JP2016207766A - Thermoelectric conversion device and manufacturing method therefor - Google Patents

Thermoelectric conversion device and manufacturing method therefor Download PDF

Info

Publication number
JP2016207766A
JP2016207766A JP2015085840A JP2015085840A JP2016207766A JP 2016207766 A JP2016207766 A JP 2016207766A JP 2015085840 A JP2015085840 A JP 2015085840A JP 2015085840 A JP2015085840 A JP 2015085840A JP 2016207766 A JP2016207766 A JP 2016207766A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
shaped
material sheet
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015085840A
Other languages
Japanese (ja)
Inventor
維敏 石丸
Masatoshi Ishimaru
維敏 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015085840A priority Critical patent/JP2016207766A/en
Publication of JP2016207766A publication Critical patent/JP2016207766A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide thermoelectric conversion device capable of being manufactured more easily and more efficiently even when a clearance between a surface taken as heat source side at power generation and a surface on opposite side to the surface is large.SOLUTION: The thermoelectric conversion device, having a belt-like thermoelectric conversion material sheet, is configured so that a shape of a belt-like thermoelectric conversion material sheet 1 is made into a shape wound in a spiral manner. The belt-like thermoelectric conversion material sheet at a given side surface wound in a spiral manner is a band-like p-type thermoelectric conversion material sheet and a belt-like thermoelectric conversion material sheet at a side surface on opposite side to the side surface is a belt-like thermoelectric conversion material sheet.SELECTED DRAWING: Figure 1

Description

本発明は、熱電変換デバイス及びその製造方法に関する。   The present invention relates to a thermoelectric conversion device and a manufacturing method thereof.

熱電変換デバイスは、熱と電気を直接変換することのできる固体素子である。熱電変換材料をある寸法に切断加工するなどして複数個まとめた集合体が、熱電変換デバイスとして利用されている。熱電変換デバイスは、通常、p型熱電変換材料及びn型熱電変換材料、電極、並びに負荷抵抗が電気的に直列に接続されているという非常に単純な構造を有する。熱電変換デバイスは、レーザーダイオードの精密温度制御や電子式温冷庫等に実際に応用されているほか、未利用廃熱を用いた分散型発電技術(エネルギーハーべスティング)や災害時の非常用電源としての応用等も期待されている。   A thermoelectric conversion device is a solid element that can directly convert heat and electricity. An assembly in which a plurality of thermoelectric conversion materials are cut into a certain size or the like is used as a thermoelectric conversion device. The thermoelectric conversion device usually has a very simple structure in which a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, an electrode, and a load resistance are electrically connected in series. Thermoelectric conversion devices are actually applied to precision temperature control of laser diodes, electronic heating / cooling chambers, etc., as well as distributed power generation technology (energy harvesting) using unused waste heat and emergency power supplies in the event of a disaster Application as such is also expected.

従来の熱電変換デバイスは、p型熱電変換材料とn型熱電変換材料を別々に作成し、これらを電極上に半田で接続してπ型構造とすることにより製造されている(特許文献1)。   A conventional thermoelectric conversion device is manufactured by separately preparing a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and connecting them onto an electrode with solder to form a π-type structure (Patent Document 1). .

国際公開第2009/028337号International Publication No. 2009/028337

このような従来のπ型構造の熱電変換デバイスは、熱源(或いは冷却源)側の面と該面の反対側の面との温度差により発電するものであり、より高い起電力を得るという観点から、これらの面間はより厚いことが望ましい。しかし、これらの面間をより厚くするには、その厚みに応じてより長いp型熱電変換材料とn型熱電変換材料を用いなければならず、この場合、p型熱電変換材料及びn型熱電変換材料を電極上に半田付けする作業が困難となる。   Such a conventional π-type thermoelectric conversion device generates power by a temperature difference between the surface on the heat source (or cooling source) side and the surface opposite to the surface, and obtains a higher electromotive force. Therefore, it is desirable that the distance between these surfaces is thicker. However, in order to make the space between these surfaces thicker, a longer p-type thermoelectric conversion material and n-type thermoelectric conversion material must be used depending on the thickness. In this case, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are used. The operation of soldering the conversion material onto the electrode becomes difficult.

また、従来のπ型構造の熱電変換デバイスは、p型熱電変換材料及びn型熱電変換材料の対が増えるほど、それに応じて電極の数も増えるため、作成に手間がかかり、また、電極と熱電変換材料との接続部における電気ロスが大きくなりがちであった。   In addition, the conventional π-type structure thermoelectric conversion device takes more time to produce because the number of electrodes increases accordingly as the number of pairs of p-type thermoelectric conversion material and n-type thermoelectric conversion material increases. The electrical loss at the connection with the thermoelectric conversion material tended to increase.

そこで、本発明は、発電時に熱源(或いは冷却源)側とする面と該面の反対側の面との間がより厚くとも、より簡便且つ効率的に製造できる熱電変換デバイスを提供することを課題とする。   Therefore, the present invention provides a thermoelectric conversion device that can be more easily and efficiently manufactured even when the space between the surface on the heat source (or cooling source) side during power generation and the surface opposite to the surface is thicker. Let it be an issue.

本発明者等は、鋭意研究を重ねた結果、帯状熱電変換材料シートを有する熱電変換デバイスであって、該帯状熱電変換材料シートの形状が、螺旋状に巻かれた形状である、熱電変換デバイス(以下、「本発明の熱電変換デバイス」と示すこともある)であれば、上記課題を解決できることを見出した。   As a result of intensive studies, the present inventors have a thermoelectric conversion device having a strip-shaped thermoelectric conversion material sheet, and the shape of the strip-shaped thermoelectric conversion material sheet is a spirally wound shape. (Hereinafter, sometimes referred to as “the thermoelectric conversion device of the present invention”), it has been found that the above problems can be solved.

即ち、本発明は、下記の態様を包含する。この新たな知見に基づいてさらに検討を重ねることにより本発明が完成した。   That is, the present invention includes the following aspects. The present invention has been completed by further studies based on this new knowledge.

即ち、本発明は、下記の態様を包含する。
項1.
帯状熱電変換材料シートを有する熱電変換デバイスであって、
該帯状熱電変換材料シートの形状が、螺旋状に巻かれた形状である、
熱電変換デバイス。
項2.
螺旋状に巻かれた形状の任意の側面における前記帯状熱電変換材料シートが帯状p型熱電変換材料シートであり、且つ該側面の反対の側面における前記帯状熱電変換材料シートが帯状n型熱電変換材料シートである、項1に記載の熱電変換デバイス。
項3.
前記帯状熱電変換材料シートが、帯状カーボンナノチューブ不織布である、項1又は2に記載の熱電変換デバイス。
項4.
前記帯状n型熱電変換材料シートが、n型化処理された帯状カーボンナノチューブ不織布である、項3に記載の熱電変換デバイス。
項5.
前記帯状p型熱電変換材料シートが、p型化処理された帯状カーボンナノチューブ不織布である、項3又は4に記載の熱電変換デバイス。
項6.
帯状熱電変換材料シートを螺旋状に巻く工程を含む、項1〜5のいずれかに記載の熱電変換デバイスの製造方法。
項7.
帯状熱電変換材料シートを螺旋状に巻く工程、及び螺旋状に巻かれた形状の任意の側面の帯状熱電変換材料シートをp型化処理又はn型化処理する工程を含む、項1〜5のいずれかに記載の熱電変換デバイスの製造方法。
That is, the present invention includes the following aspects.
Item 1.
A thermoelectric conversion device having a strip-shaped thermoelectric conversion material sheet,
The shape of the strip-shaped thermoelectric conversion material sheet is a spirally wound shape,
Thermoelectric conversion device.
Item 2.
The band-shaped thermoelectric conversion material sheet on an arbitrary side surface of a spirally wound shape is a band-shaped p-type thermoelectric conversion material sheet, and the band-shaped thermoelectric conversion material sheet on the side surface opposite to the side surface is a band-shaped n-type thermoelectric conversion material Item 2. The thermoelectric conversion device according to Item 1, which is a sheet.
Item 3.
Item 3. The thermoelectric conversion device according to Item 1 or 2, wherein the band-shaped thermoelectric conversion material sheet is a band-shaped carbon nanotube nonwoven fabric.
Item 4.
Item 4. The thermoelectric conversion device according to Item 3, wherein the band-shaped n-type thermoelectric conversion material sheet is a band-shaped carbon nanotube nonwoven fabric subjected to n-type treatment.
Item 5.
Item 5. The thermoelectric conversion device according to Item 3 or 4, wherein the band-shaped p-type thermoelectric conversion material sheet is a band-shaped carbon nanotube non-woven fabric subjected to p-type treatment.
Item 6.
The manufacturing method of the thermoelectric conversion device in any one of claim | item 1 -5 including the process of winding a strip | belt-shaped thermoelectric conversion material sheet helically.
Item 7.
Item 1-5, including a step of spirally winding a strip-shaped thermoelectric conversion material sheet, and a step of p-type treatment or n-type treatment of the strip-shaped thermoelectric conversion material sheet on an arbitrary side of the spirally wound shape The manufacturing method of the thermoelectric conversion device in any one.

本発明の熱電変換デバイスは、帯状熱電変換材料シートを螺旋状に巻くという非常に簡便な作業によって得ることができる。この作業は、螺旋状に巻かれた形状において発電時に熱源(或いは冷却源)側とする側面と該側面の反対の側面との間がより厚い場合であっても、煩雑になることはない。   The thermoelectric conversion device of the present invention can be obtained by a very simple operation of spirally winding a strip-shaped thermoelectric conversion material sheet. This operation is not complicated even when the space between the side surface that is the heat source (or cooling source) side during power generation and the opposite side surface is thicker in the spirally wound shape.

また、熱電変換可能なようにpn対を作製することについても、例えば螺旋状に巻く前に、予め帯状熱電変換材料シート上にpnパターンを作っておくことにより、別の例としては螺旋状に巻かれた形状の任意の側面の帯状熱電変換材料シートをp型化処理又はn型化処理することによって、容易に行うことができる。   As for another example of creating a pn pair so that thermoelectric conversion is possible, for example, by creating a pn pattern in advance on a belt-shaped thermoelectric conversion material sheet before winding in a spiral shape, It can carry out easily by carrying out the p-type process or the n-type process of the strip | belt-shaped thermoelectric conversion material sheet | seat of the arbitrary sides of the wound shape.

このように、本発明の熱電変換デバイスは、発電時に熱源(或いは冷却源)側とする面と該面から軸に対して反対側の面との間がより厚くとも、より簡便且つ効率的に製造できる。   As described above, the thermoelectric conversion device of the present invention is simpler and more efficient even when the space between the surface on the heat source (or cooling source) side during power generation and the surface opposite to the axis from the surface is thicker. Can be manufactured.

帯状熱電変換材料シートが螺旋状に巻かれた形状の一例を、立体図で示した図面である。It is drawing which showed in a three-dimensional figure an example of the shape by which the strip | belt-shaped thermoelectric conversion material sheet was wound helically. 帯状熱電変換材料シートが螺旋状に巻かれた形状における任意の側面の一例を立体図で示した図面である。It is drawing which showed an example of the arbitrary side surfaces in the shape where the strip | belt-shaped thermoelectric conversion material sheet was wound helically by the three-dimensional figure. 本発明の熱電変換デバイスを螺旋の周回面に垂直成分の方向から見た平面図における、任意の側面、及び該側面の反対の側面の一例を示した図面である。It is drawing which showed an example of arbitrary side surfaces in the top view which looked at the thermoelectric conversion device of this invention from the direction of a perpendicular | vertical component with respect to the surrounding surface of a spiral, and the side surface opposite to this side surface. 本発明の熱電変換デバイスを螺旋の周回面に垂直成分の方向から見た平面図における、任意の側面、及び該側面の反対の側面の一例を示した図面である。It is drawing which showed an example of arbitrary side surfaces in the top view which looked at the thermoelectric conversion device of this invention from the direction of a perpendicular | vertical component with respect to the surrounding surface of a spiral, and the side surface opposite to this side surface.

1.熱電変換デバイス
本発明は、帯状熱電変換材料シートを有する熱電変換デバイスであって、該帯状熱電変換材料シートの形状が、螺旋状に巻かれた形状である、熱電変換デバイスに関する。
1. Thermoelectric devices present invention relates to a thermoelectric conversion device having a strip-shaped thermoelectric conversion material sheet, the shape of the belt-shaped thermoelectric conversion material sheet, a shape wound helically about the thermoelectric conversion device.

帯状熱電変換材料シートは、熱電変換可能である限り特に限定されず、熱電変換材料を含むものであっても、熱電変換材料からなるものであってもよい。   The strip-shaped thermoelectric conversion material sheet is not particularly limited as long as thermoelectric conversion is possible, and may include a thermoelectric conversion material or may be made of a thermoelectric conversion material.

熱電変換材料は、熱電変換デバイスにおいて通常用いられているものであれば特に限定されず、有機系材料又は無機系材料のいずれも用いることができる。有機系材料と無機系材料を複合して用いることもできる。   The thermoelectric conversion material is not particularly limited as long as it is usually used in a thermoelectric conversion device, and either an organic material or an inorganic material can be used. An organic material and an inorganic material can also be used in combination.

有機系材料としては、カーボンナノチューブ(以下、「CNT」と略記することもある。)、p型又はn型化処理されたカーボンナノチューブ、導電性高分子等が使用できる。   As the organic material, carbon nanotubes (hereinafter sometimes abbreviated as “CNT”), p-type or n-type carbon nanotubes, conductive polymers, and the like can be used.

カーボンナノチューブは、シングルウォールナノチューブ(SWNT)、又はダブルウォールナノチューブ(DWNT)等のマルチウォールナノチューブ(MWNT)であってもよい。好ましくはシングルカーボンナノチューブ(SWNT)を使用する。さらに好ましくは半導体比率が高いものを使用する。   The carbon nanotube may be a single wall nanotube (SWNT) or a multi-wall nanotube (MWNT) such as a double wall nanotube (DWNT). Preferably, a single carbon nanotube (SWNT) is used. More preferably, a semiconductor with a high semiconductor ratio is used.

p型又はn型化処理とは、特に限定されないが、例えばp型ドーパント又はn型ドーパントをドープすること等が挙げられる。   Although it does not specifically limit with p-type or n-type-ized process, For example, doping a p-type dopant or an n-type dopant etc. are mentioned.

p型ドーパントとしては、特に限定されないが、例えば、テトラシアノキノジメタン、9H−カルバゾール、9H-カルバゾール-4-オール、ピラジン等が挙げられる。   The p-type dopant is not particularly limited, and examples thereof include tetracyanoquinodimethane, 9H-carbazole, 9H-carbazol-4-ol, and pyrazine.

n型ドーパントとしては、特に限定されないが、例えば、ポリエチレンイミン、ポリビニルピロリドン、トリフェニルホスフィン、トリス(p-メトキシフェニル)ホスフィン、1,3-ビス(ジフェニルホスフィノ)プロパン、インドール等が挙げられる。   The n-type dopant is not particularly limited, and examples thereof include polyethyleneimine, polyvinylpyrrolidone, triphenylphosphine, tris (p-methoxyphenyl) phosphine, 1,3-bis (diphenylphosphino) propane, and indole.

ドープの方法は、特に限定されないが、個々のドーパントの特性に応じて通常の方法を採用すればよい。例えば、各種ドーパントを溶解可能な溶剤に溶解し、ドーパント溶液を作成し、カーボンナノチューブからなる帯状不織布の所望の位置に塗布した後、乾燥する方法がある。   The doping method is not particularly limited, but a normal method may be adopted depending on the characteristics of each dopant. For example, there is a method in which various dopants are dissolved in a soluble solvent, a dopant solution is prepared, applied to a desired position of a strip-shaped nonwoven fabric made of carbon nanotubes, and then dried.

導電性高分子としては、ポリチオフェン系導電性高分子、ポリアニリン系導電性高分子、ポリピロール系導電性高分子、ポリフェニレンビニレン系導電性高分子等が挙げられる。   Examples of the conductive polymer include a polythiophene conductive polymer, a polyaniline conductive polymer, a polypyrrole conductive polymer, and a polyphenylene vinylene conductive polymer.

無機系材料としては、いわゆる非酸化物系材料又は酸化物系材料のいずれも用いることができる。   As the inorganic material, any of so-called non-oxide materials or oxide materials can be used.

非酸化物系材料としては、金属又は金属間化合物を使用できる。非酸化物系材料としては、例えばBi(ビスマス)、Sb(アンチモン)、Te(テルル)、Pb(鉛)、Se(セレン)、Zn(亜鉛)、Co(コバルト)、Mn(マンガン)、Si(ケイ素)、Mg(マグネシウム)、Ge(ゲルマニウム)、Fe(鉄)等を含む無機半導体が挙げられ、好ましくはこれらを2種以上含む無機半導体が挙げられ、より好ましくはBiTe、Bi(2−x)SbTe(ただし、0<x<2)、CeBiTe、PbTe、ZnSb、CoSb、MnSi、MgSi、SiGe、FeSi等が挙げられる。 As the non-oxide material, a metal or an intermetallic compound can be used. Non-oxide materials include, for example, Bi (bismuth), Sb (antimony), Te (tellurium), Pb (lead), Se (selenium), Zn (zinc), Co (cobalt), Mn (manganese), Si Inorganic semiconductors including (silicon), Mg (magnesium), Ge (germanium), Fe (iron) and the like are preferable, and inorganic semiconductors including two or more of these are preferable, and Bi 2 Te 3 and Bi are more preferable. (2-x) Sb x Te 3 (where 0 <x <2), CeBi 4 Te 6 , PbTe, Zn 4 Sb 3 , CoSb 3 , MnSi, Mg 2 Si, SiGe, FeSi 2 and the like.

p型熱電変換材料として用いられる無機半導体としては、例えばBi(2−x)SbTe(ただし、0<x<2)、PbTe、ZnSb、CeBiTe等が挙げられ、好ましくはBi(2−x)SbTe(ただし、0<x<2)等が挙げられる。 Examples of the inorganic semiconductor used as the p-type thermoelectric conversion material include Bi (2-x) Sb x Te 3 (where 0 <x <2), PbTe, Zn 4 Sb 3 , CeBi 4 Te 6 and the like. Bi (2-x) Sb x Te 3 (however, 0 <x <2) is preferable.

n型熱電変換材料として用いられる無機半導体としては、例えばBiTe、BiTe(3−y)Se(ただし、0<y<3)、MgSi等が挙げられ、好ましくはBiTe(3−y)Se(ただし、0<y<3)等が挙げられる。 Examples of the inorganic semiconductor used as the n-type thermoelectric conversion material include Bi 2 Te 3 , Bi 2 Te (3-y) Se y (where 0 <y <3), Mg 2 Si, etc., preferably Bi 2 Te (3-y) Se y (where 0 <y <3) and the like.

非酸化物系材料は、上記で挙げたもの以外に、ホウ素、ガリウム等のp型ドーパントや、リン、ヒ素、アンチモン、セレン等のn型ドーパントを含んでいてもよい。   The non-oxide material may contain p-type dopants such as boron and gallium, and n-type dopants such as phosphorus, arsenic, antimony, and selenium in addition to the above-described materials.

酸化物系材料としては、特に限定されないが、層状酸化コバルト系、酸化亜鉛系、酸化チタン系、自然超格子系等が挙げられる。   Although it does not specifically limit as an oxide type material, A layered cobalt oxide type, a zinc oxide type, a titanium oxide type, a natural superlattice type etc. are mentioned.

熱電変換材料は、それぞれ、一種を用いてもよいし、二種以上を適宜組み合わせて使用してもよい。   One type of thermoelectric conversion material may be used, or two or more types may be used in appropriate combination.

帯状熱電変換材料シートの厚さは、軸に螺旋状に巻き付け可能であれば特に限定されないが、例えば1μm〜1mm、好ましくは10μm〜500μm程度であることができる。   Although the thickness of a strip | belt-shaped thermoelectric conversion material sheet will not be specifically limited if it can be wound helically around an axis | shaft, For example, it is 1 micrometer-1 mm, Preferably it can be about 10 micrometers-500 micrometers.

帯状熱電変換材料シートの幅は、軸に螺旋状に巻き付け可能であれば特に限定されないが、例えば0.1mm〜50mm、好ましくは1mm〜25mm程度であることができる。   Although the width | variety of a strip | belt-shaped thermoelectric conversion material sheet will not be specifically limited if it can be wound helically around an axis | shaft, For example, 0.1 mm-50 mm, Preferably it can be about 1 mm-25 mm.

帯状熱電変換材料シートは、帯状不織布であることが好ましく、帯状カーボンナノチューブ不織布であることがより好ましい。カーボンナノチューブを含む不織布は、特に限定されないが、例えば次のようにして得ることができる。カーボンナノチューブ分散溶液を、カーボンナノチューブを濾過可能な多孔質体を用いて濾過し、その後多孔質体からカーボンナノチューブの不織布をはぎ取り乾燥する。次に所望のサイズに切りだすことで不織布を得ることができる。   The strip-shaped thermoelectric conversion material sheet is preferably a strip-shaped nonwoven fabric, and more preferably a strip-shaped carbon nanotube nonwoven fabric. Although the nonwoven fabric containing a carbon nanotube is not specifically limited, For example, it can obtain as follows. The carbon nanotube dispersion solution is filtered using a porous body capable of filtering the carbon nanotubes, and then the carbon nanotube non-woven fabric is peeled off from the porous body and dried. Next, a nonwoven fabric can be obtained by cutting into a desired size.

本明細書において、螺旋とは、軸に対して周回しながら周回面に垂直成分のある方向へ移動する線を意味する。なお、周回の移動度と、周回面に垂直成分のある方向への移動度との比は一定でなくともよい。   In this specification, the spiral means a line that moves in a direction having a vertical component on the surface while rotating around the axis. Note that the ratio between the mobility of circulation and the mobility in a direction in which the component has a vertical component may not be constant.

周回には、円状に周回することのみならず、種々の形状、例えば多角形状(三角形状、四角形状等)、楕円状に周回すること等も包含される。   Circulation includes not only circular rotation but also various shapes such as polygonal shape (triangular shape, quadrangular shape, etc.), elliptical shape and the like.

周回数は、熱電変換可能な限りにおいて特に限定されず、例えば0.5以上であることができる。周回数は、より起電力を高くすることができるという観点から、好ましくは2以上、より好ましくは10以上、さらに好ましくは30以上、よりさらに好ましくは100以上であることができる。   The number of turns is not particularly limited as long as thermoelectric conversion is possible, and can be, for example, 0.5 or more. From the viewpoint that the electromotive force can be further increased, the number of laps is preferably 2 or more, more preferably 10 or more, still more preferably 30 or more, and still more preferably 100 or more.

周回の大きさ(例えば周回面が円である場合は直径、周回面が長方形である場合は長辺又は短辺の長さ、周回面が楕円である場合は長径又は短径の長さ)は、帯状熱電変換材料シートを螺旋状に巻き付けることが可能である限り、特に限定されない。   The size of the circumference (for example, the diameter when the circumference surface is a circle, the length of the long side or the short side when the circumference surface is a rectangle, the length of the major axis or the minor axis when the circumference surface is an ellipse) The belt-like thermoelectric conversion material sheet is not particularly limited as long as it can be spirally wound.

本発明の熱電変換デバイスにおいては、図1に例示されるように、帯状熱電変換材料シートの形状が螺旋状に巻かれた形状である。巻かれる態様は、熱電変換が可能なように、具体的には隣の帯状熱電変換材料シートと接触しないような態様であれば特に限定されない。   In the thermoelectric conversion device of the present invention, as illustrated in FIG. 1, the belt-like thermoelectric conversion material sheet has a spirally wound shape. The mode of winding is not particularly limited as long as it is a mode that does not contact the adjacent strip-shaped thermoelectric conversion material sheet so that thermoelectric conversion is possible.

本発明の熱電変換デバイスは、螺旋状に巻かれた形状の帯状熱電変換材料シートを有してさえいればよいが、螺旋の内側に、巻き芯(の全部又は一部)を有していてもよい。この場合、巻き芯の素材は、絶縁体が好ましく、さらに帯状熱電変換材料シートよりも低熱伝導性の素材であればより好ましい。このような素材としては、例えば、シリコーンやポリイミド等の耐熱性樹脂、架橋ポリエチレン等からなる発泡体等が挙げられる。また、巻き芯の断面形状は、帯状熱電変換材料シートが面で接触できる形状(円形状、多角形状等)であってもよいし、或いは帯状熱電変換材料シートが面で接触できない形状(X字状、Y字状等)であってもよい。   The thermoelectric conversion device of the present invention only needs to have a strip-shaped thermoelectric conversion material sheet wound in a spiral shape, but has a winding core (all or a part thereof) inside the spiral. Also good. In this case, the material of the winding core is preferably an insulator, and more preferably a material having lower thermal conductivity than the belt-like thermoelectric conversion material sheet. Examples of such a material include heat-resistant resins such as silicone and polyimide, and foams made of crosslinked polyethylene. In addition, the cross-sectional shape of the winding core may be a shape (circular shape, polygonal shape, or the like) that allows the strip-shaped thermoelectric conversion material sheet to contact with the surface, or a shape (X-shaped) that the strip-shaped thermoelectric conversion material sheet cannot contact with the surface. Shape, Y-shape, etc.).

帯状熱電変換材料シートにおいては、本発明の熱電変換デバイスが熱電変換可能なように、帯状p型熱電変換材料シートと帯状n型熱電変換材料シートとが交互に繰り返されている。例えば、螺旋状に巻かれた形状の任意の側面における帯状熱電変換材料シートが帯状p型熱電変換材料シートであり、且つ該側面の反対の側面における帯状熱電変換材料シートが帯状n型熱電変換材料シートである態様が挙げられる。   In the band-shaped thermoelectric conversion material sheet, the band-shaped p-type thermoelectric conversion material sheet and the band-shaped n-type thermoelectric conversion material sheet are alternately repeated so that the thermoelectric conversion device of the present invention can perform thermoelectric conversion. For example, a strip-shaped thermoelectric conversion material sheet on an arbitrary side surface of a spirally wound shape is a strip-shaped p-type thermoelectric conversion material sheet, and a strip-shaped thermoelectric conversion material sheet on the opposite side surface is a strip-shaped n-type thermoelectric conversion material The aspect which is a sheet | seat is mentioned.

螺旋状に巻かれた形状の任意の側面とは、図2に例示されるように、螺旋の端から他方の端に向けて広がる、任意の側面である。螺旋の周回の形状が多角形である場合、任意の側面は、図2のように角で区切られた1つの面である場合のみならず、角で区切られた面を複数含んでもよく、角で区切られた1つの面内のある領域であってもよく、角で区切られた1つの面とその隣の面の一部の領域であってもよい。   The arbitrary side surface of the spirally wound shape is an arbitrary side surface extending from the end of the spiral toward the other end as illustrated in FIG. When the spiral shape is a polygon, the arbitrary side surface may include not only a single surface separated by corners as in FIG. 2 but also a plurality of surfaces separated by corners. It may be a certain area in one plane delimited by, or may be a partial area of one plane delimited by a corner and its adjacent plane.

この任意の側面の反対の側面とは、図3や4に例示されるように、軸を中心として反対側の側面である。   The side surface opposite to the arbitrary side surface is a side surface on the side opposite to the axis as illustrated in FIGS. 3 and 4.

帯状p型熱電変換材料シートは、ある部位に熱を加えられた場合に、熱から離れた部位に向かって正孔を移動させることができる限り特に限定されず、p型熱電変換材料を含むものであっても、p型熱電変換材料からなるものであってもよい。また、帯状n型熱電変換材料シートは、ある部位に熱を加えられた場合に、熱から離れた部位に向かって電子を移動させることができる限り特に限定されず、n型熱電変換材料を含むものであっても、n型熱電変換材料からなるものであってもよい。p型熱電変換材料、及びn型熱電変換材料としては、特に限定されず、上記した熱電変換材料から適宜選択することができる。   The band-shaped p-type thermoelectric conversion material sheet is not particularly limited as long as heat can be applied to a certain part and holes can be moved toward the part away from the heat, and includes a p-type thermoelectric conversion material Alternatively, it may be made of a p-type thermoelectric conversion material. In addition, the band-shaped n-type thermoelectric conversion material sheet is not particularly limited as long as heat can be applied to a certain part and electrons can be moved toward the part away from the heat, and includes an n-type thermoelectric conversion material. Even if it is a thing, it may consist of an n-type thermoelectric conversion material. The p-type thermoelectric conversion material and the n-type thermoelectric conversion material are not particularly limited, and can be appropriately selected from the thermoelectric conversion materials described above.

帯状p型熱電変換材料シートは、帯状不織布であることが好ましく、p型化処理された帯状カーボンナノチューブ不織布であることがより好ましい。なお、カーボンナノチューブは、通常p型の特性を示すので、熱電変換材料としてカーボンナノチューブを用いる場合は、p型化処理せずに、帯状p型熱電変換材料シートとして用いてもよい。   The belt-like p-type thermoelectric conversion material sheet is preferably a belt-like nonwoven fabric, and more preferably a belt-like carbon nanotube nonwoven fabric subjected to a p-type treatment. Since carbon nanotubes usually show p-type characteristics, when carbon nanotubes are used as the thermoelectric conversion material, they may be used as a belt-like p-type thermoelectric conversion material sheet without being subjected to p-type treatment.

帯状n型熱電変換材料シートは、帯状不織布であることが好ましく、n型化処理された帯状カーボンナノチューブ不織布であることがより好ましい。   The band-shaped n-type thermoelectric conversion material sheet is preferably a band-shaped nonwoven fabric, and more preferably an n-type band-shaped carbon nanotube nonwoven fabric.

本発明の熱電変換デバイスにおいては、側面の全てが、上記で定義した「任意の側面」、又は「該側面の反対の側面」であってもよく、図3や4に例示されるようにこれらの側面以外の側面(以下、「他の側面」と示すこともある。図3及び4中の「4」で示される部分)が存在していてもよい。後者の場合、他の側面における帯状熱電変換材料シートは、本発明の熱電変換デバイスが熱電変換可能である限り、特に限定されない。例えば、図3及び4の例においては、2つの他の側面の内、一方の側面における帯状熱電変換材料シートが帯状p型熱電変換材料シートであり、他方の側面における帯状熱電変換材料シートが帯状n型熱電変換材料シートであってもよいし、両方の側面における帯状熱電変換材料シートが全て帯状p型熱電変換材料シート(又は帯状n型熱電変換材料シート)であってもよい。   In the thermoelectric conversion device of the present invention, all of the side surfaces may be “any side surface” defined above, or “a side surface opposite to the side surface”, and as illustrated in FIGS. Side surfaces other than the side surfaces (hereinafter, also referred to as “other side surfaces”. The portion indicated by “4” in FIGS. 3 and 4) may exist. In the latter case, the strip-shaped thermoelectric conversion material sheet in the other aspect is not particularly limited as long as the thermoelectric conversion device of the present invention can perform thermoelectric conversion. For example, in the example of FIGS. 3 and 4, the strip-shaped thermoelectric conversion material sheet on one side surface is a strip-shaped p-type thermoelectric conversion material sheet and the strip-shaped thermoelectric conversion material sheet on the other side surface is strip-shaped. An n-type thermoelectric conversion material sheet may be sufficient, and the strip | belt-shaped thermoelectric conversion material sheet in both side surfaces may be a strip | belt-shaped p-type thermoelectric conversion material sheet (or strip | belt-shaped n-type thermoelectric conversion material sheet).

本発明の熱電変換デバイスは、必要に応じて、任意の側面と、該側面の反対の側面との境界領域(他の領域がある場合は、他の領域)の少なくとも1領域上に、絶縁性基板を有していてもよい。絶縁性基板の素材は、用途に応じて適宜選択することができ、例えばポリイミド、シリコーン、フッ素系樹脂、ポリエチレンナフタレート、ポリエチレンテレフタレート等の樹脂シートや、アルミナ、窒化ケイ素、窒化アルミニウムなどのセラミックプレート等が挙げられる。   If necessary, the thermoelectric conversion device of the present invention has an insulating property on at least one region of a boundary region (another region if there is another region) between any side surface and the side surface opposite to the side surface. You may have a board | substrate. The material of the insulating substrate can be appropriately selected according to the application, for example, a resin sheet such as polyimide, silicone, fluorine resin, polyethylene naphthalate, polyethylene terephthalate, or a ceramic plate such as alumina, silicon nitride, aluminum nitride, etc. Etc.

本発明の熱電変換デバイスは、図3及び4に示すように、帯状p型熱電変換材料シートと帯状n型熱電変換材料シートとが接続する領域を高温側(或いは低温側)とすることにより、例えば、該領域を熱源(或いは冷却源)に接触させることにより、発電することができる。   As shown in FIGS. 3 and 4, the thermoelectric conversion device of the present invention has a region where the belt-shaped p-type thermoelectric conversion material sheet and the belt-shaped n-type thermoelectric conversion material sheet are connected to the high temperature side (or low temperature side), For example, power can be generated by bringing the region into contact with a heat source (or a cooling source).

本発明の熱電変換デバイスにおいては、螺旋の周回数が増えれば増えるほど、直列につながれたpn対が増えることになるので、より高い電圧を得ることが可能となる。したがって、本発明の熱電変換デバイスは、適当な箇所で切断して螺旋の周回数を調節することにより、所望の電圧を簡便に得ることができる。   In the thermoelectric conversion device of the present invention, as the number of spiral turns increases, the number of pn pairs connected in series increases, so that a higher voltage can be obtained. Therefore, the thermoelectric conversion device of the present invention can easily obtain a desired voltage by cutting at an appropriate location and adjusting the number of spiral turns.

本発明の熱電変換デバイスは、用途により、熱電冷却デバイス(ペルチェデバイス)及び熱電発電デバイスに大別される。   The thermoelectric conversion device of the present invention is roughly classified into a thermoelectric cooling device (Peltier device) and a thermoelectric power generation device depending on the application.

本発明の熱電冷却デバイスは、特に限定されないが、各種部品の冷却及び温度制御の目的で、光通信用機器、保冷庫、恒温水循環装置その他の機器及び装置等に組み込むために使用できる。また、熱電冷却デバイスは、電気で温度を制御(冷却)する上記各種用途のほか、この逆作用を利用し、熱を使って電気を作る、いわゆる熱電発電のために使用することもできる。   The thermoelectric cooling device of the present invention is not particularly limited, but can be used for incorporation into optical communication equipment, cold storage, constant temperature water circulation devices and other equipment and devices for the purpose of cooling various parts and controlling temperature. The thermoelectric cooling device can also be used for so-called thermoelectric power generation in which electricity is generated by using heat by using this reverse action in addition to the above-described various applications in which temperature is controlled (cooled) by electricity.

本発明の熱電発電デバイスは、特に限定されないが、人工衛星、砂漠の無線中継基地その他の局地向けの電源、センサやウェアラブルデバイス等の自立電源、あるいは災害時の非常用電源をはじめとする各種特殊用途のために使用できる。   The thermoelectric power generation device of the present invention is not particularly limited, but includes various power sources including artificial satellites, power supplies for desert wireless relay stations and other local areas, independent power supplies such as sensors and wearable devices, and emergency power supplies in the event of a disaster. Can be used for special purposes.

2.熱電変換デバイスの製造方法
本発明の熱電変換デバイスの製造方法は、特に限定されない。発電時に熱源(或いは冷却源)側とする面と該面から軸に対して反対側の面との間がより厚くとも、より簡便且つ効率的に製造できるという観点から、好ましくは、帯状熱電変換材料シートを螺旋状に巻く工程を含むを含む方法が挙げられる。
2. Method for Manufacturing Thermoelectric Conversion Device The method for manufacturing the thermoelectric conversion device of the present invention is not particularly limited. From the viewpoint that it can be more easily and efficiently manufactured even if the surface between the surface that is the heat source (or cooling source) side during power generation and the surface opposite to the axis from the surface is thicker, preferably, the strip-shaped thermoelectric conversion And a method including a step of spirally winding a sheet of material.

螺旋状に巻く前に、予め帯状熱電変換材料シート上にpnパターンを作っておいてもよいし、螺旋状に巻いた後、螺旋状に巻かれた形状の任意の側面の帯状熱電変換材料シートをp型化処理又はn型化処理することによって帯状熱電変換材料シート上にpnパターンを作ってもよい。   Before winding in a spiral shape, a pn pattern may be formed on the strip-shaped thermoelectric conversion material sheet in advance, or after winding in a spiral shape, the strip-shaped thermoelectric conversion material sheet on any side of the spirally wound shape A pn pattern may be formed on the strip-shaped thermoelectric conversion material sheet by p-type treatment or n-type treatment.

p型化処理、及びn型化処理の方法については特に限定されず、従来公知の方法に従って行うことができる。例えば、帯状熱電変換材料シートが熱電変換材料としてカーボンナノチューブを用いている場合であれば、p型ドーパント又はn型ドーパントが溶解した溶剤に浸漬する、該溶剤を塗布する等の方法が挙げられる。   The method for p-type treatment and n-type treatment is not particularly limited, and can be performed according to a conventionally known method. For example, when the strip-shaped thermoelectric conversion material sheet uses carbon nanotubes as the thermoelectric conversion material, a method of immersing in a solvent in which a p-type dopant or an n-type dopant is dissolved, or applying the solvent is exemplified.

1 帯状熱電変換材料シート
2 任意の側面
3 任意の側面の反対の側面
4 他の側面
5 螺旋の軸
DESCRIPTION OF SYMBOLS 1 Strip | belt-shaped thermoelectric conversion material sheet 2 Arbitrary side surface 3 Opposite side surface of arbitrary side surfaces 4 Other side surface 5 Helical axis

Claims (7)

帯状熱電変換材料シートを有する熱電変換デバイスであって、
該帯状熱電変換材料シートの形状が、螺旋状に巻かれた形状である、
熱電変換デバイス。
A thermoelectric conversion device having a strip-shaped thermoelectric conversion material sheet,
The shape of the strip-shaped thermoelectric conversion material sheet is a spirally wound shape,
Thermoelectric conversion device.
螺旋状に巻かれた形状の任意の側面における前記帯状熱電変換材料シートが帯状p型熱電変換材料シートであり、且つ該側面の反対の側面における前記帯状熱電変換材料シートが帯状n型熱電変換材料シートである、請求項1に記載の熱電変換デバイス。   The band-shaped thermoelectric conversion material sheet on an arbitrary side surface of a spirally wound shape is a band-shaped p-type thermoelectric conversion material sheet, and the band-shaped thermoelectric conversion material sheet on the side surface opposite to the side surface is a band-shaped n-type thermoelectric conversion material The thermoelectric conversion device according to claim 1, which is a sheet. 前記帯状熱電変換材料シートが、帯状カーボンナノチューブ不織布である、請求項1又は2に記載の熱電変換デバイス。   The thermoelectric conversion device according to claim 1 or 2, wherein the strip-shaped thermoelectric conversion material sheet is a strip-shaped carbon nanotube nonwoven fabric. 前記帯状n型熱電変換材料シートが、n型化処理された帯状カーボンナノチューブ不織布である、請求項3に記載の熱電変換デバイス。   The thermoelectric conversion device according to claim 3, wherein the strip-shaped n-type thermoelectric conversion material sheet is a strip-shaped carbon nanotube nonwoven fabric subjected to n-type treatment. 前記帯状p型熱電変換材料シートが、p型化処理された帯状カーボンナノチューブ不織布である、請求項3又は4に記載の熱電変換デバイス。   The thermoelectric conversion device according to claim 3 or 4, wherein the band-shaped p-type thermoelectric conversion material sheet is a band-shaped carbon nanotube nonwoven fabric that has been subjected to a p-type treatment. 帯状熱電変換材料シートを螺旋状に巻く工程を含む、請求項1〜5のいずれかに記載の熱電変換デバイスの製造方法。   The manufacturing method of the thermoelectric conversion device in any one of Claims 1-5 including the process of winding a strip | belt-shaped thermoelectric conversion material sheet | seat helically. 帯状熱電変換材料シートを螺旋状に巻く工程、及び螺旋状に巻かれた形状の任意の側面の帯状熱電変換材料シートをp型化処理又はn型化処理する工程を含む、請求項1〜5のいずれかに記載の熱電変換デバイスの製造方法。   The process which winds a strip | belt-shaped thermoelectric conversion material sheet | seat spirally, and the process of carrying out the p-type process or the n-type process of the strip | belt-shaped thermoelectric conversion material sheet of the arbitrary sides of the spirally wound shape is included. The manufacturing method of the thermoelectric conversion device in any one of.
JP2015085840A 2015-04-20 2015-04-20 Thermoelectric conversion device and manufacturing method therefor Pending JP2016207766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085840A JP2016207766A (en) 2015-04-20 2015-04-20 Thermoelectric conversion device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085840A JP2016207766A (en) 2015-04-20 2015-04-20 Thermoelectric conversion device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2016207766A true JP2016207766A (en) 2016-12-08

Family

ID=57490305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085840A Pending JP2016207766A (en) 2015-04-20 2015-04-20 Thermoelectric conversion device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2016207766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147101A1 (en) * 2017-02-13 2018-08-16 ヤマハファインテック株式会社 Gas sensor element, gas detection device and gas detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295281A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Thermoelectric device and manufacture thereof
JPH08102555A (en) * 1994-09-30 1996-04-16 Thermo Electric Deiberotsupumento:Kk Thermal cell
JP2004207392A (en) * 2002-12-24 2004-07-22 Tokai Rika Co Ltd Thermoelectric transfer device, thermoelectric transfer device unit, and method of manufacturing the thermoelectric transfer device
JP2006086510A (en) * 2004-08-17 2006-03-30 Nagoya Institute Of Technology Thermoelectric conversion device and its manufacturing method
JP2008091539A (en) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc Thermoelectric conversion device and thermoelectric conversion apparatus
JP2010537410A (en) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured material-based thermoelectric generator
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
WO2014126211A1 (en) * 2013-02-15 2014-08-21 国立大学法人奈良先端科学技術大学院大学 N-type thermoelectric conversion material, thermoelectric conversion component, and manufacturing method for n-type thermoelectric conversion material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295281A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Thermoelectric device and manufacture thereof
JPH08102555A (en) * 1994-09-30 1996-04-16 Thermo Electric Deiberotsupumento:Kk Thermal cell
JP2004207392A (en) * 2002-12-24 2004-07-22 Tokai Rika Co Ltd Thermoelectric transfer device, thermoelectric transfer device unit, and method of manufacturing the thermoelectric transfer device
JP2006086510A (en) * 2004-08-17 2006-03-30 Nagoya Institute Of Technology Thermoelectric conversion device and its manufacturing method
JP2008091539A (en) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc Thermoelectric conversion device and thermoelectric conversion apparatus
JP2010537410A (en) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured material-based thermoelectric generator
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
WO2014126211A1 (en) * 2013-02-15 2014-08-21 国立大学法人奈良先端科学技術大学院大学 N-type thermoelectric conversion material, thermoelectric conversion component, and manufacturing method for n-type thermoelectric conversion material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147101A1 (en) * 2017-02-13 2018-08-16 ヤマハファインテック株式会社 Gas sensor element, gas detection device and gas detection method

Similar Documents

Publication Publication Date Title
EP2630670B1 (en) Thermoelectric apparatus and applications thereof
JP4620183B2 (en) Thermoelectric power generation element and thermoelectric power generation device
US8373057B2 (en) Thermoelectric element
KR102067647B1 (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
KR101760834B1 (en) Chalcogenide thermoelectric material and thermoelectric device comprised same
KR101779497B1 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
JP2012124469A (en) Thermoelectric element and thermoelectric module
JP2016072602A (en) Thermoelectric conversion module and manufacturing method for the same
EP3270737A1 (en) Energy harvesting mattress with thermoelectric fabric
WO2017038553A1 (en) Thermoelectric conversion module
US20110129668A1 (en) Organic-inorganic hybrid nanofiber for thermoelectric application and method of forming the same
JP6553191B2 (en) Thermoelectric conversion module
JP2016207766A (en) Thermoelectric conversion device and manufacturing method therefor
CA2830800A1 (en) Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same
KR101791473B1 (en) Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
KR20180121601A (en) Thermoelectric generator
JP2016139796A (en) Thermoelectric conversion material and thermoelectric conversion module having the same
US20160218266A1 (en) Thermoelectric Module and Cooling Apparatus Comprising Same
JP6463510B2 (en) Thermoelectric conversion module
KR20180016717A (en) Manufacturing method of thermoelectric device
JP2017034110A (en) Thermoelectric transducer and thermoelectric conversion device including the same
JP2017069372A (en) Thermoelectric conversion system
KR20180029746A (en) Thermoelectric module
KR20140036793A (en) Thermoelectric device with graphene heat dissipator and method of fabricating the same
JP2017011181A (en) Thermoelectric conversion material sheet, and thermoelectric conversion device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514