JPH01212418A - Manufacture of rare-earth magnet - Google Patents

Manufacture of rare-earth magnet

Info

Publication number
JPH01212418A
JPH01212418A JP3809688A JP3809688A JPH01212418A JP H01212418 A JPH01212418 A JP H01212418A JP 3809688 A JP3809688 A JP 3809688A JP 3809688 A JP3809688 A JP 3809688A JP H01212418 A JPH01212418 A JP H01212418A
Authority
JP
Japan
Prior art keywords
magnet
anisotropic
rare earth
manufacturing
given
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3809688A
Other languages
Japanese (ja)
Other versions
JP2563438B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Seiji Kojima
小嶋 清司
Shigeru Kojima
小嶋 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63038096A priority Critical patent/JP2563438B2/en
Publication of JPH01212418A publication Critical patent/JPH01212418A/en
Application granted granted Critical
Publication of JP2563438B2 publication Critical patent/JP2563438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make it possible to obtain an anisotropic magnetic magnet by a method wherein a part in which a tensile distortion is given in the axial direction of a magnet and a compressive distortion is intensely given in radial direction along the circumferential direction on the outer circumferential part or on the inner circumferential part and another part in which a compressive distortion is given in the degree lower than the above are repeatedly formed. CONSTITUTION:A tensile distortion is given in the axial direction of the magnet obtained using the alloy mainly composed of Fe, R and B, and besides, an extrusion processing is conducted in such a manner that a part A, where a compressive distortion is strongly given in the direction (radial direction) in parallel with the plane surface vertical to the radial direction, and a part B, where the compressive distortion of the degree lower than that of said part A is given, will be formed repeatedly. As above-mentioned, a tensile distortion is given in axial direction, a plastic processing is conducted on the part A, a circumferential anisotropic structure is maintained on the part B, and the anisotropic direction is slowly changed on the boundary part of both of them. As a result, an anisotropic magnet of the composite structure having three different anisotropic structures can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希土類磁石の製造法に関し、特に。[Detailed description of the invention] Industrial applications TECHNICAL FIELD The present invention relates to a method for manufacturing rare earth magnets, and in particular to a method for manufacturing rare earth magnets.

高性能な多極着磁用の鉄(F)−希土類元素(R)−ホ
ウ素(B)系の異方性永久磁石の製造法に関する。
The present invention relates to a method for manufacturing an anisotropic permanent magnet of iron (F)-rare earth element (R)-boron (B) system for high-performance multipolar magnetization.

従来の技術 従来R,Fe、B系からなる非晶質あるいは結晶質の微
細な粒子状からなる合金を用いて永久磁石を得る方法と
しては1例えば特開昭60−100402号公報に示さ
れているように塑性加工として高温圧縮、高温ダイ−ア
ップセット、押出、鍛造、あるいはローラーかけ等が開
示されている。さらに、このような高温処理(塑性加工
)した磁石の最大の磁気特性は、処理の方向に平行(流
れの方向に垂直)に配列することも示されている。
2. Description of the Related Art Conventionally, a method for obtaining a permanent magnet using an alloy consisting of amorphous or crystalline fine particles consisting of R, Fe, and B systems is disclosed in JP-A-60-100402, for example. As mentioned above, high-temperature compression, high-temperature die-up setting, extrusion, forging, rolling, etc. are disclosed as plastic working. Furthermore, it has been shown that the maximum magnetic properties of magnets subjected to such high temperature treatment (plastic working) are aligned parallel to the direction of treatment (perpendicular to the direction of flow).

発明が解決しようとする課題 しかし、前記公知例では、高性能なモータ用の異方性磁
石が得られていない。
Problems to be Solved by the Invention However, the above-mentioned known examples do not provide a high-performance anisotropic magnet for motors.

本発明は、前述したようにR,Fe、B系からなる非晶
質あるいは結晶質の微細な粒子状からなる合金を用いて
、永久磁石を得る方法において、前記従来例でみられる
ように高性能なモータ用の異方性磁石が得られていない
点を解決するものである。
As described above, the present invention provides a method for obtaining a permanent magnet using an alloy consisting of amorphous or crystalline fine particles consisting of R, Fe, and B systems, which has a high This solves the problem that high-performance anisotropic magnets for motors have not been obtained.

課題を解決するための手段 以上の課題を解決するために本発明は、FaとRとBを
主成分とする合金を用いて得られた磁石に、軸方向には
引張ひずみを与え、さらに、外周部あるいは内周部を周
方向に治って、軸方向に垂直な平面に平行な方向(径方
向)に圧縮ひずみを強く与える土部とこの土部よりも弱
い圧縮ひずみを与えるB部とを繰り返し形成するような
押出加工を行うも、のである。または同合金からなる任
意の平面に平行な方向に磁化優位方向を有する異方性磁
石に、外周部あるいは内周部を周方向に沿って、平面に
平行な方向(径方向)に圧縮ひずみを強く与える土部と
この土部より弱く圧縮ひずみを与えるB部とを繰り返し
形成するような塑性加工を施すことを特徴とする。
Means for Solving the Problems In order to solve the problems above, the present invention applies tensile strain in the axial direction to a magnet obtained using an alloy containing Fa, R, and B as main components, and further, A soil section that cures the outer or inner circumference in the circumferential direction and applies a strong compressive strain in a direction (radial direction) parallel to a plane perpendicular to the axial direction, and a section B that applies a weaker compressive strain than this soil section. This also applies to extrusion processing that involves repeated formation. Or, an anisotropic magnet made of the same alloy and having a dominant magnetization direction parallel to an arbitrary plane is subjected to compressive strain in the direction parallel to the plane (radial direction) along the circumferential direction of the outer or inner circumference. It is characterized by performing plastic working to repeatedly form a soil part that applies a strong strain and a part B that gives a compressive strain weaker than this soil part.

作用 前述した方法によって、つまり外周部あるいは内周部を
周方向に溢って、径方向に圧縮ひずみを強く与える五部
とこの土部よりも弱い圧縮ひずみを与えるB部とを繰り
返し形成することによって。
Effect: By the method described above, in other words, by overflowing the outer or inner circumferential portion in the circumferential direction, the five portions that give a strong compressive strain in the radial direction and the B portion that give a weaker compressive strain than this soil portion are repeatedly formed. By.

多極着磁した場合に優れた磁気特性を示す異方性磁石を
得ることができる。
An anisotropic magnet that exhibits excellent magnetic properties when magnetized with multiple poles can be obtained.

実施例 本発明の一つは、Fe、R(例えば[11あるいはPr
  )およびBを主成分とする合金を用いて得られた磁
石に軸方向には引張ひずみを与え、さらに、外周部ある
いは内周部を周方向に清って、軸方向に垂直な平面に平
行な方向(径方向)に圧縮、ひずみを強く与える五部と
、この入部よりも弱い圧縮ひずみを与えるB部とを繰り
返し形成するような押出加工を施す。また本発明の第2
の実施態様としては同合金からなる任意の平面に平行な
方向に磁化優位方向を有する異方性磁石に、外周部ある
いは内周部を周方向に沿って、平面に平行な方向(径方
向)に圧縮ひずみを強く与える土部と。
Embodiments One of the aspects of the present invention is that Fe, R (e.g. [11 or Pr
) and B-based alloys are subjected to tensile strain in the axial direction, and the outer or inner periphery is cleaned in the circumferential direction so as to be parallel to a plane perpendicular to the axial direction. An extrusion process is performed to repeatedly form the 5 part which applies a strong compression and strain in the direction (radial direction) and the B part which gives a weaker compressive strain than the entry part. Also, the second aspect of the present invention
As an embodiment, an anisotropic magnet made of the same alloy and having a dominant magnetization direction in a direction parallel to an arbitrary plane, has an outer circumference or an inner circumference along the circumferential direction, and a direction parallel to the plane (radial direction). The soil section applies strong compressive strain to the soil.

との五部よりも弱い圧縮ひずみを与えるB部とを繰り返
し形成するような塑性加工を施すことによって、多極着
磁時の磁気特性を向上させるものである。
The magnetic properties at the time of multi-pole magnetization are improved by performing plastic working to repeatedly form part B which gives a weaker compressive strain than part 5.

第1の方法では、軸方向に引張ひずみを与えることによ
って、第2の加工初期とほぼ同じ状態の異方性構造にす
る。
In the first method, a tensile strain is applied in the axial direction to create an anisotropic structure in almost the same state as at the beginning of the second process.

五部に施す塑性加工では、加工によって異方性構造を変
えることができるため、複合構造の異方性磁石を得るこ
とが可能となる。例えば、加工前の磁石が任意の平面に
垂直な軸を特徴とする特許円の周方向に磁化優位方向を
有する磁石、つまり周異方性磁石であれば1本発明の塑
性加工を行なうことによって、加工した部分は径方向の
磁気特性が向上し、径方向が磁化容易方向となり、B部
は周異方性構造を保存する。さらに1両者の境界部では
、異方性方向が徐々に変化する中間部となるため、大き
く分けて3つの異なる異方性構造を有する複合構造の異
方性磁石が得られる。より。
In the plastic working performed on the five parts, the anisotropic structure can be changed by the working, so it is possible to obtain an anisotropic magnet with a composite structure. For example, if the magnet before processing is a magnet having a dominant magnetization direction in the circumferential direction of a patent circle characterized by an axis perpendicular to an arbitrary plane, that is, a circumferentially anisotropic magnet, the plastic working of the present invention can be performed. The magnetic properties in the radial direction of the part B are improved, and the radial direction becomes the direction of easy magnetization, and the part B maintains the circumferential anisotropic structure. Furthermore, since the boundary between the two is an intermediate portion where the anisotropy direction gradually changes, an anisotropic magnet with a composite structure having roughly three different anisotropic structures can be obtained. Than.

正確には多極着磁した場合の磁石内部に形成される磁路
に沿った方向に異方性化した構造となる。
To be precise, the structure is anisotropic in the direction along the magnetic path formed inside the magnet when it is multi-pole magnetized.

加工前の異方性磁石が任意の平面内の全ての方向に平行
に磁化容易方向を有するものであれば、多極着磁した時
に、磁極となる部分を凸部とすれば着磁時の表面磁束密
度は改善される。さらに、加工前の磁石が任意の平面に
平行な放射状の方向に磁化優位方向を有する径異方性磁
石であっても同様である。
If the anisotropic magnet before processing has an easy magnetization direction parallel to all directions in an arbitrary plane, when multi-pole magnetized, if the part that becomes the magnetic pole is a convex part, the Surface magnetic flux density is improved. Furthermore, the same applies even if the magnet before processing is a radially anisotropic magnet having a dominant magnetization direction in a radial direction parallel to an arbitrary plane.

さらに、前記の磁石の実用的な形状は一般には円柱体あ
るいは円筒体である。また、実用的な面から円柱状の磁
石の外周部、内周部あるいは中心部に他の異種金属等が
存在する状態で共に塑性加工を行なっても良い。こうす
ることによシ最終形状の磁石に加工するにあたり、シャ
フトを取付けやすくしたり、強度向上を計ったりあるい
は不要な磁石量を軽減したりすることが可能である。
Furthermore, the practical shape of the magnet is generally a cylinder or a cylinder. Further, from a practical point of view, plastic working may be performed with other dissimilar metals present on the outer periphery, inner periphery, or center of the cylindrical magnet. By doing this, when processing the magnet into the final shape, it is possible to make it easier to attach the shaft, improve the strength, or reduce the amount of unnecessary magnets.

本発明で示しているF・ 、R(例えばNdあるいはP
r )およびBを主成分とする合金とは、前記公知技術
に示されているような、公知の永久磁石用組成のR−F
e−B系の合金磁石組成であればよい。F・以外には1
eとCo、Ni、OrあるいはMn (の内1つまたは
2つ以上)であり、さらに基本3元素以外に磁気特性の
向上あるいは各種の性質改善のための各種の添加元素あ
るいは若干の不純物からなる合金でも良い。
F・, R (for example, Nd or P) shown in the present invention
r ) and B as the main components are R-F having a known composition for permanent magnets as shown in the above-mentioned known technology.
Any e-B alloy magnet composition may be used. 1 except F.
e, Co, Ni, Or, or Mn (one or more of them), and in addition to the three basic elements, it also contains various additive elements or some impurities to improve magnetic properties or various properties. An alloy may also be used.

塑性加工条件としては、s o O’C〜1100’C
の温度範囲において加工は行なえたが、900℃以上で
は磁石の保磁力はかなり低下した。望ましくはSOO℃
〜aOO℃の温度範囲である。
The plastic working conditions are s o O'C ~ 1100'C
Although processing was possible in the temperature range of 900°C or higher, the coercive force of the magnet decreased considerably. Preferably SOO℃
The temperature range is ~aOO°C.

次に本発明の更に具体的な実施例について説明する。Next, more specific embodiments of the present invention will be described.

(実施例1) 分析組成で68.4 m!L!I!I%(以下%とする
)のFe 、 29.2%のHa、o、y7%のBおよ
び1.60%のPrからなる外径30Jrll、内径1
0ff、長さ20ffの円筒状の合金磁石1を第1図に
示したような金型を用いて円筒磁石の外周部に凸部とB
部を形成した。
(Example 1) 68.4 m according to the analytical composition! L! I! I% (hereinafter referred to as %) of Fe, 29.2% of Ha, O, y7% of B and 1.60% of Pr, outer diameter 30Jrll, inner diameter 1
A cylindrical alloy magnet 1 with a length of 20 ff and a length of 20 ff is molded using a mold as shown in FIG.
The division was formed.

用いた円筒磁石1は試料ムが周異方性磁石であり、試料
Bが径方向と周方向を含む全ての方向に磁化優位方向を
有する磁石(面異方性磁石)であり、試料Cが径異方性
磁石であった。
In the cylindrical magnet 1 used, Sample M is a circumferentially anisotropic magnet, Sample B is a magnet (planar anisotropic magnet) having dominant magnetization directions in all directions including the radial direction and the circumferential direction, and Sample C is a circumferentially anisotropic magnet. It was a directional magnet.

第1図において、ダイス2の下部(断面は第1図すに示
す)の凸部2&の内径は26jfllであり、ポンチ4
の直径は1g1111であった。加工は、700℃の温
度で行なった。なお3もポンチである。
In FIG. 1, the inner diameter of the convex portion 2& on the lower part of the die 2 (the cross section is shown in FIG. 1) is 26jfll, and the punch 4
The diameter was 1g1111. Processing was carried out at a temperature of 700°C. Note that 3 is also a punch.

本発明によって得られた磁石と公知の単純な径異方性磁
石をそれぞれ外径26ffにして、外周面に10極の外
周着磁を行なった。着磁は、2000μFのオイルコン
デンサーを用い、1500Vでパルス着磁した。外周表
面の表面磁束密度をホール素子で測定した。
The magnet obtained by the present invention and a known simple radially anisotropic magnet were each made to have an outer diameter of 26 ff, and their outer peripheral surfaces were magnetized with 10 poles. Magnetization was carried out using a 2000 μF oil capacitor and pulsed magnetization at 1500V. The surface magnetic flux density on the outer peripheral surface was measured using a Hall element.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、加工前の磁石のそれの試料ムで
は、約1.4倍で、試料Bでは、約1.3倍で、試料C
では、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is about 1.4 times that of the magnet before processing, and about 1.4 times that of the sample B of the magnet before processing. At 3x magnification, sample C
So it was about 1.2 times.

さらに、磁気トルク測定等の詳細な実験の結果。Furthermore, the results of detailed experiments such as magnetic torque measurements.

本発明によって得られた磁石は磁石内部に形成される磁
路に沿った方向に異方性化した磁石であった。この磁石
は、鉄−希土類元素−ホウ素系磁石において、これまで
に類のない高性能な異方性永久磁石である。
The magnet obtained by the present invention was an anisotropic magnet in the direction along the magnetic path formed inside the magnet. This magnet is an anisotropic permanent magnet with unprecedented high performance among iron-rare earth element-boron magnets.

(実施例2) 実施例1と同様に、試料ムが周異方性磁石であり、試料
Bが面異方性磁石であり、試料Cが径異方性磁石である
3つのタイプの外径が30JJ内径が121nI、長さ
がIQjrlの円筒状の磁石に第2図に示すような金型
を用いて内周部に凸部とB部を形成するような塑性加工
を施した。
(Example 2) As in Example 1, the outer diameters of the three types are 30 JJ, in which sample M is a circumferential anisotropic magnet, sample B is a planar anisotropic magnet, and sample C is a radial anisotropic magnet. A cylindrical magnet with an inner diameter of 121 nI and a length of IQjrl was plastically worked to form a convex portion and a B portion on the inner circumference using a mold as shown in FIG.

第2図において、マンドレル6の下部の凸部5aの径は
16jffであり、外型6の内径は30jffであった
。加工は、700”Cの温度で行なった。
In FIG. 2, the diameter of the convex portion 5a at the lower part of the mandrel 6 was 16jff, and the inner diameter of the outer mold 6 was 30jff. Processing was carried out at a temperature of 700"C.

なお41Lはポンチである。Note that 41L is a punch.

(実施例1)と同様にして、径異方性磁石と本発明によ
って得られた加工後の磁石をそれぞれ内径16JIII
にして、内周面に8極の内周着磁を行ない、内周表面の
表面磁束密度を測定した。
In the same manner as in (Example 1), a diameter anisotropic magnet and a processed magnet obtained by the present invention were each prepared with an inner diameter of 16JIII.
Then, the inner peripheral surface was magnetized with eight poles, and the surface magnetic flux density of the inner peripheral surface was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、加工前の磁石のそれの試料ムで
は、約1.4倍で、試料Bでは、約1.3倍で、試料C
では、約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is about 1.4 times that of the magnet before processing, and about 1.4 times that of the sample B of the magnet before processing. At 3x magnification, sample C
So it was about 1.2 times.

さらに、磁気トルク測定等の詳細な実験の結果。Furthermore, the results of detailed experiments such as magnetic torque measurements.

本発明によって得られた磁石は内周面に多極着磁した場
合に、磁石内部に形成される磁路に沿った方向に異方性
化した磁石であった0この磁石は、鉄−希土類元素−ホ
ウ素系磁石において、これまでに類のない高性能な異方
性永久磁石である。
The magnet obtained by the present invention was a magnet that became anisotropic in the direction along the magnetic path formed inside the magnet when the inner peripheral surface was magnetized with multiple poles. This is an anisotropic permanent magnet with unprecedented high performance among element-boron magnets.

(実施例3) 実施例1で示した同じ分析組成からなる外径34H1内
径10MII、長さ20MMの円筒状の合金磁石を第1
図に示したような金型を用いて押出加工した。
(Example 3) A cylindrical alloy magnet with an outer diameter of 34H, an inner diameter of 10MII, and a length of 20MM and having the same analytical composition as shown in Example 1 was used as the first magnet.
Extrusion processing was performed using a mold as shown in the figure.

用いた円節磁石は等方性であった。The nodal magnet used was isotropic.

第1図において、ダイス2の下部の凸部の内径は28j
lffであシ、ポンチ4の直径は10ffであった。加
工は、700℃の温度で行なった。
In Figure 1, the inner diameter of the convex portion at the bottom of die 2 is 28j.
The diameter of the punch 4 was 10ff. Processing was carried out at a temperature of 700°C.

本発明によって得られた磁石を(実施例1)と同様に、
外径26mにして、外周面に10Wiの外周着磁を行な
い、表面磁束密度を測定した。
Similarly to (Example 1), the magnet obtained according to the present invention was
The outer diameter was set to 26 m, the outer peripheral surface was magnetized to 10 Wi, and the surface magnetic flux density was measured.

本実施例の方法で得た磁石は、(実施例1)での試料C
と同様の表面磁束密度値を示した。
The magnet obtained by the method of this example is the sample C in (Example 1)
showed similar surface magnetic flux density values.

さらに、磁気トルク測定等の詳細な実験の結果、(実施
例1)での試料Cと同様の異方性化した磁石であった。
Further, as a result of detailed experiments such as magnetic torque measurement, it was found that the magnet had the same anisotropy as Sample C in (Example 1).

発明の効果 本発明は、実施例によって述べたように、Fe。Effect of the invention As described in the examples, the present invention is based on Fe.

R(例えばHaあるいはPr )およびBを主成分とす
る合金磁石を(あるいは任意の平面に平行な方向に磁化
優位方向を有する異方性磁石を)、外周部あるいは内周
部を周方向に沿って、径方向に圧縮ひずみを強く与える
凸部と、この凸部よシ弱い圧縮ひずみを与えるB部とを
繰り返し形成するような加工を施すことによシ、非常に
優れた高性能な多極着磁用の異方性磁石を得るものであ
る。
An alloy magnet whose main components are R (e.g. Ha or Pr) and B (or an anisotropic magnet with a dominant magnetization direction parallel to an arbitrary plane) is formed along the circumferential direction on the outer or inner periphery. By repeatedly forming a convex part that applies a strong compressive strain in the radial direction and a part B that gives a weak compressive strain to this convex part, we have created an extremely high-performance multipole. This is to obtain an anisotropic magnet for magnetization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、および第2図は本発明の塑性加工の一例を示す
金型の一部の断面図である。 1・・・・・・磁石、2・・・・・・ダイス、3,4,
41L・・・・・・ポンチ、6・・・・・・マンドレル
、6・・・・・・外型。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIGS. 1 and 2 are cross-sectional views of a part of a mold showing an example of plastic working of the present invention. 1...Magnet, 2...Dice, 3,4,
41L...Punch, 6...Mandrel, 6...External mold. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (12)

【特許請求の範囲】[Claims] (1)鉄と希土類元素とホウ素を主成分とする合金を用
いて得られた磁石に、軸方向には引張ひずみを与え、さ
らに、外周部あるいは内周部を周方向に沿って、軸方向
に垂直な平面に平行な方向(径方向)に圧縮ひずみを強
く与えるA部とこのA部よりも弱い圧縮ひずみを与える
B部とを繰り返し形成するような押出加工を行う希土類
磁石の製造法。
(1) Tensile strain is applied in the axial direction to a magnet obtained using an alloy whose main components are iron, rare earth elements, and boron. A method for producing a rare earth magnet, in which an extrusion process is performed to repeatedly form part A, which applies a strong compressive strain in a direction (radial direction) parallel to a plane perpendicular to the plane, and part B, which gives a weaker compressive strain than part A.
(2)異方性磁石の形状が円柱体である特許請求の範囲
第1項に記載の希土類磁石の製造法。
(2) The method for manufacturing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a cylindrical shape.
(3)異方性磁石の形状が円筒体である特許請求の範囲
第1項に記載の希土類磁石の製造法。
(3) The method for producing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a cylindrical shape.
(4)異方性磁石が任意の平面内の全ての方向に平行に
磁化容易方向を有する特許請求の範囲第1項に記載の希
土類磁石の製造法。
(4) The method for producing a rare earth magnet according to claim 1, wherein the anisotropic magnet has an easy magnetization direction parallel to all directions in an arbitrary plane.
(5)異方性磁石が任意の平面に平行な放射状の方向に
磁化優位方向を有する特許請求の範囲第1項に記載の希
土類磁石の製造法。
(5) The method for manufacturing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a dominant magnetization direction in a radial direction parallel to an arbitrary plane.
(6)異方性磁石が任意の平面に垂直な軸を中心とする
同心円の周方向に磁化優位方向を有する特許請求の範囲
第1項に記載の希土類磁石の製造法。
(6) The method for manufacturing a rare earth magnet according to claim 1, wherein the anisotropic magnet has a dominant direction of magnetization in the circumferential direction of concentric circles centered on an axis perpendicular to an arbitrary plane.
(7)鉄と希土類元素とホウ素を主成分とする合金を用
いて得られた任意の平面に平行な方向に磁化優位方向を
有する異方性磁石に、外周部あるいは内周部を周方向に
沿って、軸方向に垂直な平面に平行な方向(径方向)に
圧縮ひずみを強く与えるA部とこのA部よりも弱い圧縮
ひずみを与えるB部とを繰り返し形成するような押出加
工を行う希土類磁石の製造法。
(7) An anisotropic magnet with a dominant magnetization direction parallel to an arbitrary plane obtained using an alloy whose main components are iron, rare earth elements, and boron. Rare earth metals are extruded to repeatedly form part A, which gives a strong compressive strain in the direction (radial direction) parallel to a plane perpendicular to the axial direction, and part B, which gives a weaker compressive strain than part A. How to manufacture magnets.
(8)異方性磁石の形状が円柱体である特許請求の範囲
第7項に記載の希土類磁石の製造法。
(8) The method for manufacturing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a cylindrical shape.
(9)異方性磁石の形状が円筒体である特許請求の範囲
第7項に記載の希土類磁石の製造法。
(9) The method for manufacturing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a cylindrical shape.
(10)異方性磁石が任意の平面内の全ての方向に平行
に磁化容易方向を有する特許請求の範囲第7項に記載の
希土類磁石の製造法。
(10) The method for manufacturing a rare earth magnet according to claim 7, wherein the anisotropic magnet has an easy magnetization direction parallel to all directions within an arbitrary plane.
(11)異方性磁石が任意の平面に平行な放射状の方向
に磁化優位方向を有する特許請求の範囲第7項に記載の
希土類磁石の製造法。
(11) The method for manufacturing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a dominant magnetization direction in a radial direction parallel to an arbitrary plane.
(12)異方性磁石が任意の平面に垂直な軸を中心とす
る同心円の周方向に磁化優位方向を有する特許請求の範
囲第7項に記載の希土類磁石の製造法。
(12) The method for manufacturing a rare earth magnet according to claim 7, wherein the anisotropic magnet has a dominant magnetization direction in the circumferential direction of concentric circles centered on an axis perpendicular to an arbitrary plane.
JP63038096A 1988-02-19 1988-02-19 Rare earth magnet manufacturing method Expired - Lifetime JP2563438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038096A JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038096A JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01212418A true JPH01212418A (en) 1989-08-25
JP2563438B2 JP2563438B2 (en) 1996-12-11

Family

ID=12515944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038096A Expired - Lifetime JP2563438B2 (en) 1988-02-19 1988-02-19 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2563438B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210260A (en) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) * 1986-04-17 1987-10-28 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPH01151215A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210260A (en) * 1985-07-05 1987-01-19 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) * 1986-04-17 1987-10-28 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPH01151215A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet

Also Published As

Publication number Publication date
JP2563438B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US4648915A (en) Permanent Mn-Al-C alloy magnets
JPH01212418A (en) Manufacture of rare-earth magnet
JP2563407B2 (en) Rare earth magnet manufacturing method
JP2558760B2 (en) Anisotropic permanent magnet
JP2563404B2 (en) Anisotropic permanent magnet
JPH0663071B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210260A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH01115104A (en) Manufacture of rare earth magnet
JPH01151208A (en) Anisotropic permanent magnet
JPH0311521B2 (en)
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0821495B2 (en) Anisotropic permanent magnet
JPH0218905A (en) Radial anisotropic rare earth magnet
JPH01115106A (en) Manufacture of rare earth magnet
JPH01114007A (en) Manufacture of rare earth magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet