JPH0821495B2 - Anisotropic permanent magnet - Google Patents

Anisotropic permanent magnet

Info

Publication number
JPH0821495B2
JPH0821495B2 JP30992887A JP30992887A JPH0821495B2 JP H0821495 B2 JPH0821495 B2 JP H0821495B2 JP 30992887 A JP30992887 A JP 30992887A JP 30992887 A JP30992887 A JP 30992887A JP H0821495 B2 JPH0821495 B2 JP H0821495B2
Authority
JP
Japan
Prior art keywords
magnet
anisotropic
permanent magnet
anisotropic permanent
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30992887A
Other languages
Japanese (ja)
Other versions
JPH01151207A (en
Inventor
昭彦 井端
清司 小嶋
滋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30992887A priority Critical patent/JPH0821495B2/en
Publication of JPH01151207A publication Critical patent/JPH01151207A/en
Publication of JPH0821495B2 publication Critical patent/JPH0821495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希土類磁石に関し、特に、高性能な多極着
磁用の鉄−希土類元素(R)−ホウ素系の異方性永久磁
石に関するものである。
TECHNICAL FIELD The present invention relates to a rare earth magnet, and more particularly to an iron-rare earth (R) -boron anisotropic anisotropic permanent magnet for high-performance multipole magnetization. is there.

従来の技術 従来R,Fe,B系からなる合金磁石において、例えば特開
昭61−284907号公報に示されているようにラジアル異方
性焼結磁石が開示されている。これは粉末焼結磁石であ
り、しかも異方性構造は単一の径方向に磁化容易方向を
有する磁石である。一方、別の磁石材料のマンガン(M
n)−アルミニウム(Al)−炭素(C)系合金磁石にお
いては、例えば特開昭58−189355号公報、同特開昭58−
189356号公報で、複合構造の異方性永久磁石が示されて
いる。
2. Description of the Related Art Conventionally, as an R, Fe, B alloy magnet, a radial anisotropic sintered magnet is disclosed as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-284907. This is a powder sintered magnet, and the anisotropic structure is a magnet having an easy magnetization direction in a single radial direction. On the other hand, another magnet material, manganese (M
In the case of n) -aluminum (Al) -carbon (C) alloy magnets, for example, JP-A-58-189355 and JP-A-58-189355.
In 189356, an anisotropic permanent magnet having a composite structure is shown.

発明が解決しようとする問題点 しかし、これらはMn−Al−C系合金磁石に関するもの
であり、これまで磁石材料としては非常に優れたR,Fe,B
系合金磁石において、このような複合構造を有する極め
て高性能なモータ用の異方性永久磁石が得られていな
い。
Problems to be Solved by the Invention However, these are related to Mn-Al-C alloy magnets, and R, Fe and B, which have been very excellent as magnet materials so far, have been used.
An anisotropic permanent magnet for motors having such a composite structure and having an extremely high performance has not been obtained in the alloy type magnets.

本発明は、前述したようにR,Fe,B系からなる永久磁石
において、極めて高性能なモータ用の異方性永久磁石を
提供するものである。
The present invention provides an extremely high-performance anisotropic permanent magnet for a motor among the permanent magnets composed of R, Fe, and B as described above.

問題点を解決するための手段 以上の問題点を解決するために本発明は、Fe,Ndある
いはPrおよびBを主成分とする合金磁石において磁石の
形状が軸対象であり、磁気的に軸方向に直交する平面に
平行な方向に異方性化しており、さらに、外周部あるい
は内周部では径方向に異方性化している複合構造を特徴
とする。
Means for Solving the Problems In order to solve the above problems, the present invention is an alloy magnet containing Fe, Nd or Pr and B as main components, and the shape of the magnet is symmetrical, and the magnet is magnetically oriented in the axial direction. The composite structure is characterized in that it is anisotropy in a direction parallel to a plane orthogonal to, and further in the outer peripheral portion or the inner peripheral portion is anisotropic in the radial direction.

作 用 前述した構造によって、つまり、任意の平面に平行な
方向に異方性化しており、さらに、外周部あるいは内周
部では径方向に異方性化している複合構造を有している
ため、これまでに得られている単純な径方向に異方性化
したラジアル異方性磁石より多極着磁した場合に優れた
実用特性を示す。
Operation Due to the structure described above, that is, it has an anisotropy in the direction parallel to any plane, and also has a composite structure in which the outer or inner circumference is anisotropic in the radial direction. , Shows excellent practical properties when magnetized with multiple poles, compared to the radial anisotropy magnets that have been simple and anisotropic in the radial direction.

実施例 本発明の異方性永久磁石は、Fe,NdあるいはPrおよび
Bを主成分とする合金磁石において、磁石の形状が軸対
象であり、磁気的に軸方向に直交する平面に平行な方向
に異方性化しており、さらに、外周部あるいは内周部で
は径方向に異方性化しているかのいずれかの複合構造を
有しているため、多極着磁した場合に優れた実用特性を
示す。
Example An anisotropic permanent magnet of the present invention is an alloy magnet containing Fe, Nd or Pr and B as main components, and the shape of the magnet is symmetrical, and the direction is parallel to a plane that is magnetically orthogonal to the axial direction. Has an anisotropy, and the outer or inner circumference has a composite structure with either anisotropy in the radial direction. Indicates.

モータ等に用いる場合の多極着磁としては、一般に、
磁石形状が円筒状であり、円筒の外周面あるいは内周面
に多極着磁して用いる。この場合の異方性磁石の構造と
しては、着磁側の部分では径方向に異方性化している方
が優れた実用特性(着磁後の磁石の表面磁束密度)を示
す。
As a multi-pole magnetization when used for a motor or the like, generally,
The magnet has a cylindrical shape, and the outer peripheral surface or the inner peripheral surface of the cylinder is magnetized with multiple poles. As the structure of the anisotropic magnet in this case, the anisotropy in the radial direction on the magnetized side shows better practical characteristics (surface magnetic flux density of the magnet after magnetization).

本発明の磁石が2つのタイプに分けられる。1つは外
周面に着磁するのに適した複合異方性磁石であり、他方
の内周面に着磁するのに適した複合異方性磁石である。
つまり、外周部では径方向に異方性化しているのが、外
周面に着磁するのに適した複合異方性永久磁石である。
The magnet of the present invention can be divided into two types. One is a composite anisotropic magnet suitable for magnetizing the outer peripheral surface, and the other is a composite anisotropic magnet suitable for magnetizing the inner peripheral surface.
In other words, what is anisotropic in the radial direction in the outer peripheral portion is the composite anisotropic permanent magnet suitable for magnetizing the outer peripheral surface.

本発明の異方性永久磁石は、Fe,NdあるいはPrおよび
Bを主成分とする磁石を用いて得られた任意の平面に平
行な方向に磁化優位方向を有する異方性磁石の外周部あ
るいは内周部に平面に垂直な方向に引張ひずみを与える
塑性加工を施すことによって得ることができる。
The anisotropic permanent magnet of the present invention is an outer peripheral portion of an anisotropic magnet having a magnetization dominant direction in a direction parallel to an arbitrary plane obtained by using a magnet containing Fe, Nd or Pr and B as main components, or It can be obtained by subjecting the inner peripheral portion to plastic working that gives tensile strain in a direction perpendicular to the plane.

この塑性加工を施した部分は塑性加工によって異方性
構造を変えるため、複合構造の異方性永久磁石を得るこ
とができる。
Since the portion subjected to the plastic working changes its anisotropic structure by the plastic working, an anisotropic permanent magnet having a composite structure can be obtained.

本発明で示しているFe,NdあるいはPrおよびBを主成
分とする合金とは、前記公知技術に示されているよう
な、公知の永久磁石用組成のR−Fe−B系の合金磁石組
成であればよい。Fe以外にはFeとCo,Ni,CrあるいはMn
(の内1つまたは2つ以上)であり、さらに基本3元元
素以外に磁気特性の向上あるいは各種の性質改善のため
の各種の添加元素あるいは若干の不純物からなる合金で
も良い。
The alloy containing Fe, Nd or Pr and B as the main components shown in the present invention means a known R-Fe-B alloy magnet composition of a permanent magnet composition as described in the above-mentioned prior art. If Other than Fe, Fe and Co, Ni, Cr or Mn
(One or two or more of them), and in addition to the basic ternary element, an alloy containing various additive elements for improving magnetic properties or various properties or some impurities may be used.

次に本発明の更に具体的な実施例について説明する。 Next, more specific examples of the present invention will be described.

実施例1 分析組成で68.4mass%(以下%とする)のFe、29.2%
のNd、0.77%のBおよび1.60%のPrからなる外径が30m
m、内径10mm、長さが20mmの円筒状の合金磁石1を第1
図に示したようなダイス2,上ポンチ3,下ポンチ4からな
る金型を用いて円筒磁石の外周部だけを塑性加工した。
Example 1 68.4 mass% (hereinafter referred to as%) Fe in the analytical composition, 29.2%
Of Nd, 0.77% B and 1.60% Pr with an outer diameter of 30 m
First, a cylindrical alloy magnet 1 with m, inner diameter 10 mm, and length 20 mm
Only the outer peripheral portion of the cylindrical magnet was plastically worked by using a die composed of the die 2, the upper punch 3 and the lower punch 4 as shown in the figure.

用いた円筒磁石は試料Aが円筒の周方向に平行に磁化
容易方向を有する磁石であり、試料Bが円筒の径方向お
よび周方向を含む平面内のすべての方向に磁化優位方向
を有する磁石であり、試料Cが円筒の径方向に平行に磁
化容易方向を有する磁石であった。
The cylindrical magnet used is a magnet in which the sample A has an easy magnetization direction parallel to the circumferential direction of the cylinder, and the sample B is a magnet having dominant magnetization directions in all directions in a plane including the radial direction and the circumferential direction of the cylinder. Sample C was a magnet having an easy magnetization direction parallel to the radial direction of the cylinder.

第1図において、ダイス2の下部の内径は28mmであ
り、ポンチ4の直径は20mmであった。加工は、700℃の
温度で行った。
In FIG. 1, the inner diameter of the lower part of the die 2 was 28 mm and the diameter of the punch 4 was 20 mm. The processing was performed at a temperature of 700 ° C.

この加工前の試料Cの磁石と加工後の3つの磁石をそ
れぞれ外径26mmにして、外周面に18極の着磁を行った。
着磁は、2000μFのオイルコンデンサーを用い、1500V
でパルス着磁した。外周表面の表面磁束密度をホール素
子で測定した。
The magnet of Sample C before processing and the three magnets after processing were each set to have an outer diameter of 26 mm, and the outer peripheral surface was magnetized with 18 poles.
Magnetization uses a 2000μF oil condenser and 1500V
It was pulse-magnetized. The surface magnetic flux density on the outer peripheral surface was measured with a Hall element.

以上の両者の値を比較すると、本発明の方法で得た磁
石の表面磁束密度の値は、加工前の磁石のそれの試料A
では、約1.4倍で、試料Bでは、約1.3倍で、試料Cで
は、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is as follows:
Was about 1.4 times, Sample B was about 1.3 times, and Sample C was about 1.2 times.

加工後の試料Bの外周部と内周部から一辺の長さが3m
mの直方体を各辺が軸方向,直径方向および弦方向(周
方向)に平行になるように切出し、印加磁場20KOeの大
きさで各方向の磁気特性を測定した。
The length of one side from the outer and inner circumferences of sample B after processing is 3 m
A rectangular parallelepiped of m was cut so that each side was parallel to the axial direction, the diametrical direction, and the chordal direction (circumferential direction), and the magnetic characteristics in each direction were measured with the magnitude of the applied magnetic field of 20 KOe.

外周部の磁気特性は、径方向ではBr=11KG、iHc=7KO
e、bHc=6KOe、(BH)max=26MG・Oeであり、周方向で
はBr=7KG、iHc=7KOe、bHc=5KOe、(BH)max=15MG・
Oeであり、軸方向ではBr=3KG、iHc=9KOe、bHc=2KO
e、(BH)max=2MG・Oeであった。内周部の磁気特性
は、径方向および周方向ではBr=9KG、iHc=12KOe、bHc
=7KOe、(BH)max=18MG・Oeであり、軸方向ではBr=3
KG、iHc=9KOe、bHc=2KOe、(BH)max=2MG・Oeであっ
た。
The magnetic characteristics of the outer circumference are Br = 11KG and iHc = 7KO in the radial direction.
e, bHc = 6KOe, (BH) max = 26MG-Oe, and in the circumferential direction Br = 7KG, iHc = 7KOe, bHc = 5KOe, (BH) max = 15MG-
Oe, Br = 3KG, iHc = 9KOe, bHc = 2KO in the axial direction
e, (BH) max = 2MG · Oe. The magnetic characteristics of the inner circumference are Br = 9KG, iHc = 12KOe, bHc in the radial and circumferential directions.
= 7KOe, (BH) max = 18MG ・ Oe, Br = 3 in the axial direction.
KG, iHc = 9KOe, bHc = 2KOe, (BH) max = 2MG · Oe.

つまり、この磁石は、外周部は、径方向が磁化容易方
向であり、内周部では径方向および周方向に異方性化し
た、つまり平面状に異方性化した磁石である。鉄−希土
類元素−ホウ素系磁石において、これまでに類のない複
合構造の高性能な異方性永久磁石である。
In other words, this magnet is a magnet in which the radial direction is the direction of easy magnetization in the outer peripheral portion, and the inner peripheral portion is anisotropic in the radial direction and the circumferential direction, that is, in the planar shape. It is an iron-rare earth element-boron-based magnet that is a high-performance anisotropic permanent magnet with a composite structure that is unprecedented.

実施例2 実施例1と同様に、外径が30mm、内径が12mm、長さが
10mmの円筒磁石の3試料(A,B,C)を第2図に示すよう
な外型6,上ポンチ3,下ポンチ4,マンドレル5からなる金
型を用いて内周部だけを塑性加工した。
Example 2 As in Example 1, the outer diameter was 30 mm, the inner diameter was 12 mm, and the length was
3 samples of 10mm cylindrical magnets (A, B, C) are plastically worked only on the inner circumference using a die consisting of an outer die 6, an upper punch 3, a lower punch 4 and a mandrel 5 as shown in Fig. 2. did.

第2図において、マンドレル5の下部の直径は16mmで
あり、外型6の内径は30mmであった。加工は、700℃の
温度で行った。
In FIG. 2, the lower part of the mandrel 5 had a diameter of 16 mm, and the outer die 6 had an inner diameter of 30 mm. The processing was performed at a temperature of 700 ° C.

実施例1と同様に、試料Cの加工前の磁石と加工後の
それぞれの磁石を内径18mmにして、内周面に8極の着磁
を行い、内周表面の表面磁束密度を測定した。
In the same manner as in Example 1, the magnet of Sample C before processing and the magnet after processing each had an inner diameter of 18 mm, 8 poles were magnetized on the inner peripheral surface, and the surface magnetic flux density of the inner peripheral surface was measured.

以上の両者の値を比較すると、本発明の方法で得た磁
石の表面磁束密度の値は、加工前の磁石のそれの試料A
では、約1.4倍で、試料Bでは、約1.3倍で、試料Cで
は、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is as follows:
Was about 1.4 times, Sample B was about 1.3 times, and Sample C was about 1.2 times.

以上のことから、この磁石は、実施例1で得られた磁
石とほぼ同様の複合構造の異方性永久磁石であると考え
られる。
From the above, it is considered that this magnet is an anisotropic permanent magnet having a composite structure similar to that of the magnet obtained in Example 1.

発明の効果 本発明の異方性永久磁石は、実施例によって述べたよ
うに、Fe,NdあるいはPrおよびBを主成分とする合金を
用いて得られた任意の平面に平行な方向に磁化優位方向
を有する単一の異方性磁石より優れた磁気特性を示す複
合構造を有する永久磁石であり、非常に高性能な多極着
磁用の異方性磁石である。
Effects of the Invention As described in the examples, the anisotropic permanent magnet of the present invention is obtained by using an alloy containing Fe, Nd or Pr and B as the main components, and is magnetized in a direction parallel to an arbitrary plane. It is a permanent magnet having a composite structure that exhibits superior magnetic characteristics to a single anisotropic magnet having directions, and is a highly efficient anisotropic magnet for multipole magnetization.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、本発明の永久磁石を得るのに用
いた金型の一部の断面図である。 1……磁石、2……ダイス、3,4……ポンチ、5……マ
ンドレル、6……外型。
1 and 2 are sectional views of a part of a mold used to obtain the permanent magnet of the present invention. 1 ... Magnet, 2 ... Die, 3,4 ... Punch, 5 ... Mandrel, 6 ... External mold.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe,NdあるいはPrおよびBを主成分とし形
状が軸対象であり、磁気的に軸方向に直交する平面に平
行な方向に異方性化しており、さらに、外周部あるいは
内周部では径方向に異方性化していることを特徴とする
異方性永久磁石。
1. A main component of Fe, Nd or Pr and B, whose shape is symmetrical with respect to the axis, is magnetically anisotropic in a direction parallel to a plane orthogonal to the axial direction, and further, the outer peripheral portion or the inner portion. Anisotropic permanent magnet characterized by being radially anisotropic in the peripheral portion.
JP30992887A 1987-12-08 1987-12-08 Anisotropic permanent magnet Expired - Lifetime JPH0821495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30992887A JPH0821495B2 (en) 1987-12-08 1987-12-08 Anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30992887A JPH0821495B2 (en) 1987-12-08 1987-12-08 Anisotropic permanent magnet

Publications (2)

Publication Number Publication Date
JPH01151207A JPH01151207A (en) 1989-06-14
JPH0821495B2 true JPH0821495B2 (en) 1996-03-04

Family

ID=17999030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30992887A Expired - Lifetime JPH0821495B2 (en) 1987-12-08 1987-12-08 Anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JPH0821495B2 (en)

Also Published As

Publication number Publication date
JPH01151207A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
EP1956698B1 (en) Permanent magnet rotor and motor using the same
US3891476A (en) Method of magnetizing a body of M{HD 5{B R at high temperatures
JP2558760B2 (en) Anisotropic permanent magnet
JP2563404B2 (en) Anisotropic permanent magnet
JPS6134249B2 (en)
JP2563407B2 (en) Rare earth magnet manufacturing method
JPH0821495B2 (en) Anisotropic permanent magnet
JPH0821496B2 (en) Anisotropic permanent magnet
JPS5923448B2 (en) anisotropic magnet
JPS62235704A (en) Anisotropic resin magnet
JPH0559572B2 (en)
JP2689445B2 (en) Rare earth magnet manufacturing method
JPH0726804Y2 (en) Cylindrical outer peripheral multi-pole magnet
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
US2850655A (en) Telephone ringing generator
JPH0810981B2 (en) Permanent magnet type DC rotating electric machine
JPH01115104A (en) Manufacture of rare earth magnet
JP3175797B2 (en) Multi-pole magnetization method
JPS62232107A (en) Anisotropic resin magnet
JPH0338722B2 (en)
JPS60133703A (en) Permanent magnet
JPH02276210A (en) Anisotropic ring-shaped magnet and manufacture thereof
JPH01115106A (en) Manufacture of rare earth magnet
JPS60176206A (en) Radial direction bipolar magnet and manufacturing device thereof