JP2534967B2 - Method for forming shallow junction of semiconductor device by double implantation - Google Patents

Method for forming shallow junction of semiconductor device by double implantation

Info

Publication number
JP2534967B2
JP2534967B2 JP5147674A JP14767493A JP2534967B2 JP 2534967 B2 JP2534967 B2 JP 2534967B2 JP 5147674 A JP5147674 A JP 5147674A JP 14767493 A JP14767493 A JP 14767493A JP 2534967 B2 JP2534967 B2 JP 2534967B2
Authority
JP
Japan
Prior art keywords
silicon layer
source
implantation
implanting
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5147674A
Other languages
Japanese (ja)
Other versions
JPH0661170A (en
Inventor
禹奉 李
尚棋 洪
基根 孫
在浣 高
一善 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JPH0661170A publication Critical patent/JPH0661170A/en
Application granted granted Critical
Publication of JP2534967B2 publication Critical patent/JP2534967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二重注入(Doubl
e Implantation)による半導体素子の浅
い接合の形成方法に関するものであり、特に、半導体素
子で浅い接合を形成するためにシリコン層に1段階で4
9BF2 ソースを注入し、2段階で11Bソースを注入
する、浅い接合の形成方法に関するものである。
FIELD OF THE INVENTION The present invention relates to double injection (Double).
The present invention relates to a method for forming a shallow junction of a semiconductor device by means of an e-implantation method, and in particular, in order to form a shallow junction in a semiconductor device, the step of forming a shallow junction in a silicon layer is performed in four steps.
The present invention relates to a method for forming a shallow junction in which a 9BF 2 source is injected and an 11B source is injected in two steps.

【0002】[0002]

【従来の技術】一般的に半導体素子の製造のとき、1つ
のタイプを持つシリコン層に他のタイプを持つ不純物ソ
ースを注入して接合を形成する。たとえば、PMOSF
ETを形成するためには、N型シリコン層の上部にゲー
ト酸化膜とゲート電極を形成し、Pタイプの不純物ソー
スをシリコン層に注入してソース/ドレインを形成す
る。
2. Description of the Related Art Generally, in manufacturing a semiconductor device, a junction is formed by implanting an impurity source having another type into a silicon layer having one type. For example, PMOSF
To form ET, a gate oxide film and a gate electrode are formed on an N-type silicon layer, and a P-type impurity source is implanted into the silicon layer to form a source / drain.

【0003】しかしながら、不純物ソースがかなり深く
シリコン層に注入されて深い接合(Deep Junc
tion)を形成する場合、サブミクロン(Sub−M
icron)級のMOSFETでは、ショートチャンネ
ル効果(Short Cha1nel Effec
t)、深いパンチスルー(Deep Punch−Th
rough)によるリーク電流の増加、消費電力の増加
および耐圧(Break−Down Voltage)
が低下する、といった短所が発生する。
However, the impurity source is injected into the silicon layer considerably deeply and deep junction (Deep Junc) is performed.
sub-micron (Sub-M)
The short channel effect (Short Cha1nel Effec) is used in the (icron) class MOSFET.
t), deep punch-through (Deep Punch-Th)
increase in leak current, increase in power consumption and breakdown voltage (Break-Down Voltage)
However, there are disadvantages such as decrease in

【0004】従来の技術によって、N型シリコン層にP
型不純物ソースを予定の条件で注入して接合を形成する
方法は次のとおりである。
By the conventional technique, P is formed on the N-type silicon layer.
A method of implanting a type impurity source under predetermined conditions to form a junction is as follows.

【0005】第1は、11Bをたとえば30〜35Ke
Vエネルギーと、1×1012cm-2のドース(dos
e)量(不純物注入量)でN型シリコン層に注入する方
法がある。
First, 11B is, for example, 30 to 35 Ke.
V energy and 1 × 10 12 cm -2 dose (dos)
e) There is a method of implanting an amount (impurity implant amount) into the N-type silicon layer.

【0006】第2は、1段階で11Bをたとえば30〜
35KeVエネルギーと、1×1011cm-2の不純物注
入量でN型シリコン層に注入し、2段階で11Bをたと
えば30〜35KeVエネルギーと、1×1012cm-2
の不純物注入量でN型シリコン層に注入する方法があ
る。
Second, 11B in one step, for example 30 ~.
35 KeV energy and 1 × 10 11 cm −2 impurity implantation amount are implanted into the N-type silicon layer, and 11B is provided in two steps, for example, 30 to 35 KeV energy and 1 × 10 12 cm −2.
There is a method of implanting into the N-type silicon layer with the impurity implantation amount of.

【0007】第3は、49BF2 をたとえば45KeV
エネルギーと、1×1012cm-2の不純物注入量でN型
シリコン層に注入する方法等がある。
[0007] Third, 49 BF 2 is, for example, 45 KeV
There is a method of implanting into the N-type silicon layer with energy and an impurity dose of 1 × 10 12 cm -2 .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
方法で接合を形成する場合、いろいろの問題点が発生す
る。
However, when forming a bond by the above method, various problems occur.

【0009】第1の方法は、一番簡単な接合を形成する
方法であるが、半導体素子の製造のとき、P−チャンネ
ルのしきい値(threshold)電圧だけでなく、
N−チャンネルのしきい値電圧をも考慮すべきであるの
で、N−チャンネルのしきい値電圧を調節のための追加
的な工程が必要となる。
The first method, which is the simplest method of forming a junction, is not limited to the threshold voltage of the P-channel in the manufacture of semiconductor devices.
Since the N-channel threshold voltage should also be considered, an additional step for adjusting the N-channel threshold voltage is required.

【0010】第2の方法は、N−チャンネルのしきい値
電圧を調節する注入工程とP−チャンネルのしきい値電
圧を調節する注入工程のとき、注入される不純物注入量
を適当に調節し、上記の第1の方法の短所を補完した方
法である。この第2の方法は、上記の第1の方法と同様
に、11Bソースがもたらす特性のため、深い接合(D
eep Junction)が形成される。
The second method is to appropriately adjust the amount of impurities to be injected during the implantation process for adjusting the threshold voltage of the N-channel and the implantation process for adjusting the threshold voltage of the P-channel. This is a method that complements the disadvantages of the first method described above. This second method, like the first method above, has a deep junction (D
eeep Junction) is formed.

【0011】第3の方法は、大きい質量値を持つ49B
2 ソースをシリコン層に注入することによって、シリ
コン層の表面に損傷(damage)を与えることにな
る。この損傷は、キャリアを捕獲(trapping)
する役割をすることになって、移動度が減少する現象が
発生する。また、49BF2 ソースは飛程(pathl
ength)が短いので、全体的なドーパント(dop
ant)の均一性の制御が難しい。
The third method is 49B having a large mass value.
Implanting the F 2 source into the silicon layer will damage the surface of the silicon layer. This damage traps carriers.
As a result, the phenomenon that the mobility is reduced occurs. In addition, the 49BF 2 source has a range (pathl
Due to its short length, the overall dopant (dop)
It is difficult to control the uniformity of ant).

【0012】上記の従来の技術でシリコン層に不純物ソ
ースを注入した後、シリコン層の損傷程度をテストした
TWマップ(Thermal Wave Map)によ
って測定した標準偏差と、シリコン層に不純物ソースを
注入させた後、950℃で30分アニールした後、接合
の深さを測定したデータを表1に示す。
After implanting the impurity source into the silicon layer by the conventional technique described above, the standard deviation measured by the TW map (Thermal Wave Map) in which the degree of damage to the silicon layer was tested, and the impurity source were implanted into the silicon layer. After that, after annealing at 950 ° C. for 30 minutes, data of measuring the junction depth are shown in Table 1.

【0013】[0013]

【表1】 上記の表1で表したとおり、第2の方法はTWマップの
標準偏差が一番小さいが接合の深さが深く、第3の方法
は接合の深さは一番浅いがTWマップの標準偏差が一番
大きく表れることがわかる。
[Table 1] As shown in Table 1 above, the second method has the smallest standard deviation of the TW map but the deepest junction depth, and the third method has the smallest junction depth but the standard deviation of the TW map. You can see that is the largest.

【0014】本発明の目的は、上記の従来技術の接合深
さが深くなる問題点と、イオン注入されるドーパントの
均一性を表すTWマップの標準偏差が大きく表れる問題
点を解決することができる、二重注入による半導体素子
の浅い接合の形成方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems of deepening the junction depth and the problem that the standard deviation of the TW map showing the uniformity of the implanted dopant is large. A method of forming a shallow junction of a semiconductor device by double implantation is provided.

【0015】[0015]

【課題を解決するための手段】この発明による二重注入
による半導体素子の浅い接合の形成方法は、注入工程に
より半導体素子の接合領域を形成する方法において、N
型シリコン層に1段階で49BF2 ソースを45KeV
のエネルギと2.0×1011cm-2の不純物注入量で注
入する工程と、2段階で11Bソースを35KeVのエ
ネルギと1.15×1012cm-2の不純物注入量で注入
する工程とを備え、1段階の49BF2ソースのシリコ
ン層への注入により、シリコン層の表面でBF2 ソース
が衝突してBとF2 イオンに分離されてシリコン層内に
注入されながら、シリコン層の単結晶シリコン格子構造
に格子変位が発生して疑似アモルファス領域に変化する
ことを特徴としている。
A method of forming a shallow junction of a semiconductor device by double implantation according to the present invention is a method of forming a junction region of a semiconductor device by an implantation process, wherein N
-Type silicon layer with one step of 49BF 2 source 45 KeV
Energy and an impurity implantation amount of 2.0 × 10 11 cm −2 , and a step of implanting an 11B source with energy of 35 KeV and an impurity implantation amount of 1.15 × 10 12 cm −2 in two steps. The single step implantation of the 49BF 2 source into the silicon layer allows the BF 2 source to collide with the surface of the silicon layer to be separated into B and F 2 ions and to be implanted into the silicon layer. It is characterized in that a lattice displacement occurs in the crystalline silicon lattice structure and changes into a pseudo-amorphous region.

【0016】[0016]

【作用】本発明によれば、49BF2 の短い飛程と大き
い質量によってシリコン層の一定の深さが格子変位(L
attice Shift)される特性と、11Bソー
スの注入されたドーパントの均一性の制御が容易である
という特性を利用している。
According to the present invention, due to the short range of 49 BF 2 and the large mass, a constant depth of the silicon layer can cause a lattice displacement (L
The characteristic is that it is easily shifted and the uniformity of the implanted dopant of the 11B source is easily controlled.

【0017】[0017]

【実施例】以下、本発明の一実施例を、添付した図面を
参照して説明すれば次のとおりである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention with reference to the accompanying drawings.

【0018】本発明は、N型シリコン層に1段階で49
BF2 ソースを、45KeVエネルギーにて2.0×1
11cm-2の不純物注入量で注入した後、2段階で11
Bソースを35KeVエネルギーにて1.15×1012
cm-2の不純物注入量で注入する方法である。
The present invention provides a 49-step N-type silicon layer in one step.
BF 2 source 2.0 × 1 at 45 KeV energy
After implantation with an impurity implantation amount of 0 11 cm -2 , 11 in 2 steps
B source at 35 KeV energy 1.15 × 10 12
This is a method of implanting with an impurity dose of cm −2 .

【0019】図1は、本発明の一実施例によりN型シリ
コン層に1段階注入工程で49BF2 ソースを注入する
ことにより、単結晶シリコン結晶構造に格子変位が発生
した状態を示す図である。
FIG. 1 is a diagram showing a state where lattice displacement occurs in a single crystal silicon crystal structure by implanting a 49BF 2 source into an N-type silicon layer in a one-step implantation process according to an embodiment of the present invention. .

【0020】図1を参照して、本発明によりN型シリコ
ン層に49BF2 ソースを1段階に注入すれば、49B
2 ソースがシリコン層に衝突する場合11B+38F
2 に分離され、シリコン層の単結晶シリコン格子構造の
うちに浸透されながら単結晶シリコン格子構造1が変位
して疑似(quasi)アモルファス領域2が形成され
る。
Referring to FIG. 1, if a 49BF 2 source is injected in one step into an N-type silicon layer according to the present invention, 49B 2
When the F 2 source collides with the silicon layer 11B + 38F
The single crystal silicon lattice structure 1 is separated into two and is permeated into the single crystal silicon lattice structure of the silicon layer to displace the single crystal silicon lattice structure 1 to form a quasi amorphous region 2.

【0021】ここで、シリコン層の上部面を完全にアモ
ルファス格子構造に作ることになれば、2段階での11
B注入のときシリコン層の上部面に注入されたBイオン
が止まる効果は大きくなるが、後継ぎ工程の熱処理工程
でも損傷されたシリコン層の表面が完全に補償されない
ので、移動度が落ちる要因となる。したがって、1段階
の注入工程のときは、シリコン層に損傷を与えないなが
ら、格子変位を起こすことのできる程度に制御すべきで
ある。
Here, if the upper surface of the silicon layer is to be completely formed into an amorphous lattice structure, it will be 11 in two steps.
The effect of stopping the B ions implanted into the upper surface of the silicon layer at the time of the B implantation is large, but the surface of the damaged silicon layer is not completely compensated even in the heat treatment step of the subsequent step, which causes a decrease in mobility. . Therefore, during the one-step implantation process, the lattice displacement should be controlled so as not to damage the silicon layer.

【0022】図2は、本発明の一実施例によりシリコン
層に1段階注入工程後、2段階注入工程で11Bソース
をシリコン層に注入した状態を示す図である。
FIG. 2 is a view showing a state in which the 11B source is implanted into the silicon layer by the two-stage implantation process after the one-stage implantation process into the silicon layer according to one embodiment of the present invention.

【0023】図2を参照して、本発明により11Bソー
スを2段階注入し、2段階注入されるBイオンが疑似ア
モルファス領域2に多く捕獲され、その下部の単結晶シ
リコン格子構造1の一部分まで、一部のBイオンが注入
された不純物が注入された領域3ができる。また、図2
より、不純物が注入されて形成される接合の深さは、疑
似アモルファス領域2の深さよりは大きく増大されない
ことがわかる。
Referring to FIG. 2, according to the present invention, the 11B source is injected in two steps, and the B ions injected in two steps are mostly captured in the pseudo-amorphous region 2, and up to a part of the single crystal silicon lattice structure 1 thereunder. A region 3 in which some B ions are implanted and impurities are implanted is formed. FIG.
From this, it can be seen that the depth of the junction formed by implanting impurities is not increased to a greater extent than the depth of the pseudo-amorphous region 2.

【0024】上記の本発明により、シリコン層に不純物
ソースを2段階注入した後、注入工程のときシリコン層
の損傷程度をテストしたTWマップ(Thermal
Wave Map)により測定された標準偏差(δ)は
0.38%であり、シリコン層に不純物ソースを2段階
注入した後、950℃で30分間アニールした後、接合
の深さを測定してみると0.38μmであった。すなわ
ち、本発明は従来の技術と比較して、注入工程のときシ
リコン層の損傷程度をテストした標準偏差が一番小さ
い。これは、ドーパントの均一性が向上されることを意
味する。また、アニール工程の後の接合の深さは、従来
技術の第3の方法による接合の深さと同一に浅い接合を
実現することができる。
According to the present invention described above, a TW map (Thermal) in which the degree of damage to the silicon layer is tested during the implantation process after implanting the impurity source into the silicon layer in two steps.
The standard deviation (δ) measured by Wave Map is 0.38%, and after implanting the impurity source into the silicon layer in two steps, annealing is performed at 950 ° C. for 30 minutes, and then the junction depth is measured. And was 0.38 μm. That is, the present invention has the smallest standard deviation in which the degree of damage to the silicon layer is tested during the implantation process, as compared with the prior art. This means that the uniformity of the dopant is improved. Also, the junction depth after the annealing step can be as shallow as the junction depth by the third method of the prior art.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
従来の技術と比べてしきい値電圧を低下させて電力の消
費を減少させることができる。また、耐圧を向上させる
ことによって、パンチスルーによるリーク電流を減少さ
せることができる。
As described above, according to the present invention,
The threshold voltage can be lowered to reduce power consumption as compared with the conventional technology. Further, by improving the breakdown voltage, it is possible to reduce the leak current due to punch through.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によりN型シリコン層に1段
階注入工程で49BF2 ソースを注入することにより、
単結晶シリコン結晶構造に格子変位が発生した状態を示
す図である。
FIG. 1 illustrates implanting a 49BF 2 source into an N-type silicon layer in a one-step implant process according to an embodiment of the present invention.
It is a figure which shows the state which the lattice displacement generate | occur | produced in the single crystal silicon crystal structure.

【図2】本発明の一実施例によりシリコン層に1段階注
入工程後、2段階注入工程で11Bソースをシリコン層
に注入した状態を示す図である。
FIG. 2 is a view showing a state where an 11B source is injected into a silicon layer by a two-step injection process after a one-step injection process into a silicon layer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶シリコン結晶構造 2 疑似アモルファス領域 3 不純物が注入された領域 なお、各図中、同一符号は同一または相当部分を示す。 1 Single Crystal Silicon Crystal Structure 2 Pseudo Amorphous Region 3 Region Injected with Impurities In the drawings, the same reference numerals indicate the same or corresponding portions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高 在浣 大韓民国京畿道城南市壽井区太平4洞 3309−623番地 (72)発明者 玄 一善 大韓民国ソウル特別市江東区上一洞 住 公アパートメント301−405 (56)参考文献 特開 昭56−73470(JP,A) 特開 平4−246823(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kozasui, 3309-623, Taeping 4-dong, Saui-gu, Seongnam-si, Gyeonggi-do, Republic of Korea (72) Inventor Gen Ichizen, Kami-dong, Koto-gu, Seoul, Republic of Korea 301 Apartment -405 (56) Reference JP-A-56-73470 (JP, A) JP-A-4-246823 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 注入工程により半導体素子の接合領域を
形成する方法において、 N型シリコン層に1段階で49BF2 ソースを45Ke
Vのエネルギと2.0×1011cm-2の不純物注入量で
注入する工程と、 2段階で11Bソースを35KeVのエネルギと1.1
5×1012cm-2の不純物注入量で注入する工程とを備
え、 前記1段階の49BF2 ソースのシリコン層への注入に
より、シリコン層の表面でBF2 ソースが衝突してBと
2 イオンに分離されてシリコン層内に注入されなが
ら、シリコン層の単結晶シリコン格子構造に格子変位が
発生して疑似アモルファス領域に変化することを特徴と
する、二重注入による半導体素子の浅い接合の形成方
法。
1. A method for forming a junction region of a semiconductor device by an implantation process, wherein a 49BF 2 source of 45 Ke is formed in one step on an N-type silicon layer.
V energy and a step of implanting with an impurity implantation amount of 2.0 × 10 11 cm -2 , and 11B source with 35 KeV energy and 1.1 in two steps.
And a step of implanting the impurity of 5 × 10 12 cm −2. The one-step implantation of the 49BF 2 source into the silicon layer causes the BF 2 source to collide with B and F 2 at the surface of the silicon layer. While being separated into ions and injected into the silicon layer, a lattice displacement occurs in the single crystal silicon lattice structure of the silicon layer and changes into a pseudo-amorphous region. Forming method.
JP5147674A 1992-06-20 1993-06-18 Method for forming shallow junction of semiconductor device by double implantation Expired - Fee Related JP2534967B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR92P10739 1992-06-20
KR1019920010739A KR960012577B1 (en) 1992-06-20 1992-06-20 Channel formation method of double implant process

Publications (2)

Publication Number Publication Date
JPH0661170A JPH0661170A (en) 1994-03-04
JP2534967B2 true JP2534967B2 (en) 1996-09-18

Family

ID=19334985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5147674A Expired - Fee Related JP2534967B2 (en) 1992-06-20 1993-06-18 Method for forming shallow junction of semiconductor device by double implantation

Country Status (2)

Country Link
JP (1) JP2534967B2 (en)
KR (1) KR960012577B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460757B1 (en) * 2003-04-30 2004-12-14 주식회사 하이닉스반도체 Method for fabricating semiconductor device having ultra shallow super steep retrograge epi-channel formed by double channel doping

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673470A (en) * 1979-11-21 1981-06-18 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
US5155369A (en) * 1990-09-28 1992-10-13 Applied Materials, Inc. Multiple angle implants for shallow implant

Also Published As

Publication number Publication date
JPH0661170A (en) 1994-03-04
KR940001448A (en) 1994-01-11
KR960012577B1 (en) 1996-09-23

Similar Documents

Publication Publication Date Title
US6682980B2 (en) Fabrication of abrupt ultra-shallow junctions using angled PAI and fluorine implant
US6444550B1 (en) Laser tailoring retrograde channel profile in surfaces
KR100268979B1 (en) Method of fabricating semiconductor shallow junction and method of fabricating fet having shallow source and drain
EP0419128B1 (en) Silicon MOSFET doped with germanium to increase lifetime of operation
JP2000049167A (en) Silicon carbide semiconductor device and manufacture thereof
US7786025B1 (en) Activating dopants using multiple consecutive millisecond-range anneals
US6946711B2 (en) Semiconductor device
JP2003188373A (en) Semiconductor device and method of manufacturing the same
US20050136623A1 (en) Shallow amorphizing implant for gettering of deep secondary end of range defects
US20020019085A1 (en) Method of forming a gate oxide layer with an improved ability to resist the process damage
JP3123465B2 (en) Method for manufacturing MIS transistor
JP2534967B2 (en) Method for forming shallow junction of semiconductor device by double implantation
US20050112830A1 (en) Ultra shallow junction formation
US20040115889A1 (en) Ultra shallow junction formation
US6767808B2 (en) Method for fabricating semiconductor device
CN109427584B (en) Manufacturing method of semiconductor device and semiconductor device
CN112309853A (en) Preparation method of shielded gate trench structure
US5192696A (en) Field effect transistor and method of fabricating
US4839704A (en) Application of deep-junction non-self-aligned transistors for suppressing hot carriers
KR100602118B1 (en) Semiconductor device and method of manufacturing the same
KR100197120B1 (en) Method for manufacturing shallow junction of semiconductor device
KR20000053450A (en) Method of forming a transistor with improved hot carrier degradation
KR19990029502A (en) Manufacturing Method of Semiconductor Device
KR100268862B1 (en) Fabricating method for semiconductor device
JP3142614B2 (en) Method for manufacturing N-channel MOSFET

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees