JP2523929B2 - Thermoelectric device and manufacturing method thereof - Google Patents

Thermoelectric device and manufacturing method thereof

Info

Publication number
JP2523929B2
JP2523929B2 JP2097103A JP9710390A JP2523929B2 JP 2523929 B2 JP2523929 B2 JP 2523929B2 JP 2097103 A JP2097103 A JP 2097103A JP 9710390 A JP9710390 A JP 9710390A JP 2523929 B2 JP2523929 B2 JP 2523929B2
Authority
JP
Japan
Prior art keywords
metal
thermoelectric device
thin film
type
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2097103A
Other languages
Japanese (ja)
Other versions
JPH03295281A (en
Inventor
康司 中桐
文俊 西脇
義明 山本
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2097103A priority Critical patent/JP2523929B2/en
Publication of JPH03295281A publication Critical patent/JPH03295281A/en
Application granted granted Critical
Publication of JP2523929B2 publication Critical patent/JP2523929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしく
は暖房を行う空調装置、もしくはゼーベック効果により
温度差を用いて発電を行う発電装置等に有用な熱電装置
及びその製造方法に関する。
TECHNICAL FIELD The present invention is useful for an air conditioner that electrically cools or heats by utilizing the Peltier effect, or a power generator that uses the temperature difference due to the Seebeck effect to generate electricity. The present invention relates to a thermoelectric device and a manufacturing method thereof.

従来の技術 従来、熱を電気に変換し、もしくは電気を熱に変換す
る熱電素子は、第7図に示すように金属板1および金属
板2によってN型半導体3、もしくはP型半導体4を挟
み込み、金属板1または2、もしくはその両方に基板7
を張り付けて熱電素子を保持する構成を有しており、両
側の金属板に温度差を与えることにより発電を行うか、
もしくは電圧差を与え電流を通ずることにより加熱と冷
却を行うものである。
2. Description of the Related Art Conventionally, a thermoelectric element for converting heat into electricity or converting electricity into heat has an N-type semiconductor 3 or a P-type semiconductor 4 sandwiched between a metal plate 1 and a metal plate 2 as shown in FIG. Substrate 7 on metal plate 1 or 2, or both
It has a structure to hold the thermoelectric element by sticking, to generate power by giving a temperature difference to the metal plates on both sides,
Alternatively, heating and cooling are performed by applying a voltage difference and passing an electric current.

特に、第7図の従来例はN型の半導体3とP型の半導
体4を交互に直列的に配列した熱電装置であり、端子5
と端子6間に電位を与えると、金属板の一方が冷却さ
れ、他方が加熱される。
Particularly, the conventional example shown in FIG. 7 is a thermoelectric device in which N-type semiconductors 3 and P-type semiconductors 4 are alternately arranged in series, and a terminal 5
When a potential is applied between the terminal and the terminal 6, one of the metal plates is cooled and the other is heated.

第8図は、従来の熱電装置を冷暖房用に使用した場合
の例を示したものである。このような熱電装置は、中央
に第7図に示したような熱電素子8を配置し、2個のフ
ァン9、ファン10によって外気11、12を熱電素子表面に
導いている。グリッド13、14は、熱電素子8の表面と熱
的に接触して熱電素子8と外気11、12との伝熱面積を確
保している。外気11、12は、グリッド13、14より、加熱
もしくは冷却されて吹き出すものである。
FIG. 8 shows an example in which the conventional thermoelectric device is used for heating and cooling. In such a thermoelectric device, a thermoelectric element 8 as shown in FIG. 7 is arranged at the center, and two fans 9 and 10 guide outside air 11 and 12 to the surface of the thermoelectric element. The grids 13 and 14 are in thermal contact with the surface of the thermoelectric element 8 to secure a heat transfer area between the thermoelectric element 8 and the outside air 11 and 12. The outside air 11, 12 is heated or cooled from the grids 13, 14 and blows out.

また、このような熱電装置の製造方法は以下のように
行われている。まず、半導体の製造は2種類または3種
類の金属または半金属に、P型およびN型を形成するド
ープ元素を混入し、所定の形状に焼結成形を行う。この
ようにして得られた半導体3または4の両面に金属板1
および2を半田付けし、交互に直列的に配列することに
よって製造されている。
A method of manufacturing such a thermoelectric device is performed as follows. First, in the manufacture of a semiconductor, a doping element that forms P-type and N-type is mixed into two or three types of metals or metalloids, and sintering is performed into a predetermined shape. Metal plates 1 are provided on both sides of the semiconductor 3 or 4 thus obtained.
It is manufactured by soldering 2 and 2 and alternately arranging them in series.

発明が解決しようとする課題 しかしながら、このような従来の熱電装置及びその製
造方法では、半導体3または4はBi,Te等の元素からな
り溶融、焼成等の手段を用いてバルクの状態で作られ、
半導体3または4と金属板1および2が半田付けにより
保持されており、セラミック等を用いた基板7が、張り
付けられている。そのため (a)希少金属を大量に使用するため、材料コストが高
くなり、熱電装置の重量および容積が大きくなる。
SUMMARY OF THE INVENTION However, in such a conventional thermoelectric device and its manufacturing method, the semiconductor 3 or 4 is made of an element such as Bi, Te or the like and is manufactured in a bulk state by means of melting, firing or the like. ,
The semiconductor 3 or 4 and the metal plates 1 and 2 are held by soldering, and a substrate 7 made of ceramic or the like is attached. Therefore, (a) since a large amount of rare metals is used, the material cost becomes high and the weight and volume of the thermoelectric device become large.

(b)半導体素子や金属板を単独で用意し、それぞれを
一つづつ組み合わさなければならないので生産性が低
い。
(B) The productivity is low because the semiconductor element and the metal plate must be prepared individually and combined one by one.

(c)半導体と金属板との接合面が機械的に弱く、崩れ
やすく、大面積化が困難であり、重量もかさばる。
(C) The joint surface between the semiconductor and the metal plate is mechanically weak, easily collapses, it is difficult to increase the area, and the weight is bulky.

(d)非常に脆く、たわみによって破損し易い。(D) It is very brittle and easily damaged by bending.

(e)半導体と金属板との接合面において半田、ろう等
を使用しているので、ジュール熱による損失が大きい。
(E) Since solder, solder or the like is used on the joint surface between the semiconductor and the metal plate, the loss due to Joule heat is large.

(f)基板は熱抵抗となり熱電素子の加熱側と冷却側の
温度差を増加させるため、熱電素子の性能を著しく低下
させる。
(F) Since the substrate becomes a thermal resistance and increases the temperature difference between the heating side and the cooling side of the thermoelectric element, the performance of the thermoelectric element is significantly reduced.

(g)半導体の断面積が大きいため、加熱部から冷却部
への熱流が大きく、熱電装置の効率が低下する。
(G) Since the semiconductor has a large cross-sectional area, the heat flow from the heating unit to the cooling unit is large, and the efficiency of the thermoelectric device is reduced.

(h)外気との熱交換面積を確保するグリッドと熱電素
子との接触熱抵抗が大きい。
(H) The contact thermal resistance between the grid that secures a heat exchange area with the outside air and the thermoelectric element is large.

(i)熱電素子金属板から集中して発生する大量の熱を
空気と交換するため、グリッドの伝熱面積を大きくする
必要があり、グリッドの長さが長くなりフィン効率が低
下し、金属板と外気との温度差を大きくとる必要があ
り、効率が低下する。
(I) Thermoelectric element Since a large amount of heat generated in a concentrated manner from the metal plate is exchanged with air, it is necessary to increase the heat transfer area of the grid, which lengthens the grid and reduces fin efficiency. Since it is necessary to make a large temperature difference between the temperature and the outside air, the efficiency decreases.

等の課題があった。There was a problem such as.

本発明は、上記問題点に基づき、半導体と金属の接合
性を改善して接触抵抗及び半導体内の熱流を抑える事が
可能で、その結果熱電素子のコストを大幅に低減すると
共に熱電性能を向上させることの出来る新規な構造の熱
電装置とその製造方法を提供するものである。
The present invention is based on the above problems, it is possible to improve the bondability between the semiconductor and the metal to suppress the contact resistance and the heat flow in the semiconductor, and as a result, the cost of the thermoelectric element is significantly reduced and the thermoelectric performance is improved. The present invention provides a thermoelectric device having a novel structure that can be performed and a manufacturing method thereof.

課題を解決するための手段 本発明による熱電装置は、絶縁性円筒状基板の外表面
上に、P型(またはN型)半導体薄膜、金属部、N型
(またはP型)半導体薄膜そして金属部の順の繰り返し
で、螺旋帯状に各半導体と金属部が電気的に導通するよ
うに形成するという構成を有する。
Means for Solving the Problems A thermoelectric device according to the present invention comprises a P-type (or N-type) semiconductor thin film, a metal part, an N-type (or P-type) semiconductor thin film and a metal part on the outer surface of an insulating cylindrical substrate. By repeating the above procedure, each semiconductor and the metal part are formed in a spiral band shape so as to be electrically connected to each other.

また、本発明による熱電装置の製造方法は、絶縁性円
筒状基板の外表面に螺旋帯の一部となるように金属部を
形成し、前記絶縁性円筒状基板を円筒軸方向への並進と
軸周りの回転を同時に行いながら、前記金属部の間にマ
スクを通してP型半導体薄膜とN型半導体薄膜を交互に
螺旋帯状に各半導体と金属部が電気的に導通するように
製膜すると言う構成を有する。
Further, in the method for manufacturing a thermoelectric device according to the present invention, a metal portion is formed on the outer surface of the insulating cylindrical substrate so as to be a part of a spiral band, and the insulating cylindrical substrate is translated in the cylindrical axis direction. While rotating about the axis at the same time, a P-type semiconductor thin film and an N-type semiconductor thin film are alternately formed in a spiral band through a mask between the metal parts so that each semiconductor and the metal part are electrically connected. Have.

作用 上記手段による作用は次の通りである。Action The action of the above means is as follows.

(a)熱電装置の加熱部と冷却部を離して設置すること
ができ、また半導体の断面積を小さくすることができる
ため、加熱部から冷却部へ半導体部を流れる熱流を減少
させることが可能となる。
(A) Since the heating part and the cooling part of the thermoelectric device can be installed separately from each other and the cross-sectional area of the semiconductor can be reduced, it is possible to reduce the heat flow flowing through the semiconductor part from the heating part to the cooling part. Becomes

(b)熱電装置の半導体と金属の接合面に半田等を使用
せず、直接接合する構成としているため、接合面での電
気抵抗によるジュール熱の発生を抑えることができる。
(B) Since the semiconductor and metal joint surfaces of the thermoelectric device are directly joined to each other without using solder or the like, generation of Joule heat due to electric resistance at the joint surfaces can be suppressed.

(c)基板上の薄膜は蒸着等によって成形できるので、
基板に種々の形状、材質のものを用いることが可能とな
る。
(C) Since the thin film on the substrate can be formed by vapor deposition or the like,
It is possible to use substrates of various shapes and materials.

(d)基板を回転移動させながら連続的に半導体と金属
の接合を行っていく製造方法をとっているので生産性を
高くすることが出来る。
(D) Since the manufacturing method in which the semiconductor and the metal are continuously joined while the substrate is rotated and moved, the productivity can be increased.

(e)薄膜で熱電装置を構成しているので、熱電装置に
使用する金属の量も非常にわすかで済む。
(E) Since the thermoelectric device is composed of a thin film, the amount of metal used for the thermoelectric device can be very small.

以上のことから、熱電装置の性能向上を図り、非常に
高い生産性で、熱電装置を作製することが出来る。
From the above, the performance of the thermoelectric device can be improved and the thermoelectric device can be manufactured with extremely high productivity.

実施例 以下に本発明による実施例を図面により説明する。Embodiment An embodiment according to the present invention will be described below with reference to the drawings.

(実施例1) 本発明の熱電装置の実施例1の正面図を第1図に、そ
の側面図を第2図に示す。
Example 1 A front view of Example 1 of a thermoelectric device of the present invention is shown in FIG. 1, and a side view thereof is shown in FIG.

絶縁性円筒状基板15には、基板外周面の一部をくり抜
いて埋め込まれた、又はエッチング等で形成された金属
電極部16と金属部17が螺旋帯の一部を形成し、半円周期
で上下に分かれて配置されている。金属電極部16は絶縁
性円筒状基板15の両端に設置されている。
In the insulating cylindrical substrate 15, a metal electrode portion 16 and a metal portion 17 which are hollowed out and embedded in a part of the outer peripheral surface of the substrate or formed by etching or the like form a part of a spiral band, and have a semicircular period. It is divided into upper and lower parts. The metal electrode portions 16 are installed on both ends of the insulating cylindrical substrate 15.

絶縁性円筒状基板15の外表面には、P型半導体薄膜18
とN型半導体薄膜19が、それぞれが螺旋帯の一部を形成
しながら交互に金属部と電気的導通を確保しながら製膜
されている(図中、破断線で示す半導体薄膜18間は、こ
のパターンが繰り返し形成されている)。そして、金属
電極部16、P型半導体薄膜18、金属部17そしてN型半導
体薄膜19が直列に連結している。(本実施例装置の製造
方法については後述する) 第1図および第2図のような構成において金属電極部
16a,16b間に電圧を加えることにより、一列に並んでい
る電極部17と、P型半導体薄膜18およびN型半導体薄膜
19との接触部分の、加熱もしくは冷却を行うことが出来
る。あるいは、一列に並んでいる金属部17と、P型半導
体薄膜18およびN型半導体薄膜19との接触部分を加熱も
しくは冷却することにより、金属電極部16a、16b間に電
圧を発生させることができる。
The P-type semiconductor thin film 18 is formed on the outer surface of the insulating cylindrical substrate 15.
And N-type semiconductor thin film 19 are formed while alternately forming electrical connection with the metal portion while forming a part of the spiral band (in the figure, between semiconductor thin films 18 indicated by broken lines, This pattern is repeatedly formed). The metal electrode portion 16, the P-type semiconductor thin film 18, the metal portion 17, and the N-type semiconductor thin film 19 are connected in series. (The manufacturing method of the device of this embodiment will be described later) In the configuration as shown in FIGS. 1 and 2, the metal electrode portion
By applying a voltage between 16a and 16b, the electrode parts 17 arranged in a line, the P-type semiconductor thin film 18 and the N-type semiconductor thin film
It is possible to heat or cool the contact portion with 19. Alternatively, a voltage can be generated between the metal electrode portions 16a and 16b by heating or cooling the contact portions between the metal portions 17 arranged in a line and the P-type semiconductor thin film 18 and the N-type semiconductor thin film 19. .

なおここで用いる絶縁性円筒状基板15は、必ずしも正
確な円筒形状である必要はない。またその材質に関して
はできるだけ熱伝導率の低いものが望ましい。
The insulating cylindrical substrate 15 used here does not necessarily have to be an accurate cylindrical shape. Regarding the material, it is desirable that the material has as low a thermal conductivity as possible.

本実施例では、従来例と比較して、半導体と金属の接
合を容易にしかも確実にとることができるため、金属と
半導体との接合面でのジュール熱による熱損失が減少さ
せることができる。また加熱部と冷却部を離して構成
し、しかも加熱部と冷却部の間に熱絶縁性物質を挿入す
ることも可能であるので、低温部と高温部の温度差を確
保することができる。以上の事から、熱電装置の性能向
上を図ることができる。また使用する金属の量が非常に
わずかで済むという効果も有する。
In this embodiment, as compared with the conventional example, the semiconductor and the metal can be bonded easily and reliably, so that the heat loss due to Joule heat at the bonding surface between the metal and the semiconductor can be reduced. Further, since the heating part and the cooling part can be separated from each other and the heat insulating material can be inserted between the heating part and the cooling part, a temperature difference between the low temperature part and the high temperature part can be secured. From the above, the performance of the thermoelectric device can be improved. It also has the effect of using a very small amount of metal.

(実施例2) 第3図は本発明の他の実施例を示したものである。(Embodiment 2) FIG. 3 shows another embodiment of the present invention.

絶縁性円筒状基板20の上下部分には、第2図で示した
金属電極部16と金属部17と同様の位置に金属薄膜21が付
着されており、絶縁性円筒状基板20の両端には金属電極
部22が紙面に対して垂直方向に引き出されている。そし
て、P型半導体薄膜18およびN型半導体薄膜19が絶縁性
円筒状基板20の外表面上に金属薄膜21と電気的な導通を
確保しながら螺旋帯の一部を形成するようにそれぞれ交
互に付着されている。
Metal thin films 21 are attached to the upper and lower portions of the insulating cylindrical substrate 20 at the same positions as the metal electrode portion 16 and the metal portion 17 shown in FIG. The metal electrode portion 22 is drawn out in a direction perpendicular to the paper surface. The P-type semiconductor thin film 18 and the N-type semiconductor thin film 19 are alternately formed on the outer surface of the insulating cylindrical substrate 20 so as to form a part of the spiral band while ensuring electrical continuity with the metal thin film 21. It is attached.

金属薄膜21は、真空蒸着、スパッタ等の方法により付
着されており、金属電極部22、P型半導体薄膜18、金属
薄膜21そしてN型半導体薄膜19が直列で互いに接続され
ている。
The metal thin film 21 is attached by a method such as vacuum deposition and sputtering, and the metal electrode portion 22, the P-type semiconductor thin film 18, the metal thin film 21, and the N-type semiconductor thin film 19 are connected to each other in series.

このように本実施例では、従来例と比較して、金属部
の作製や、半導体部の作製が薄膜形成プロセスを用いて
行うことが出来るので、熱電装置の作製手順が簡便とな
る。また、真空装置の中で連続的に金属と半導体の接合
を容易にしかも確実に行い、また加熱部と冷却部を離し
て構成しているので、金属と半導体との接合面でのジュ
ール熱による熱損失が減少し、低温部と高温部との温度
差を確保することができるなど、本実施例においても実
施例1と同様の効果を得ることが可能である。
As described above, in this example, as compared with the conventional example, the metal part and the semiconductor part can be manufactured by using the thin film forming process, so that the procedure for manufacturing the thermoelectric device is simplified. Further, since the metal and the semiconductor are continuously and easily bonded in a vacuum device easily and reliably, and the heating part and the cooling part are separated from each other, the Joule heat at the bonding surface between the metal and the semiconductor is used. The same effects as those of the first embodiment can be obtained in the present embodiment, such that the heat loss is reduced and the temperature difference between the low temperature portion and the high temperature portion can be secured.

(実施例3) 第4図は本発明による熱電装置の他の実施例を示した
ものである。
(Embodiment 3) FIG. 4 shows another embodiment of the thermoelectric device according to the present invention.

断熱壁23を第1図および第2図で示した熱電装置の上
下金属部分を遮断するように2等分して設置してある。
The heat insulating wall 23 is installed in two equal parts so as to block the upper and lower metal parts of the thermoelectric device shown in FIGS. 1 and 2.

このような構成において、金属電極部16a,16b間にに
電圧を加えることにより、空気流24、25をファン(図示
せず)により円筒軸に沿って、それぞれ反対方向に流す
ことにより、暖房及び冷房を行うことが可能となる。
In such a configuration, by applying a voltage between the metal electrode portions 16a and 16b, the air flows 24 and 25 are caused to flow in opposite directions along a cylindrical axis by a fan (not shown), thereby heating and It becomes possible to perform cooling.

本実施例では、従来例と比較して、金属部と半導体部
の接合が脆いということがなく、半導体部で熱電装置を
機械的に支える必要もない。また、金属部の加熱部と冷
却部に直接外気を当てることが可能であり、加熱部と冷
却部を離して構成してある。この結果、熱電装置全体が
機械的に弱いことはなく、また外気を熱損失を少なくし
て加熱冷却することができ、低温部と高温部の温度差を
確保することができるため、熱電装置の性能向上を図る
ことができる。
In the present example, compared with the conventional example, the joining of the metal part and the semiconductor part is not brittle, and it is not necessary to mechanically support the thermoelectric device by the semiconductor part. Further, it is possible to directly apply outside air to the heating part and the cooling part of the metal part, and the heating part and the cooling part are separated from each other. As a result, the entire thermoelectric device is not mechanically weak, and the outside air can be heated and cooled with less heat loss, and the temperature difference between the low temperature part and the high temperature part can be secured, so that the thermoelectric device Performance can be improved.

(実施例6) 第5図は本発明による熱電装置の他の実施例を示した
ものである。
Example 6 FIG. 5 shows another example of the thermoelectric device according to the present invention.

第4図で示した熱電装置を断熱壁26を共用しながら接
続して複数個、直列的に並べたものである。
A plurality of thermoelectric devices shown in FIG. 4 are connected in series while sharing the heat insulating wall 26 and are arranged in series.

このような構成において、電流を通じておいて加熱冷
却を行い空気流27、28を円筒軸に垂直な方向に沿って、
それぞれ反対方向に流すことにより、暖房及び冷房を行
うことが可能となる。
In such a configuration, heating and cooling are performed by passing an electric current, and the air flows 27 and 28 are arranged along a direction perpendicular to the cylinder axis.
Heating and cooling can be performed by flowing in opposite directions.

本実施例では、第4図の場合と比較して、並列した金
属部に直接しかも長い距離にわたって外気を加熱冷却す
ることが出来るので、外気を熱損失をより少なく加熱冷
却することになり、熱電装置の性能向上を図ることがで
きる。
In this embodiment, as compared with the case of FIG. 4, the outside air can be heated and cooled directly on the metal parts in parallel and over a long distance. Therefore, the outside air can be heated and cooled with less heat loss, and the thermoelectricity can be improved. The performance of the device can be improved.

(実施例7) 第6図は本発明による熱電装置の製造方法の一実施例
における概略図を示したものである。
(Embodiment 7) FIG. 6 is a schematic view showing an embodiment of a method for manufacturing a thermoelectric device according to the present invention.

基板の外周面の一部をくり抜いて埋め込んだ金属部を
絶縁性円筒状基板29上に螺旋帯の一部を形成するように
配置する(この金属部はエッチング等で形成してもよ
い)。絶縁性円筒状基板29は、シャフト30に固定されて
おり、シャフト駆動部31によりシャフト軸に沿った前進
とシャフト軸周りの回転を同時に行いながら移動でき
る。またP型半導体材料、N型半導体材料がそれぞれ充
填された坩堝32、33が加熱され(加熱手段は図示せ
ず)、絶縁性円筒状基板29方向に蒸着が行えるようにな
っている。坩堝32、33は、回転台34の上に設置されてお
り、回転台駆動部35により回転を行いながらマスク36に
より蒸着粒子の遮断が行われ、マスク36中のスリット部
分を通して、それぞれ別々に交互に絶縁性円筒状基板29
に蒸着が行える。マスク36の下部にはシャッター37が設
置されており、絶縁性円筒状基板29を蒸着粒子から完全
に遮断することが出来る。シャフト駆動部31、回転台駆
動部35とシャッター37は制御系38によりそれぞれが同期
して作動するように制御を受けている。
A metal portion obtained by hollowing out and embedding a part of the outer peripheral surface of the substrate is arranged on the insulating cylindrical substrate 29 so as to form a part of the spiral band (this metal portion may be formed by etching or the like). The insulating cylindrical substrate 29 is fixed to the shaft 30, and can be moved by the shaft driving unit 31 while simultaneously advancing along the shaft axis and rotating around the shaft axis. Further, the crucibles 32 and 33 respectively filled with the P-type semiconductor material and the N-type semiconductor material are heated (the heating means is not shown) so that vapor deposition can be performed toward the insulating cylindrical substrate 29. The crucibles 32 and 33 are installed on the turntable 34, and the mask 36 shuts off the vapor-deposited particles while rotating the turntable driving unit 35.Through the slits in the mask 36, the crucibles 32 and 33 are alternately separated. Insulating cylindrical substrate 29
Vapor deposition can be performed. A shutter 37 is installed below the mask 36 to completely shield the insulating cylindrical substrate 29 from vapor deposition particles. The shaft drive unit 31, the rotary base drive unit 35, and the shutter 37 are controlled by a control system 38 so that they operate in synchronization with each other.

このような構成において、まず絶縁性円筒状基板29の
一端の電極部分をマスク36中のスリット部分の所に合わ
せて停止させ、回転台34を停止させ、シャッター37を閉
じておいて坩堝32、坩堝33の加熱を行う。坩堝32、坩堝
33が蒸着の行える所定温度まで加熱されたら、シャッタ
ー37を開き、シャフト30の駆動を行い絶縁性円筒状基板
29の移動を開始する。N型またはP型半導体の蒸発粒子
をマスク36中のスリット部分を通して電極部、絶縁部、
次の金属部へ螺旋状に蒸着を行った後、シャッター37を
閉じ回転台34を回転し坩堝を交換する。その際、絶縁性
円筒状基板29の金属部にP型半導体薄膜とN型半導体薄
膜が、半導体同士が接触することなく金属部と接続する
ように制御系38により制御を行う。そして、絶縁性円筒
状基板29の他端の電極部まで連続的に同様の蒸着を行
う。
In such a configuration, first, the electrode portion at one end of the insulating cylindrical substrate 29 is stopped in alignment with the slit portion in the mask 36, the rotary table 34 is stopped, and the shutter 37 is closed, and the crucible 32, The crucible 33 is heated. Crucible 32, crucible
When 33 is heated to the prescribed temperature at which vapor deposition can be performed, the shutter 37 is opened and the shaft 30 is driven to insulate the cylindrical substrate.
Start moving 29. The vaporized particles of the N-type or P-type semiconductor are passed through the slit portion in the mask 36 to form an electrode portion, an insulating portion
After vapor-depositing spirally on the next metal part, the shutter 37 is closed and the rotary table 34 is rotated to replace the crucible. At that time, the control system 38 controls so that the P-type semiconductor thin film and the N-type semiconductor thin film are connected to the metal portion of the insulating cylindrical substrate 29 without the semiconductors contacting each other. Then, the same vapor deposition is continuously performed up to the electrode portion at the other end of the insulating cylindrical substrate 29.

このような製造方法を用いることで金属と半導体を連
続的に生産性が高く接続できることが可能となる。
By using such a manufacturing method, it becomes possible to continuously connect a metal and a semiconductor with high productivity.

なお本実施例においては、半導体薄膜の作製方法を坩
堝の加熱蒸着としたが、EB加熱法、スパッタ法、ICB法
等の方法を用いても構わない。またP型およびN型半導
体薄膜を作製するためにそれぞれ2元以上の坩堝の同時
蒸着としても構わない。さらに坩堝部は回転方式でな
く、直線的に移動させる方法、または、坩堝部を固定し
シャッターを切り換える方法を用いても構わない。
In this embodiment, the method for producing the semiconductor thin film is the heating vapor deposition of the crucible, but the EB heating method, the sputtering method, the ICB method or the like may be used. Further, in order to produce the P-type and N-type semiconductor thin films, simultaneous vapor deposition of a crucible of two or more elements may be performed. Further, the crucible portion may be linearly moved instead of the rotation method, or a method of fixing the crucible portion and switching the shutter may be used.

また、同様の製造方法を用いて、金属部を金属薄膜で
作製し、続いて連続的に半導体薄膜を蒸着して熱電装置
を製造する方法を用いても構わない。
In addition, a method of manufacturing a thermoelectric device by forming a metal part with a metal thin film using the same manufacturing method and then continuously depositing a semiconductor thin film may be used.

本実施例では、従来の製造方法と比較して、半導体薄
膜を絶縁性基板および金属部の表面に直接、連続的に蒸
着する製造方法としているので、基板に種々の種類を用
いることができ、しかも準備が簡便で、また熱電装置完
成までの工程も少なく、使用する金属の量も非常にわず
かで済ますことが可能となる。この結果、熱電装置の生
産性を大きく向上し、コストの低減を図ることが可能と
なる。
In this embodiment, as compared with the conventional manufacturing method, the semiconductor thin film is directly and continuously deposited on the surfaces of the insulating substrate and the metal part, so that various types of substrates can be used. Moreover, preparation is simple, and the process of completing the thermoelectric device is small, and the amount of metal used can be extremely small. As a result, it is possible to greatly improve the productivity of the thermoelectric device and reduce the cost.

発明の効果 以上のように本発明の熱電装置は、絶縁性円筒状基板
の外表面上には、P型(またはN型)半導体薄膜、金属
部、N型(またはP型)半導体薄膜そして金属部の順の
繰り返しで、螺旋帯状に各半導体と金属部が電気的に導
通するように構成されているので、使用する金属等の量
は非常にわずかであり、用途に合わせた形状の基板を用
いることができ、また熱電性能を向上することが出来る
という効果を有する。
As described above, in the thermoelectric device of the present invention, the P-type (or N-type) semiconductor thin film, the metal part, the N-type (or P-type) semiconductor thin film and the metal are formed on the outer surface of the insulating cylindrical substrate. By repeating the order of the parts, each semiconductor is electrically connected to the metal part in a spiral band, so the amount of metal etc. used is very small, and a substrate with a shape suitable for the application is used. It has the effect that it can be used and the thermoelectric performance can be improved.

また、本発明の熱電装置の製造方法によれば、生産性
が高くなり、用いる材料も非常に少なくて済み、コスト
が低減できるという効果が期待できる。
Further, according to the method for manufacturing a thermoelectric device of the present invention, it is expected that the productivity is high, the material used is very small, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の熱電装置の正面図、第2図
は第1図の装置の側面図、第3図、第4図、第5図はそ
れぞれ本発明の熱電装置の他の実施例の構成図、第6図
は本発明の熱電装置の製造製造装置の概略斜視図、第7
図は従来の熱電装置の斜視図、第8図は従来の熱電装置
の正面図である。 15,20……絶縁性円筒状基板、16a,16b,22……金属電極
部、17……電極部、18……P型半導体薄膜、19……N型
半導体薄膜、21……金属薄膜、23、26……断熱壁、30…
…シャフト、32、33……坩堝、34……回転台、36……マ
スク、37……シャッター、38……制御系。
FIG. 1 is a front view of a thermoelectric device according to an embodiment of the present invention, FIG. 2 is a side view of the device of FIG. 1, and FIGS. 3, 4, and 5 are other thermoelectric devices of the present invention. 6 is a schematic perspective view of a thermoelectric device manufacturing / manufacturing apparatus according to the present invention, FIG.
FIG. 8 is a perspective view of a conventional thermoelectric device, and FIG. 8 is a front view of the conventional thermoelectric device. 15, 20 ... Insulating cylindrical substrate, 16a, 16b, 22 ... Metal electrode part, 17 ... Electrode part, 18 ... P-type semiconductor thin film, 19 ... N-type semiconductor thin film, 21 ... Metal thin film, 23, 26 ... Insulation wall, 30 ...
… Shafts, 32, 33… crucibles, 34… turntables, 36… masks, 37… shutters, 38… control systems.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−132488(JP,A) 特開 昭61−74379(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuro Gyoten 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-63-132488 (JP, A) JP-A-61 -74379 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性円筒状基板の外表面上に、P型(ま
たはN型)半導体薄膜、金属部、N型(またはP型)半
導体薄膜そして金属部の順の繰り返しで、螺旋帯状に各
半導体と金属部が電気的に導通するように形成されてい
ることを特徴とした熱電装置。
1. A spiral band is formed by sequentially repeating a P-type (or N-type) semiconductor thin film, a metal part, an N-type (or P-type) semiconductor thin film, and a metal part on the outer surface of an insulating cylindrical substrate. A thermoelectric device, wherein each semiconductor is formed so as to be electrically connected to the metal part.
【請求項2】金属部が螺旋帯の一部となるように周期的
に配置されていることを特徴とする請求項1記載の熱電
装置。
2. The thermoelectric device according to claim 1, wherein the metal parts are periodically arranged so as to become a part of the spiral band.
【請求項3】半円周期で金属部列を形成した絶縁性円筒
状基板の外表面上に、円筒軸を含む平面と並行に断熱壁
を設置し、前期半円周期の金属部列を隔離していること
を特徴とする請求項2記載の熱電装置。
3. A heat insulating wall is installed in parallel with a plane including a cylindrical axis on an outer surface of an insulating cylindrical substrate on which a metal part row is formed in a semicircular period, and the metal part row in the first half circular period is isolated. The thermoelectric device according to claim 2, wherein
【請求項4】請求項3記載の熱電装置を断熱壁の部分を
共用して連結し、複数個並べたことを特徴とする熱電装
置。
4. A thermoelectric device in which a plurality of thermoelectric devices according to claim 3 are connected so as to share a heat insulating wall portion and arranged in plural.
【請求項5】絶縁性円筒状基板の外表面に螺旋帯の一部
となるように金属部を形成し、前記絶縁性円筒状基板を
円筒軸方向への並進と軸周りの回転を同時に行いなが
ら、前記金属部の間の絶縁部分に、マスクを通してP型
半導体薄膜とN型半導体薄膜を交互に螺旋帯状で、各半
導体と金属部が電気的に導通するように製膜することを
特徴とする熱電装置の製造方法。
5. A metal portion is formed on an outer surface of an insulating cylindrical substrate so as to be a part of a spiral band, and the insulating cylindrical substrate is simultaneously translated in the cylinder axis direction and rotated about the axis. Meanwhile, a P-type semiconductor thin film and an N-type semiconductor thin film are alternately formed in a spiral band shape through a mask in an insulating portion between the metal parts so that each semiconductor and the metal part are electrically connected. Method for manufacturing thermoelectric device.
【請求項6】金属部を蒸着により金属薄膜として作製す
る請求項5記載の熱電装置の製造方法。
6. The method of manufacturing a thermoelectric device according to claim 5, wherein the metal part is formed as a metal thin film by vapor deposition.
JP2097103A 1990-04-12 1990-04-12 Thermoelectric device and manufacturing method thereof Expired - Fee Related JP2523929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097103A JP2523929B2 (en) 1990-04-12 1990-04-12 Thermoelectric device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097103A JP2523929B2 (en) 1990-04-12 1990-04-12 Thermoelectric device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03295281A JPH03295281A (en) 1991-12-26
JP2523929B2 true JP2523929B2 (en) 1996-08-14

Family

ID=14183278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097103A Expired - Fee Related JP2523929B2 (en) 1990-04-12 1990-04-12 Thermoelectric device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2523929B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636119B2 (en) * 1992-09-08 1997-07-30 工業技術院長 Thermoelectric element sheet and manufacturing method thereof
US7649139B2 (en) 2004-03-25 2010-01-19 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element and thermoelectric conversion module
JP2009157269A (en) 2007-12-27 2009-07-16 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP5278700B2 (en) 2009-09-15 2013-09-04 株式会社リコー Optical scanning apparatus and image forming apparatus
WO2012061829A1 (en) * 2010-11-05 2012-05-10 Levitronics, Inc. Semiconductor-metal coil units and electrical apparatus comprising same
JP2016207766A (en) * 2015-04-20 2016-12-08 積水化学工業株式会社 Thermoelectric conversion device and manufacturing method therefor
JP2017191809A (en) * 2016-04-11 2017-10-19 積水化学工業株式会社 Thermoelectric conversion device
CN113061846A (en) * 2021-03-16 2021-07-02 重庆大学 Vacuum coating device

Also Published As

Publication number Publication date
JPH03295281A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
US7851691B2 (en) Thermoelectric devices and applications for the same
EP0870337B1 (en) Fabrication of thermoelectric modules and solder for such fabrication
JPH04165234A (en) Thermoelectric conversion device
JP2523929B2 (en) Thermoelectric device and manufacturing method thereof
JPH09107129A (en) Semiconductor device and its manufacturing method
CA1232363A (en) Thermoelectric generator and method for the fabrication thereof
US4468854A (en) Method and apparatus for manufacturing thermoelectric devices
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
US20100269879A1 (en) Low-cost quantum well thermoelectric egg-crate module
JP2003179275A (en) Thermoelectric converting module and thermoelectric converting device using the same
US20140332048A1 (en) Thermoelectric device
JP2000261052A (en) Manufacture for thin-film thermoelectric conversion element and the thin-film thermoelectric conversion element
JPH0629581A (en) Thermoelectric element
JPH08153898A (en) Thermoelectric element
JP2512213B2 (en) Thermoelectric device and manufacturing method thereof
JPH05259514A (en) Thermoelectric device, and its manufacturing method and device
JPH02198181A (en) Manufacture of thermoelectric element
EP3535531B1 (en) Fired heat exchanger with a thermoelectric generator
JPH0669549A (en) Thermoelectric device
JPH0870142A (en) Thermoelectric element
JP2004152921A (en) Thermoelectric module and its manufacturing method
JPH02198179A (en) Thermoelectric element and manufacture thereof
JPH04206884A (en) Thermoelectric device and manufacture thereof
JPH09107130A (en) Thermoelectric conversion device and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees