温度で、ビレット1の内周部のみ
を圧縮加工した。第6図aは加工前の状態を示し、第6
図すは加工後の状態を示す。5は拘束金型、6は可動ポ
ンチ、7は下型である。拘束金型6と下型7によって、
ビレット1を固定及び拘束し、可動ポンチ6でビレット
1を加圧することにより第6図すに示す状態になり、こ
れによってビレット1の内周部のみが圧縮加工される。
Furthermore, using a mold consisting of a restraining mold 6, a movable punch, and a lower mold 7 as shown in FIG. Only the material was compressed. Figure 6a shows the state before processing;
The figure shows the state after processing. 5 is a restraining die, 6 is a movable punch, and 7 is a lower die. By the restraint mold 6 and lower mold 7,
By fixing and restraining the billet 1 and pressurizing the billet 1 with the movable punch 6, the state shown in FIG. 6 is obtained, whereby only the inner peripheral portion of the billet 1 is compressed.

なおポンチ6の直径は30M11である。圧縮加工後の
内周部の長さは8ffであった。加工後のビレット1を
内径24ffに切削加工した後、前記と同様に着磁して
、この圧縮加工の前・後で表面磁束密度の値を比較する
と、加工後の方が0.2KG高くなった。
Note that the diameter of the punch 6 is 30M11. The length of the inner peripheral portion after compression processing was 8ff. After cutting the processed billet 1 to an inner diameter of 24ff, it was magnetized in the same manner as described above, and when comparing the surface magnetic flux density values before and after this compression processing, the value after processing was 0.2 KG higher. Ta.

実施例2(第1図) 配合組成で69.4%のMn、29.3%のム410.
5%(7)C,0,7%ノNi及び0.1 %(7)T
iを溶解鋳造し、外径30111.内径16fl、長さ
25ffの円筒ビレットを作製し、実施例1と同じ熱処
理をした。次に、実施例1と同様に潤滑剤を介して、第
1図に示したような金型を用いて、外周部の長さが15
flまでの圧縮加工を行った。なお第1図において、ポ
ンチ端面の傾斜角αは10°である。
Example 2 (Figure 1) The blend composition was 69.4% Mn and 29.3% Mn410.
5%(7)C, 0.7%Ni and 0.1%(7)T
i was melted and cast, and the outer diameter was 30111. A cylindrical billet with an inner diameter of 16 fl and a length of 25 ff was prepared and subjected to the same heat treatment as in Example 1. Next, as in Example 1, using a lubricant and using a mold as shown in FIG.
Compression processing was performed to fl. In FIG. 1, the inclination angle α of the punch end face is 10°.

加工後のビレット1を内径24flに切削加工した後、
実施例1と同様に24極の内周着磁し、表面磁束密度を
測定した。
After cutting the processed billet 1 to an inner diameter of 24fl,
As in Example 1, the inner periphery of 24 poles was magnetized, and the surface magnetic flux density was measured.

比較のために、前記と同じ配合組成のMn 、人e。For comparison, Mn and human e with the same composition as above.

G 、 )iiおよびTiを溶解鋳造し、外径30 u
、内径16fi、長さ25ffの円筒ビレット1を作製
し、前記と同じ熱処理をした。次に、潤滑剤を介して、
実施例1で用いた金型を用いて、長さが153ffまで
の圧縮加工を行った。さらに前記と同様に切削加工した
後、着磁し、表面磁束密度を測定した。
G, )ii and Ti are melted and cast, and the outer diameter is 30 u.
A cylindrical billet 1 having an inner diameter of 16fi and a length of 25ff was prepared and subjected to the same heat treatment as described above. Next, through the lubricant,
Using the mold used in Example 1, compression processing was performed up to a length of 153 ff. Furthermore, after cutting in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を実施例1と同
様に、内周部のみを長さが7ffにまでの圧縮加工した
。加工後のビレット1を内径2411Mに切削し、前記
と同様に着磁して、この圧縮加工の前・後で表面磁束密
度の値を比較すると、加工後の方が0.2KG高くなっ
た。
Furthermore, in the same manner as in Example 1, only the inner circumferential portion of the previously magnetized magnet of the present invention was compressed to a length of 7 ff. The billet 1 after processing was cut to an inner diameter of 2411M, magnetized in the same manner as described above, and when the surface magnetic flux density values were compared before and after this compression processing, the value after processing was 0.2 KG higher.

実施例3 実施例1と同じ配合組成のMn 、ム/、CおよびNi
を溶解鋳造し、外径30ff、内径16M1外周部の長
さ201+1.内周部の長さ25ffの両端面が階段上
で段付き部の境界の径が23ffのビレットを作製し、
実施例1と同じ熱処理をした後、実施例1と同じ圧縮加
工をした。加工後のビレット1の長さは12ffであっ
た。
Example 3 Mn, Mu/, C and Ni with the same composition as Example 1
was melted and cast, and the outer diameter was 30ff, the inner diameter was 16M1, and the length of the outer circumference was 201+1. A billet with an inner circumferential length of 25 ff, both end faces on stairs, and a stepped part boundary diameter of 23 ff was produced,
After performing the same heat treatment as in Example 1, the same compression processing as in Example 1 was performed. The length of billet 1 after processing was 12ff.

加工後のビレット1を内径24flに切削加工した後、
実施例1と同様に24極の内周着磁し、表面磁束密度を
測定して、実施例1で比較のために作製した磁石と比較
した。
After cutting the processed billet 1 to an inner diameter of 24fl,
The inner periphery of the magnet was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured and compared with the magnet produced for comparison in Example 1.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.3倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.3 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を実施例1と同
様に、内周部のみを圧縮加工した。加工後の内周部の長
さは8ffであった。加工後のビレットを内径24fl
に切削した後、前記と同様に着磁して、この圧縮加工の
前・後で表面磁束密度の値を比較すると、加工後の方が
0.2KG高くなった。
Furthermore, in the same manner as in Example 1, only the inner peripheral portion of the magnet of the present invention, which had just been magnetized, was subjected to compression processing. The length of the inner peripheral portion after processing was 8ff. After processing, the billet has an inner diameter of 24 fl.
After cutting, the surface magnetic flux density was magnetized in the same manner as described above, and when the surface magnetic flux density values were compared before and after the compression process, the value after the process was 0.2 KG higher.

実施例4 実施例2と同じ配合組成のMn 、ム/、C,Niおよ
びT1を溶解鋳造し、外径3oInl、内径16fl、
長さ25ffの円筒ビレットを作製し、実施例1と同じ
熱処理を行った。次に、潤滑剤を介して、第6図に示し
た様なポンチ2.3よりなる金型を用いてビレット1の
外周および内周を自由な状態にして、680°Cの温度
で、ビレット1の外周部の長さが17ffまでの圧縮加
工を行った。なお第6図において、ポンチ端面の段付き
部の径は30ff、段差は2.5Nである。
Example 4 Mn, Mu/, C, Ni and T1 having the same composition as in Example 2 were melted and cast, and an outer diameter of 3 oInl, an inner diameter of 16fl,
A cylindrical billet with a length of 25 ff was produced and subjected to the same heat treatment as in Example 1. Next, the outer and inner peripheries of the billet 1 are made free using a mold consisting of a punch 2.3 as shown in Fig. 6 through a lubricant, and the billet is Compression processing was performed until the length of the outer circumference of No. 1 was 17ff. In FIG. 6, the diameter of the stepped portion on the end face of the punch is 30ff, and the step difference is 2.5N.

加工後のビレット1を内径24ffに切削加工した後、
実施例1と同様に24極の内周着磁し、表面磁束密度を
測定して、実施例2で比較のために作製した磁石と比較
した。
After cutting the processed billet 1 to an inner diameter of 24ff,
The inner periphery of the magnet was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured and compared with the magnet produced for comparison in Example 2.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1.3倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.3 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を実施例1と同
様に、内周部のみを圧縮加工した。加工後の内周部の長
さは8′Inlであった。加工後のビレット1を内径2
4ffに切削した後、前記と同様に着磁して、この圧縮
加工の前・後で表面磁束密度の値を比較すると、加工後
の方が0゜2KG高くなった。
Furthermore, in the same manner as in Example 1, only the inner peripheral portion of the magnet of the present invention, which had just been magnetized, was subjected to compression processing. The length of the inner peripheral portion after processing was 8'Inl. After processing, billet 1 has an inner diameter of 2
After cutting to 4ff, it was magnetized in the same manner as described above, and when comparing the surface magnetic flux density values before and after this compression processing, the value after processing was 0°2 KG higher.

実施例5 実施例1と同じ配合組成のMn 、ムl、CおよびN1
を溶解鋳造し、外径30ff、内径16M1外周部の長
さ20fl、内周部の長さ25311の両端面が傾斜面
のビレット1を作製して、実施例1と同じ熱処理を行っ
た。次に、潤滑剤を介して、第4図に示したような金型
を用いてビレット1の外周および内周を自由な状態にし
て、680°Cの温度で、ビレット1の長さが15fl
までの圧縮加工を行った。なお第4図において、外型4
の内径は341ffである。
Example 5 Mn, Mul, C and N1 with the same composition as Example 1
was melted and cast to produce a billet 1 having an outer diameter of 30 ff, an inner diameter of 16M1, an outer circumferential length of 20 fl, an inner circumferential length of 25311, and both end faces having sloped surfaces, and the same heat treatment as in Example 1 was performed. Next, the outer and inner peripheries of the billet 1 are made free using a mold as shown in Fig. 4 using a lubricant, and the length of the billet 1 is 15fl at a temperature of 680°C.
Compression processing was performed up to. In addition, in Fig. 4, the outer mold 4
The inner diameter of is 341ff.

加工後のビレット1を内径20jQIに切削加工した後
、実施例1と同様に24極の内周着磁し、内周表面の表
面磁束密度を測定した。
After cutting the processed billet 1 to an inner diameter of 20jQI, the inner circumference was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density on the inner circumference surface was measured.

比較のために、前記と同じ配合組成のMn、ムe。For comparison, Mn and Mue with the same composition as above.

CおよびN1を溶解鋳造し、外径30ffil、内径1
6謂、長さ22.5ffの円筒ビレットを作製し、前記
と同じ熱処理を行った。次に、潤滑剤を介して、前記と
同じ圧縮加工を行った。なお加工後のビレット1の長さ
は15flであった。さらに前記と同様に切削加工した
後、着磁し、表面磁束密度を測定した。
C and N1 were melted and cast, and the outer diameter was 30ffil and the inner diameter was 1.
A cylindrical billet having a length of 22.5 ff was prepared and subjected to the same heat treatment as described above. Next, the same compression process as above was performed using a lubricant. The length of billet 1 after processing was 15 fl. Furthermore, after cutting in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を実施例1と同
様に、内周部のみを圧縮加工した。なお第5図において
ポンチ6の直径は261fmlである。
Furthermore, in the same manner as in Example 1, only the inner peripheral portion of the magnet of the present invention, which had just been magnetized, was subjected to compression processing. In addition, in FIG. 5, the diameter of the punch 6 is 261 fml.

加工後の内周部の長さは10jflであった。加工後の
ビレット1を内径20flに切削した後、前記と同様に
着磁して、この圧縮加工の前・後で表面磁束密度の値を
比較すると、加工後の方が0.2KG高くなった。
The length of the inner peripheral portion after processing was 10jfl. After cutting billet 1 after processing to an inner diameter of 20fl, it was magnetized in the same manner as above, and when comparing the surface magnetic flux density values before and after this compression processing, the value after processing was 0.2 KG higher. .

実施例6 実施例1と同じ配合組成のMn 、ム/、C,Niおよ
びTiを溶解鋳造し、外径30ff、内径16fi。
Example 6 Mn, Mu/, C, Ni, and Ti having the same composition as in Example 1 were melted and cast, and the outer diameter was 30ff and the inner diameter was 16fi.

長さ25mIの円筒ビレットを作製して、実施例1と同
じ熱処理を行った。次に、潤滑剤を介して、第3図に示
したような金型を用いてビレット1のの圧縮加工を行っ
た。なお第3図において1、ポンチ2.3端面の傾斜角
αは10°、外型4の内径は34jffである。
A cylindrical billet with a length of 25 mI was prepared and subjected to the same heat treatment as in Example 1. Next, the billet 1 was compressed using a mold as shown in FIG. 3 using a lubricant. In FIG. 3, the inclination angle α of the punch 2.3 end face is 10°, and the inner diameter of the outer die 4 is 34jff.

加工後のビレット1を内径2ojrlI+に切削した後
、実施例1と同様に24極の内周着磁をし、表面磁束密
度を測定して、実施例5で比較のために作製した磁石と
比較した。
After cutting the processed billet 1 to an inner diameter of 2 ojrlI+, the inner circumference was magnetized with 24 poles in the same manner as in Example 1, the surface magnetic flux density was measured, and compared with the magnet produced for comparison in Example 5. did.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を実施例1と同
様に、内周部のみを圧縮加工した。加工後の内周部の長
さは7ffであった。加工後のビレット1を内径20W
IIに切削した後、前記と同様に着磁して、この圧縮加
工の前・後で表面磁束密度の値を比較すると1、加工後
の方が0.2KG高くなった。
Furthermore, in the same manner as in Example 1, only the inner peripheral portion of the magnet of the present invention, which had just been magnetized, was subjected to compression processing. The length of the inner peripheral portion after processing was 7ff. Billet 1 after processing has an inner diameter of 20W
After cutting it to II, it was magnetized in the same manner as described above, and when comparing the surface magnetic flux density values before and after this compression processing, it was 1 kg higher and 0.2 KG higher after processing.

以上、Mn−ムg−c系磁石用合金の組成については、
Ni添加の4元系とNi 、 Ti添加の6元系のもの
についてのみ示したが、Mn−ム1−c系磁石用合金の
基本組成である3元系についても磁石の磁気特性に若干
の差は認められたが、公知の圧縮加工による方法より前
述したような磁気特性の向上が認められた。
As mentioned above, regarding the composition of the Mn-Mg-C alloy for magnets,
Although only the four-element system with Ni addition and the six-element system with Ni and Ti additions are shown, the ternary system, which is the basic composition of the Mn-1-C magnet alloy, also has some effects on the magnetic properties of the magnet. Although a difference was observed, the above-mentioned improvement in magnetic properties was observed compared to the known compression processing method.

また、ビレット1の一部分への圧縮加工については、ビ
レット1の内周部のみを圧縮加工する方法だけ示したが
、外周部のみ圧縮加工する場合でもよいが、この場合は
磁石全体を径方向に磁化容易方向を有するようにしたい
場合に有効である。
Regarding the compression processing of a portion of the billet 1, only the method of compressing only the inner circumference of the billet 1 has been shown, but it is also possible to compress only the outer circumference, but in this case, the entire magnet may be compressed in the radial direction. This is effective when it is desired to have an easy magnetization direction.

さらに、ビレット1およびポンチ2,3端面の形状につ
いては傾斜面および階段状の段付き形状の例を示したが
、平面+傾斜面あるいは以上の組み合わせなどでも従来
の圧縮加工に比べて磁気特性の向上が認められた。また
、凹凸状にする端面は両面でも片面でも大きな差は認め
られなかった。
Furthermore, regarding the shape of the billet 1 and punches 2 and 3 end faces, we have shown examples of sloped surfaces and stepped shapes, but even flat + sloped surfaces or a combination of the above may have better magnetic properties than conventional compression processing. Improvement was observed. Furthermore, no significant difference was observed between the end surfaces to be made uneven, whether on both sides or on one side.

ゝ       発明の効果 本発明は、実施例によって述べたように、Mn−ムl−
0系磁石用合金からなる中空体状のビレットに、少なく
ともビレットの外周および内周の一部分を自由にした状
態で、ビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより小さくなるようにビレットの軸方向に圧縮加工
を施すことによって内周多極着磁を施した場合に高い磁
気特性を示す磁石を得るものである。
Effects of the Invention As described in the examples, the present invention provides Mn-mul-
A hollow body-shaped billet made of an alloy for 0-series magnets is heated so that the compressive strain on the outer circumference of the billet is smaller than the compressive strain on the inner circumference, with at least a portion of the outer circumference and inner circumference of the billet free. By performing compression processing in the axial direction of the magnet, a magnet that exhibits high magnetic properties when subjected to inner circumferential multi-pole magnetization is obtained.

この方法によって、磁石の内周部では径方向に磁化容易
方向を有し、外周部では周方向に磁化容易方向を有する
磁石を得ることができる。
By this method, it is possible to obtain a magnet that has an easy magnetization direction in the radial direction at the inner circumference of the magnet, and an easy magnetization direction in the circumferential direction at the outer circumference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の圧縮加工の一例を示す断
面図である。 1・・・・・・ビレット、2.3・・・・・・ポンチ、
4・・・・・・外型、6・・・・・・拘束金型、6・・
・・・・可動ポンチ、7・・・・・・下型、α・・・・
・・傾斜角。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第5
図 (の) (b) 16 図 (OL) (b)
1 to 6 are cross-sectional views showing an example of compression processing according to the present invention. 1... Billet, 2.3... Punch,
4...Outer mold, 6...Restriction mold, 6...
...Movable punch, 7...Lower die, α...
...Inclination angle. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 5
Figure (of) (b) 16 Figure (OL) (b)

Claims (4)

【特許請求の範囲】[Claims] (1)マンガン−アルミニウム−炭素系磁石用合金から
なる中空体状のビレットに、530〜830℃の温度で
、少なくともビレットの外周および内周の一部分を自由
にした状態で、ビレットの外周部の圧縮ひずみが内周部
の圧縮ひずみより小さくなるようにビレットの軸方向に
圧縮加工を施すマンガン−アルミニウム−炭素系合金磁
石の製造法。
(1) A hollow billet made of a manganese-aluminum-carbon alloy for magnets is heated at a temperature of 530 to 830°C, with at least a portion of the outer periphery and inner periphery of the billet free. A method of manufacturing a manganese-aluminum-carbon alloy magnet in which compression processing is performed in the axial direction of a billet so that the compressive strain is smaller than that of the inner circumference.
(2)ビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより小さくなるようにビレットの軸方向に圧縮加工
を施した後、さらにビレットの一部分に圧縮加工を施す
特許請求の範囲第1項に記載のマンガン−アルミニウム
−炭素系合金磁石の製造法。
(2) After compressing the billet in the axial direction so that the compressive strain on the outer circumference of the billet is smaller than the compressive strain on the inner circumference, a portion of the billet is further compressed, as claimed in claim 1. A method for producing a manganese-aluminum-carbon alloy magnet as described in .
(3)ビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより小さくなるようにビレットの軸方向に圧縮加工
を施し、さらにビレットの外周を拘束した状態で、しか
も少なくとも内周の一部分を自由にした状態で、ビレッ
トの軸方向に圧縮加工を施す特許請求の範囲第1項に記
載のマンガン−アルミニウム−炭素系合金磁石の製造法
(3) Compressing the billet in the axial direction so that the compressive strain on the outer periphery of the billet is smaller than the compressive strain on the inner periphery, and further, while the outer periphery of the billet is constrained, at least a portion of the inner periphery is free. 2. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1, wherein the billet is compressed in the axial direction in a state where the billet is in a state of .
(4)ビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより小さくなるようにビレットの軸方向に圧縮加工
を施し、さらにビレットの外周を拘束した状態で、しか
も少なくとも内周の一部分を自由にした状態で、ビレッ
トの軸方向に圧縮加工を施した後、さらにビレットの一
部分に、ビレットの軸方向に圧縮加工を施す特許請求の
範囲第1項に記載のマンガン−アルミニウム−炭素系合
金磁石の製造法。
(4) The billet is compressed in the axial direction so that the compressive strain on the outer circumference of the billet is smaller than the compressive strain on the inner circumference, and while the outer circumference of the billet is constrained, at least a portion of the inner circumference is free. The manganese-aluminum-carbon-based alloy magnet according to claim 1, wherein the billet is compressed in the axial direction, and then a part of the billet is compressed in the axial direction of the billet. manufacturing method.
JP8855686A 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0663072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8855686A JPH0663072B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8855686A JPH0663072B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62247056A true JPS62247056A (en) 1987-10-28
JPH0663072B2 JPH0663072B2 (en) 1994-08-17

Family

ID=13946141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8855686A Expired - Lifetime JPH0663072B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0663072B2 (en)

Also Published As

Publication number Publication date
JPH0663072B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JPS62247056A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0479122B2 (en)
JPH0434804B2 (en)
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62247058A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143410A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311521B2 (en)
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JP2563438B2 (en) Rare earth magnet manufacturing method
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210253A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192303A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0673327B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS58192304A (en) Manufacture of manganese-aluminum-carbon alloy magnet