JP2516836B2 - Method for producing lactones - Google Patents

Method for producing lactones

Info

Publication number
JP2516836B2
JP2516836B2 JP2246341A JP24634190A JP2516836B2 JP 2516836 B2 JP2516836 B2 JP 2516836B2 JP 2246341 A JP2246341 A JP 2246341A JP 24634190 A JP24634190 A JP 24634190A JP 2516836 B2 JP2516836 B2 JP 2516836B2
Authority
JP
Japan
Prior art keywords
ruthenium
acid
catalyst
reaction
organic phosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2246341A
Other languages
Japanese (ja)
Other versions
JPH03204870A (en
Inventor
正之 大竹
千尋 宮沢
和成 高橋
広志 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPH03204870A publication Critical patent/JPH03204870A/en
Application granted granted Critical
Publication of JP2516836B2 publication Critical patent/JP2516836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はラクトン類の製造法に関するものである。詳
しくは、ジカルボン酸、ジカルボン酸無水物及び/又は
ジカルボン酸エステルをルテニウム系触媒の存在下にお
いて液相で水素化することによりラクトン類を製造する
方法の改良に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing lactones. Specifically, it relates to an improvement in a method for producing a lactone by hydrogenating a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester in a liquid phase in the presence of a ruthenium catalyst.

(従来の技術) ジカルボン酸、ジカルボン酸無水物及び/又はジカル
ボン酸エステルを水素化してラクトン類を製造する方法
は古くから検討されており、これまでに多数の提案がな
されている。例えば触媒として、ニッケル系触媒(特公
昭43−6947号公報)、コバルト系触媒(特開昭51−9505
7号公報)、銅−クロム系触媒(特公昭38−20119号公
報)、銅−亜鉛系触媒(特公昭42−14463号公報)等の
固体触媒を使用して、固定床又は懸濁液相により水素化
反応を行なう方法が知られている。
(Prior Art) A method for producing a lactone by hydrogenating a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester has been studied for a long time, and many proposals have been made so far. For example, as a catalyst, a nickel-based catalyst (Japanese Patent Publication No. 43-6947), a cobalt-based catalyst (JP-A-51-9505)
No. 7), a copper-chromium catalyst (Japanese Patent Publication No. 38-20119), a copper-zinc catalyst (Japanese Patent Publication No. 42-14463), and the like, using a fixed bed or a suspension phase. Is known to carry out a hydrogenation reaction.

一方、均一系のルテニウム系触媒を使用して上記の水
素化反応を行なう方法も知られ、例えば米国特許395782
7号には、[RuXn(PR1R2R3)xLy]型のルテニウム系触
媒を使用し40〜400psiの加圧下で水素化してラクトン類
を製造する方法が記載され、また米国特許4485246号に
は、同様の触媒による水素化反応を有機アミンの存在下
で行なうことが記載されている。
On the other hand, a method of carrying out the above hydrogenation reaction using a homogeneous ruthenium-based catalyst is also known, for example, US Pat.
No. 7 describes a method for producing lactones by hydrogenating under pressure of 40 to 400 psi using a [RuXn (PR 1 R 2 R 3 ) xLy] type ruthenium-based catalyst, and US Pat. No. 4,485,246. Describes that a similar catalytic hydrogenation reaction is carried out in the presence of an organic amine.

(発明が解決しようとする課題) しかしながら、上記のニッケル系触媒、コバルト系触
媒、銅−クロム系触媒、銅−亜鉛系触媒等の固体触媒を
使用する従来の方法は、反応条件が、250℃以上かつ数
十気圧以上の苛酷な条件の採用は避けられないという問
題点があった。一方、上記均一系のルテニウム系触媒を
使用する方法は、比較的温和な条件下で水素化反応が進
行するという特徴がある半面、触媒活性がやや低水準で
あるうえ、触媒寿命が短かく、またハロゲンを使用して
いるため反応装置の腐蝕が生ずるという問題がある。
(Problems to be solved by the invention) However, the conventional method using a solid catalyst such as the above nickel-based catalyst, cobalt-based catalyst, copper-chromium-based catalyst, copper-zinc-based catalyst, the reaction conditions are 250 ℃. However, there is a problem that it is inevitable to adopt severe conditions of above several tens of atmospheres. On the other hand, the method using the homogeneous ruthenium-based catalyst is characterized in that the hydrogenation reaction proceeds under relatively mild conditions, while the catalytic activity is rather low and the catalyst life is short, Further, since halogen is used, there is a problem that the reactor is corroded.

そこで本出願人は、先に触媒としてルテニウム、有機
ホスフィン及びpka値が2より小さい酸の共役塩基を含
有するルテニウム系触媒を使用し、液相で水素化する方
法を提案した(特開平1−25771号公報)。この方法に
よれば高活性なルテニウム系触媒を使用するため、温和
な条件下で少量の触媒の使用により良好に水素化反応を
行うことができるが、反応生成物からラクトン類を分離
した触媒液を水素化反応に循環して、水素化反応を継続
すると、目的とするラクトン類の収率が低下すると共に
触媒活性が低下する問題がある。
Therefore, the present applicant has previously proposed a method of hydrogenating in a liquid phase using a ruthenium-based catalyst containing a ruthenium, an organic phosphine, and a conjugate base of an acid having a pka value of less than 2 as a catalyst (JP-A-1- 25771 publication). According to this method, since a highly active ruthenium-based catalyst is used, the hydrogenation reaction can be satisfactorily performed under mild conditions by using a small amount of the catalyst, but a catalyst solution obtained by separating lactones from the reaction product is used. If the hydrogenation reaction is circulated in the hydrogenation reaction and the hydrogenation reaction is continued, there is a problem that the yield of the desired lactone decreases and the catalytic activity decreases.

本発明はルテニウム系触媒を使用する方法における上
述の問題を解決し、ジカルボン酸、ジカルボン酸無水物
及び/又はジカルボン酸エステルから、工業的有利にラ
クトン類を製造することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems in the method using a ruthenium-based catalyst and to industrially advantageously produce a lactone from a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester. .

(課題を解決するための手段) 本発明等は、ルテニウム系触媒を使用し上記の水素化
反応を継続した場合に、ラクトン類の収率が低下すると
共に触媒活性が低下する原因について検討した結果、触
媒成分中の有機ホスフィンの一部が、原料ジカルボン酸
類と反応することによるとの知見を得た。
(Means for Solving the Problems) The present invention, etc., are the results of examining the cause of a decrease in the yield of lactones and a decrease in catalytic activity when the above hydrogenation reaction is continued using a ruthenium-based catalyst. It was found that a part of the organic phosphine in the catalyst component reacts with the raw material dicarboxylic acid.

本発明者は上記の知見に基づいて更に検討した結果、
ルテニウム、有機ホスフィン及びpka値が2より小さい
酸の共役塩基を含有するルテニウム系触媒を使用してジ
カルボン酸、ジカルボン酸無水物及び/又はジカルボン
酸エステルを液相で水素化することによりラクトン類を
製造する場合、水素化反応生成物からラクトン類を分離
した触媒液を水素化反応に循環使用し、かつ水素化反応
帯域の液相における遊離の有機ホスフィンの濃度を0.01
〜0.1重量%の範囲に保持すると、ラクトン類の収率が
低下することなく、しかも安定した触媒活性が保持され
て効率よくラクトン類を製造することができることを確
認し本発明を達成した。即ち、本発明の要旨は、ジカル
ボン酸、ジカルボン酸無水物及び/又はジカルボン酸エ
ステルを、(イ)ルテニウム、(ロ)有機ホスフィン及
び(ハ)pkaが2よりも小さい酸の共役塩基を含有する
ルテニウム系触媒の存在下において液相で水素化するこ
とによりラクトン類を製造する方法において、水素化反
応生成物からラクトン類を分離した触媒液を水素化反応
に循環し、かつ水素化反応帯域の液相における遊離の有
機ホスフィンの濃度を0.01〜0.1重量%の範囲に保持す
ることを特徴とするラクトン類の製造法に存する。
As a result of further studies based on the above findings by the present inventor,
The lactones are obtained by hydrogenating a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester in a liquid phase using a ruthenium-based catalyst containing ruthenium, an organic phosphine and a conjugate base of an acid having a pka value of less than 2. In the case of production, the catalyst liquid obtained by separating the lactones from the hydrogenation reaction product is circulated for the hydrogenation reaction, and the concentration of the free organic phosphine in the liquid phase of the hydrogenation reaction zone is 0.01%.
The present invention has been accomplished by confirming that when the content is kept in the range of 0.1 wt%, the yield of lactones does not decrease and the stable catalytic activity is maintained, so that lactones can be efficiently produced. That is, the gist of the present invention is to include a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester, (i) ruthenium, (b) an organic phosphine and (c) a conjugate base of an acid having a pka of less than 2. In a method for producing lactones by hydrogenating in a liquid phase in the presence of a ruthenium-based catalyst, a catalyst liquid obtained by separating lactones from a hydrogenation reaction product is circulated in a hydrogenation reaction and A method for producing lactones is characterized in that the concentration of free organic phosphine in the liquid phase is kept in the range of 0.01 to 0.1% by weight.

本発明を詳細に説明するに、本発明における原料物質
としては、炭素数3〜7の飽和又は不飽和のジカルボン
酸、それ等の無水物、もしくはそれ等のエステルが挙げ
られ、エステルとしては低級アルキルエステルが好まし
い。具体的には例えば、マレイン酸、フマール酸、コハ
ク酸、無水マレイン酸、無水コハク酸、マレイン酸ジメ
チル、フマール酸ジエチル、コハク酸−ジ−n−ブチル
等が使用される。
To explain the present invention in detail, examples of the raw material in the present invention include saturated or unsaturated dicarboxylic acids having 3 to 7 carbon atoms, anhydrides thereof, or esters thereof, and the ester is lower. Alkyl esters are preferred. Specifically, for example, maleic acid, fumaric acid, succinic acid, maleic anhydride, succinic anhydride, dimethyl maleate, diethyl fumarate, di-n-butyl succinate and the like are used.

本発明におけるルテニウム系触媒としては、その詳細
は後述するが、(イ)ルテニウム、(ロ)有機ホスフィ
ン及び(ハ)pkaが2より小さい酸の共役塩基を含有す
るルテニウム系触媒、あるいはこのルテニウム系触媒に
更に(ニ)中性配位子を含有させた触媒が挙げられる。
The ruthenium-based catalyst according to the present invention will be described in detail later, but includes (i) ruthenium, (b) an organic phosphine, and (c) a ruthenium-based catalyst containing a conjugate base of an acid having a pka of less than 2, or this ruthenium-based catalyst. Examples of the catalyst include (d) a catalyst containing a neutral ligand.

本発明は、上述のジカルボン酸、ジカルボン酸無水物
及び/又はジカルボン酸エステルを上記ルテニウム系触
媒の存在下に液相で水素化してラクトン類を製造する際
に、水素化反応生成物からラクトン類を分離した触媒液
を水素化反応に循環し、かつ水素化反応帯域の液相にお
ける遊離の有機ホスフィンの濃度を0.01〜0.1重量%、
好ましくは0.02〜0.05重量%の範囲に保持することを骨
子とするものである。液相中の遊離の有機ホスフィンの
濃度が0.1重量%を超えると、原料と反応して高沸点物
が副生し、一方、遊離の有機ホスフィンの濃度が0.01重
量%未満の場合には、ルテニウム錯体中の有機ホスフィ
ンまでが副反応に消費されるものと考えられ、反応液中
にルテニウム金属の析出が認められ、触媒活性の低下も
著しい。更に、有機ホスフィンは非常に酸化され易く、
連続運転中に有機ホスフィンオキシドとして消費される
ことが判明し、その分の補給も考慮する必要がある。
The present invention relates to the production of lactones by hydrogenating the above-mentioned dicarboxylic acid, dicarboxylic acid anhydride and / or dicarboxylic acid ester in the liquid phase in the presence of the above ruthenium-based catalyst to produce lactones from the hydrogenation reaction product. The separated catalyst liquid is circulated in the hydrogenation reaction, and the concentration of free organic phosphine in the liquid phase of the hydrogenation reaction zone is 0.01 to 0.1% by weight,
It is preferable to keep the content in the range of 0.02 to 0.05% by weight. When the concentration of free organic phosphine in the liquid phase exceeds 0.1% by weight, a high-boiling substance is produced as a by-product by reacting with the raw material, while when the concentration of free organic phosphine is less than 0.01% by weight, ruthenium It is considered that even the organic phosphine in the complex is consumed in the side reaction, precipitation of ruthenium metal is observed in the reaction solution, and the catalytic activity is significantly reduced. Furthermore, organic phosphines are very susceptible to oxidation,
It was found to be consumed as organic phosphine oxide during continuous operation, and it is necessary to consider supplementation for that amount.

反応帯域の有機ホスフィンの濃度を上記の範囲に調節
するには、例えば触媒液を反応器に循環する経路に有機
ホスフィンの供給容器を設置し、触媒液中の遊離の有機
ホスフィンの濃度が0.01〜0.1重量%となるような量の
有機ホスフィンを、この容器から随時補給する方法が採
用される。
In order to adjust the concentration of the organic phosphine in the reaction zone to the above range, for example, a supply container for the organic phosphine is installed in the route for circulating the catalyst liquid in the reactor, and the concentration of the free organic phosphine in the catalyst liquid is 0.01 to A method of replenishing the organic phosphine in an amount of 0.1% by weight from this container at any time is adopted.

このような方法により、原料物質との有機ホスフィン
との反応に基づく副反応が抑制されてラクトン類の収率
が向上すると共に、触媒活性が安定に保持される。
By such a method, the side reaction based on the reaction between the raw material and the organic phosphine is suppressed, the yield of lactones is improved, and the catalytic activity is stably maintained.

以下に本発明をさらに詳細に説明するに、本発明にお
ける前示(イ)ルテニウム、(ロ)有機ホスフィン及び
(ハ)pka値が2より小さい酸の共役塩基を含有し、場
合により中性配位子を含有していてもよいルテニウム系
触媒の詳細は次の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The details of the ruthenium-based catalyst that may contain a ligand are as follows.

(イ)ルテニウム: ルテニウムとしては、金属ルテニウム及びルテニウム
化合物の何れも使用することができる。ルテニウム化合
物としては、ルテニウムの酸化物、ハロゲン化物、水酸
化物、無機酸塩、有機酸塩又は錯化合物が使用され、具
体的には例えば、二酸化ルテニウム、四酸化ルテニウ
ム、二水酸化ルテニウム、塩化ルテニウム、臭化ルテニ
ウム、ヨウ化ルテニウム、硝酸ルテニウム、酢酸ルテニ
ウム、ルテニウムアセチルアセトナート、ヘキサクロロ
ルテニウム酸ナトリウム、テトラカルボニルルテニウム
酸ジカリウム、ペンタカルボニルルテニウム、シクロペ
ンタジエニルジカルボニルルテニウム、ジブロモトリカ
ルボニルルテニウム、クロロトリス(トリフェニルホス
フィン)ヒドリドルテニウム、ビス(トリ−n−ブチル
ホスフィン)トリカルボニルルテニウム、ドデカカルボ
ニルトリルテニウム、テトラヒドリドデカカルボニルテ
トラルテニウム、オクタデカカルボニルヘキサルテニウ
ム酸ジセシウム、ウンデカカルボニルヒドリドトリルテ
ニウム酸テトラフェニルホスホニウム等が挙げられる。
これ等の金属ルテニウム及びルテニウム化合物の使用量
は、反応溶液1リットル中のルデニウムとして通常0.01
〜100ミリモル、好ましくは0.1〜10ミリモルである。
(A) Ruthenium: As ruthenium, both metal ruthenium and ruthenium compounds can be used. As the ruthenium compound, ruthenium oxide, halide, hydroxide, inorganic acid salt, organic acid salt or complex compound is used, and specifically, for example, ruthenium dioxide, ruthenium tetroxide, ruthenium dihydroxide, chloride. Ruthenium, ruthenium bromide, ruthenium iodide, ruthenium nitrate, ruthenium acetate, ruthenium acetylacetonate, sodium hexachlororuthenate, dipotassium tetracarbonyl ruthenate, pentacarbonyl ruthenium, cyclopentadienyl dicarbonyl ruthenium, dibromotricarbonyl ruthenium, chlorotris (Triphenylphosphine) hydridoruthenium, bis (tri-n-butylphosphine) tricarbonylruthenium, dodecacarbonyltriruthenium, tetrahydridodecacarbonyltetra Ruthenium, octadecanol carbonyl hexa ruthenate Jiseshiumu, undecalactone carbonyl hydride tri ruthenate tetraphenylphosphonium the like.
The amount of these metal ruthenium and ruthenium compounds used is usually 0.01 as ruthenium in 1 liter of the reaction solution.
~ 100 mmol, preferably 0.1-10 mmol.

(ロ)有機ホスフィン: 有機ホスフィンは、主触媒である(イ)のルテニウム
の電子状態を抑制したり、ルテニウムの活性状態を安定
化するのに寄与するものと考えられる。有機ホスフィン
の具体例としては、トリ−n−オクチルホスフィン、ト
リ−n−ブチルホスフィン、ジメチル−n−オクチルホ
スフィン等のトリアルキルホスフィン類、トリシクロヘ
キシルホスフィンのようなトリシクロアルキルホスフィ
ン類、トリフェニルホスフィンのようなトリアリールホ
スフィン類、ジメチルフェニルホスフィンのようなアル
キルアリールホスフィン類、1,2−ビス(ジフェニルホ
スフィノ)エタンのような多官能性ホスフィン類が挙げ
られる。有機ホスフィンの使用量は、ルテニウム1モル
に対して、通常0.1〜100モル程度、好ましくは3〜100
モルである。また、有機ホスフィンは、それ自体単独
で、あるいはルテニウム系触媒との複合体の形で、反応
系に供給することができる。
(B) Organic phosphine: It is considered that the organic phosphine contributes to suppressing the electronic state of ruthenium of (a) which is the main catalyst and stabilizing the active state of ruthenium. Specific examples of the organic phosphine include trialkylphosphines such as tri-n-octylphosphine, tri-n-butylphosphine and dimethyl-n-octylphosphine, tricycloalkylphosphines such as tricyclohexylphosphine, triphenylphosphine. Such as triarylphosphines, alkylarylphosphines such as dimethylphenylphosphine, and polyfunctional phosphines such as 1,2-bis (diphenylphosphino) ethane. The amount of organic phosphine used is usually about 0.1 to 100 mol, preferably 3 to 100 mol, per 1 mol of ruthenium.
Is a mole. Further, the organic phosphine can be supplied to the reaction system by itself or in the form of a complex with the ruthenium-based catalyst.

(ハ)pka値が2より小さい酸の共役塩基: pka値が2より小さい酸の共役塩基は、ルテニウム系
触媒の付加的促進剤として作用し、触媒調製中又は反応
系中において、pka値が2より小さい酸の共役塩基を生
成するものであればよく、その供給形態としては、pka
値が2より小さいブレンステッド酸又はその各種の塩等
が用いられる。具体的には例えば、硫黄、亜硫酸、硝
酸、亜硝酸、過塩素酸、燐酸、ホウフッ化水素酸、ヘキ
サフルオロ燐酸、タングステン酸、燐モリブデン酸、燐
タングステン酸、シリコンタングステン酸、ポリケイ
酸、フルオロスルホン酸等の無機酸類、トリクロロ酢
酸、ジクロロ酢酸トリフルオロ酢酸、、メタンスルホン
酸、トリフルオロメタンスルホン酸、ラウリルスルホン
酸、ベンゼンスルホン酸、p−トルエンスルホン酸等の
有機酸、あるいはこれ等の酸のアンモニウム塩、ホスホ
ニウム塩が挙げられる。また、これ等の酸の共役塩基が
反応系で生成すると考えられる酸誘導体、例えば酸ハロ
ゲン化物、酸無水物、エステル、酸アミド等の形で添加
しても同様の効果が得られる。これ等の酸又はその塩の
使用量は、ルテニウム1モルに対して通常0.5〜100モ
ル、好ましくは1〜20モルの範囲である。
(C) Conjugate base of acid with pka value less than 2: Conjugate base of acid with pka value less than 2 acts as an additional promoter of ruthenium-based catalyst, and has pka value during catalyst preparation or reaction system. Any acid can be used as long as it produces a conjugate base of an acid smaller than 2. The supply form thereof is pka
Bronsted acid having a value less than 2 or various salts thereof is used. Specifically, for example, sulfur, sulfurous acid, nitric acid, nitrous acid, perchloric acid, phosphoric acid, borofluoric acid, hexafluorophosphoric acid, tungstic acid, phosphomolybdic acid, phosphotungstic acid, silicon tungstic acid, polysilicic acid, fluorosulfone. Inorganic acids such as acids, trichloroacetic acid, dichloroacetic acid trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, laurylsulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and other organic acids, or ammonium of these acids Examples thereof include salts and phosphonium salts. Further, the same effect can be obtained even if the conjugate base of these acids is added in the form of an acid derivative, such as an acid halide, an acid anhydride, an ester or an acid amide, which is considered to be produced in the reaction system. The amount of these acids or salts thereof used is usually 0.5 to 100 mol, preferably 1 to 20 mol, per 1 mol of ruthenium.

上記(イ)、(ロ)及び(ハ)の成分の外に、場合に
より含有することができる(ニ)中性配位子としては、
水素、エチレン、プロピレン、ブテン、シクロペンテ
ン、シクロヘキセン、ブタジエン、シクロペンタジエ
ン、シクロオクタジエン、ノルボナジエン等のオレフィ
ン類、ジエチルエーテル、アニソール、ジオキサン、テ
トラヒドロフラン、アセトン、アセトフェノン、ベンゾ
フェノン、シクロヘキサノン、プロピオン酸、カプロン
酸、酪酸、安息香酸、酢酸エチル、酢酸アリル、安息香
酸ベンジル、ステアリン酸ベンジル等の含酸素化合物、
酸化窒素、アセトニトリル、プロピオニトリル、ベンゾ
ニトリル、シクロヘキシルイソニトリル、ブチルアミ
ン、アニリン、トルイジン、トリエチルアミン、ピロー
ル、ピリジン、N−メチルホルムアミド、アセトアミ
ド、1,1,3,3−テトラメチル尿素、N−メチルピロリド
ン、カプロラクタム、ニトロメタン等の含窒素化合物、
二硫化炭素、n−ブチルメルカプタン、チオフェノー
ル、ジメチルスルフィド、ジメチルジスルフィド、チオ
フェン、ジメチルスルホキシド、ジフェニルスルホキシ
ド等の含硫黄化合物、トリブチルホスフィンオキシド、
エチルジフェニルホスフィンオキシド、トリフェニルホ
スフィンオキシド、ジエチルフェニルホスフィネート、
ジフェニルメチルホスフィネート、ジフェニルエチルホ
スフィネート、o,o−ジメチルメチルホスホノチオレー
ト、トリエチルホスファイト、トリフェニルホスファイ
ト、トリエチルホスフェート、トリフェニルホスフェー
ト、ヘキサメチルホスホリックトリアミド等の有機ホス
フィン以外の含燐化合物が挙げられる。
In addition to the components (a), (b) and (c) above, (d) a neutral ligand which may be optionally contained,
Olefins such as hydrogen, ethylene, propylene, butene, cyclopentene, cyclohexene, butadiene, cyclopentadiene, cyclooctadiene, norbonadiene, diethyl ether, anisole, dioxane, tetrahydrofuran, acetone, acetophenone, benzophenone, cyclohexanone, propionic acid, caproic acid, Oxygen-containing compounds such as butyric acid, benzoic acid, ethyl acetate, allyl acetate, benzyl benzoate and benzyl stearate,
Nitric oxide, acetonitrile, propionitrile, benzonitrile, cyclohexylisonitrile, butylamine, aniline, toluidine, triethylamine, pyrrole, pyridine, N-methylformamide, acetamide, 1,1,3,3-tetramethylurea, N-methylpyrrolidone , Nitrogen-containing compounds such as caprolactam and nitromethane,
Sulfur-containing compounds such as carbon disulfide, n-butyl mercaptan, thiophenol, dimethyl sulfide, dimethyl disulfide, thiophene, dimethyl sulfoxide and diphenyl sulfoxide, tributylphosphine oxide,
Ethyldiphenylphosphine oxide, triphenylphosphine oxide, diethylphenylphosphinate,
Phosphorus-containing compounds other than organic phosphines such as diphenylmethylphosphinate, diphenylethylphosphinate, o, o-dimethylmethylphosphonothiolate, triethylphosphite, triphenylphosphite, triethylphosphate, triphenylphosphate, and hexamethylphosphoric triamide. Compounds.

本発明の方法は、特に溶媒を使用せず、原料物質また
は反応生成物自体を溶媒として実施することができる
が、原料物質以外に他の溶媒を使用することもできる。
The method of the present invention can be carried out by using the starting material or the reaction product itself as a solvent without using a solvent, but other solvents can be used in addition to the starting material.

このような溶媒としては、例えばジエチルエーテル、
アニソール、テトラヒドロフラン、エチレングリコール
ジエチルエーテル、トリエチレングリコールジメチルエ
ーテル、ジオキサン等のエーテル類;アセトン、メチル
エチルケトン、アセトフェノン等のケトン類;メタノー
ル、エタノール、n−ブタノール、ベンジルアルコー
ル、エチレングリコール、ジエチレングリコール等のア
ルコール類;フェノール類;ギ酸、酢酸、プロピオン
酸、トルイル酸等のカルボン酸類;酢酸メチル、酢酸n
−ブチル、安息香酸ベンジル等のエステル類;ベンゼ
ン、トルエン、エチルベンゼン、テトラリン酸の芳香族
炭化水素;n−ヘキサン、n−オクタン、シクロヘキサン
等の脂肪族炭化水素;ジクロロメタン、トリクロロエタ
ン、クロロベンゼン等のハロゲン化炭化水素;ニトロメ
タン、ニトロベンゼン等のニトロ化炭化水素;N,N−ジメ
チルホルムアミド、N,N−ジメチルアセトアミド、N−
メチルピロリドン等のカルボン酸アミド;ヘキサメチル
リン酸トリアミド、N,N,N′,N′−テトラエチルスルフ
ァミド等のその他のアミド類;N,N′−ジメチルイミダゾ
リドン、N,N,N,N−テトラメチル尿素等の尿素類;ジメ
チルスルホン、テトラメチレンスルホン等のスルホン
酸;ジメチルスルホキシド、ジフェニルスルホキシド等
のスルホキシド類;γ−ブチロラクトン、ε−カプロラ
クトン等のクラクトン類;トリグライム(トリエチレン
グリコールジメチルエーテル)、テトラグライム(テト
ラエチレングリコールジメチルエーテル)、18−クラウ
ン−6等のポリエーテル類、アセトニトリル、ベンゾニ
トリル等のニトリル類;ジメチルカーボネート、エチレ
ンカーボネート等の炭酸エステル類が挙げられる。
Examples of such a solvent include diethyl ether,
Ethers such as anisole, tetrahydrofuran, ethylene glycol diethyl ether, triethylene glycol dimethyl ether, dioxane; ketones such as acetone, methyl ethyl ketone, acetophenone; alcohols such as methanol, ethanol, n-butanol, benzyl alcohol, ethylene glycol, diethylene glycol; Phenols; carboxylic acids such as formic acid, acetic acid, propionic acid, toluic acid; methyl acetate, acetic acid n
-Esters such as butyl and benzyl benzoate; aromatic hydrocarbons such as benzene, toluene, ethylbenzene and tetraphosphoric acid; aliphatic hydrocarbons such as n-hexane, n-octane and cyclohexane; halogenation such as dichloromethane, trichloroethane and chlorobenzene Hydrocarbons; Nitrated hydrocarbons such as nitromethane and nitrobenzene; N, N-dimethylformamide, N, N-dimethylacetamide, N-
Carboxylic acid amides such as methylpyrrolidone; Other amides such as hexamethylphosphoric triamide, N, N, N ', N'-tetraethylsulfamide; N, N'-dimethylimidazolidone, N, N, N, Ureas such as N-tetramethylurea; Sulfonic acids such as dimethyl sulfone and tetramethylene sulfone; Sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide; Clactones such as γ-butyrolactone and ε-caprolactone; Triglyme (triethylene glycol dimethyl ether) , Tetraglyme (tetraethylene glycol dimethyl ether), polyethers such as 18-crown-6, nitriles such as acetonitrile and benzonitrile, and carbonic acid esters such as dimethyl carbonate and ethylene carbonate.

ルテニウム系触媒を調製するには、例えば、上述の触
媒成分を含む溶液を不活性ガス気圏下で加熱処理すれば
よい。得られた触媒は、ルテニウム1原子当り2〜4個
程度の有機ホスフィンが配位した錯体構造を形成してい
るものと考えられる。そして錯体を形成していない余剰
の有機ホスフィンのみがガスクロマトグラフィーにより
遊離のホスフィンとして定量される。また、触媒系にpk
aが2より小さい酸の共役塩基を共存させた場合には、
遊離の有機ホスフィン濃度が更に減少することから、該
共役塩基と有機ホスフィンとの間にも溶液中で安定な錯
体が形成されていると考えられる。
To prepare the ruthenium-based catalyst, for example, a solution containing the above-mentioned catalyst component may be heat-treated in an inert gas atmosphere. It is considered that the obtained catalyst forms a complex structure in which about 2 to 4 organic phosphines are coordinated per 1 atom of ruthenium. Then, only the excess organic phosphine that does not form a complex is quantified as free phosphine by gas chromatography. In addition, pk
When a conjugate base of an acid in which a is smaller than 2 is coexisted,
Since the concentration of free organic phosphine is further reduced, it is considered that a stable complex is also formed in the solution between the conjugated base and the organic phosphine.

本発明の方法により、水素化反応を行うには、反応容
器に、原料物質並びに有機ホスフィンの濃度を予め調節
した前記の触媒成分を含む触媒液を導入し、さらに水素
を通入する。水素は、窒素あるいは二酸化炭素等の反応
に不活性なガスで希釈されたものであってもよい。反応
温度は通常50〜250℃、好ましくは100〜220℃である。
反応系内の水素分圧は特に限られるものではないが、工
業的実施上は通常0.1〜100kg/cm2G、好ましくは1〜50k
g/cm2Gである。反応生成液から蒸留、抽出等の通常の分
離精製手段により目的物であるラクトン類を採取する。
In order to carry out the hydrogenation reaction by the method of the present invention, a catalyst liquid containing the above-mentioned catalyst components in which the concentrations of the raw material and the organic phosphine are adjusted in advance is introduced into the reaction vessel, and hydrogen is further introduced. Hydrogen may be diluted with a reaction-inert gas such as nitrogen or carbon dioxide. The reaction temperature is usually 50 to 250 ° C, preferably 100 to 220 ° C.
The hydrogen partial pressure in the reaction system is not particularly limited, but usually 0.1 to 100 kg / cm 2 G, preferably 1 to 50 k in industrial practice.
It is g / cm 2 G. The target lactone is collected from the reaction product solution by a usual separation and purification means such as distillation and extraction.

ラクトン類を分離した触媒液は、その組成を定常的に
チエックして、触媒液中の有機ホスフィン濃度を常に前
記の所定濃度に保持するように、循環過程において適宜
有機ホスフィンを補給して反応容器に循環する。
The catalyst solution from which the lactones have been separated constantly checks its composition, and in order to keep the concentration of the organic phosphine in the catalyst solution always at the above-mentioned predetermined concentration, the organic phosphine is appropriately replenished during the circulation process to provide a reaction vessel. Circulate to.

(実施例) 以下本発明を実施例及び比較例について更に詳細に説
明するが、本発明はその要旨を超えない限りこれ等の実
施例に限定されるものではない。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

なお、反応生成物及び遊離の有機ホスフィンはガスク
ロマトグラフィーにより分析した。
The reaction product and free organic phosphine were analyzed by gas chromatography.

実施例1 触媒液の調製: ルテニウムアセチルアセトナート0.296g、トリオクチ
ルホスフィン1.11g及びp−トルエンスルホン酸0.485g
をトリエチレングリコールジメチルエーテル238gに溶解
し、窒素雰囲気下において200℃で2時間加熱処理して
触媒液を調製した。触媒液中の遊離のトリオクチルホス
フィン濃度は0.041重量%であった。
Example 1 Preparation of catalyst solution: 0.296 g of ruthenium acetylacetonate, 1.11 g of trioctylphosphine and 0.485 g of p-toluenesulfonic acid.
Was dissolved in 238 g of triethylene glycol dimethyl ether, and heat-treated at 200 ° C. for 2 hours in a nitrogen atmosphere to prepare a catalyst solution. The concentration of free trioctylphosphine in the catalyst solution was 0.041% by weight.

水素化反応: 上記触媒液全量を500mlのSUS製加圧釜に仕込み、更に
無水コハク酸60gを加えて180℃に昇温し、水素圧40kg/c
m2Gで1時間水素化反応を行った。
Hydrogenation reaction: The total amount of the above catalyst solution was charged into a 500 ml SUS pressure vessel, 60 g of succinic anhydride was further added and the temperature was raised to 180 ° C., and the hydrogen pressure was 40 kg / c.
The hydrogenation reaction was carried out at m 2 G for 1 hour.

反応液を分析したところ、無水コハク酸の転化率は71
%であり、γ−ブチロラクトンの選択率は98%であっ
た。また、反応液中の遊離のトリオクチルホスフィン濃
度は0.02重量%に低下した。
When the reaction solution was analyzed, the conversion rate of succinic anhydride was 71.
%, And the selectivity for γ-butyrolactone was 98%. In addition, the concentration of free trioctylphosphine in the reaction solution dropped to 0.02% by weight.

実施例2 第1図に示す流通型反応装置を使用して水素化反応を
実施した。第1図において、1は反応器、2は触媒容
器、3は圧縮機、4は原料容器、5は気液分離器、6は
蒸留塔、7は有機ホスフィン容器である。
Example 2 A hydrogenation reaction was carried out using the flow reactor shown in FIG. In FIG. 1, 1 is a reactor, 2 is a catalyst container, 3 is a compressor, 4 is a raw material container, 5 is a gas-liquid separator, 6 is a distillation column, and 7 is an organic phosphine container.

触媒液の調製: 0.39gのルテニウムアセチルアセトナート、3.70gのト
リオクチルホスフィン及び1.60gのp−トルエンスルホ
ン酸をトリエチレングリコールジメチルエーテルに溶解
して全体で1000mlとし、窒素雰囲気下において200℃で
2時間加熱処理して触媒液を調製して触媒容器2に仕込
んだ。触媒液中の遊離のトラオクチルホスフィン濃度は
0.043重量%であった。
Preparation of catalyst solution: 0.39 g of ruthenium acetylacetonate, 3.70 g of trioctylphosphine and 1.60 g of p-toluenesulfonic acid were dissolved in triethylene glycol dimethyl ether to make a total volume of 1000 ml. The catalyst solution was prepared by heating for a period of time and charged into the catalyst container 2. The concentration of free traoctylphosphine in the catalyst solution is
It was 0.043% by weight.

水素化反応: この触媒液を触媒容器2から131g/hrの流量で反応器
1(500ml加圧釜)に供給し、水素ガスを圧縮機3から3
20Nl/hrの流量で反応器1に供給し、反応器1の圧力を4
0kg/cm2G、温度を205℃に保持した。一方、無水コハク
酸80重量%及びγ−ブチロラクトン20重量%からなる原
料液を、原料容器4から19g/hrの流量で連続的に反応器
1に供給して水素化反応を行った。
Hydrogenation reaction: This catalyst solution was supplied from the catalyst container 2 to the reactor 1 (500 ml pressure kettle) at a flow rate of 131 g / hr, and hydrogen gas was supplied from the compressor 3 to 3
Supply to reactor 1 at a flow rate of 20 Nl / hr and set reactor 1 pressure to 4
The temperature was maintained at 205 ° C. at 0 kg / cm 2 G. On the other hand, a raw material liquid consisting of 80% by weight of succinic anhydride and 20% by weight of γ-butyrolactone was continuously supplied from the raw material container 4 to the reactor 1 at a flow rate of 19 g / hr to carry out the hydrogenation reaction.

反応混合物は気液分離器5に導入して廃ガスをバージ
した。ガス分離後の反応生成液は蒸留塔6に送給して、
塔頂から生成γ−ブチロラクトン及び水を蒸留分離し、
触媒液は塔底から抜出して触媒容器2に循環した。一
方、触媒液中の遊離のトリオクチルホスフィンの濃度を
0.04重量%に保持するように、有機ホスフィン容器7か
らトリオクチルホスフィンを連続的に供給した。
The reaction mixture was introduced into the gas-liquid separator 5 to barge the waste gas. The reaction product liquid after gas separation is sent to the distillation column 6,
Γ-butyrolactone and water produced from the top of the column are separated by distillation,
The catalyst liquid was extracted from the bottom of the tower and circulated in the catalyst container 2. On the other hand, the concentration of free trioctylphosphine in the catalyst solution
Trioctylphosphine was continuously supplied from the organic phosphine container 7 so as to maintain 0.04% by weight.

このような方法により30日間運転を継続し、生成物を
分析したところ、γ−ブチロラクトンの選択率及び収率
は96.3%であり、反応開始5日以降の原料転化率は100
%であった。
When the operation was continued for 30 days by such a method and the product was analyzed, the selectivity and the yield of γ-butyrolactone were 96.3%, and the raw material conversion rate after 5 days from the reaction start was 100%.
%Met.

実施例3 実施例2において、触媒液中の遊離のトリオクチルホ
スフィンの濃度を0.10重量%に保持した以外は、実施例
2と同様にして30日間運転を継続し、生成物を分析した
ところ、γ−ブチロラクトンの選択率は93.9%であり、
収率は93.0%であり、反応開始5日以降の原料転化率は
99%であった。
Example 3 The operation was continued for 30 days in the same manner as in Example 2 except that the concentration of free trioctylphosphine in the catalyst solution was maintained at 0.10% by weight, and the product was analyzed. The selectivity of γ-butyrolactone is 93.9%,
The yield is 93.0%, and the raw material conversion rate after 5 days from the start of the reaction is
It was 99%.

比較例1 実施例2において、触媒液中の遊離のトリオクチルホ
スフィンの濃度を0.15重量%に保持した以外は、実施例
2と同様にして30日間運転を継続し、生成物を分析した
ところ、γ−ブチロラクトンの選択率は87.0%であり、
収率は85.3%であり、反応開始5日以降の原料転化率は
98%であった。
Comparative Example 1 In Example 2, operation was continued for 30 days in the same manner as in Example 2 except that the concentration of free trioctylphosphine in the catalyst solution was maintained at 0.15% by weight, and the product was analyzed. The selectivity of γ-butyrolactone is 87.0%,
The yield was 85.3%, and the raw material conversion rate after 5 days from the start of the reaction was
It was 98%.

比較例2 実施例2において、触媒液中の遊離のトリオクチルホ
スフィンの濃度を0.20重量%に保持した以外は、実施例
2と同様にして30日間運転を継続し、生成物を分析した
ところ、γ−ブチロラクトンの選択率は67.8%であり、
収率は65.1%であり、反応開始5日以降の原料転化率は
96%であった。
Comparative Example 2 In Example 2, operation was continued for 30 days in the same manner as in Example 2 except that the concentration of free trioctylphosphine in the catalyst solution was maintained at 0.20% by weight, and the product was analyzed. The selectivity of γ-butyrolactone is 67.8%,
The yield was 65.1%, and the raw material conversion rate after 5 days from the start of the reaction was
It was 96%.

実施例4〜8及び比較例3〜4 実施例2において、容器7からトリオクチルホスフィ
ンを供給せず、その他は実施例2と同様にして水素化反
応を実施した。
Examples 4 to 8 and Comparative Examples 3 to 4 In Example 2, the hydrogenation reaction was carried out in the same manner as in Example 2 except that trioctylphosphine was not supplied from the container 7.

反応開始から1日〜5日後における反応液中の遊離の
トリオクチルホスフィン(TOP)濃度、原料転化率及び
γ−ブチロラクトン(GBL)の選択率を表1に示す。ま
た、比較例として、反応開始から6日後及び7日後にお
ける結果を表1に併記する。
Table 1 shows the free trioctylphosphine (TOP) concentration, the raw material conversion rate, and the γ-butyrolactone (GBL) selectivity in the reaction solution after 1 to 5 days from the start of the reaction. In addition, as a comparative example, the results at 6 days and 7 days after the start of the reaction are also shown in Table 1.

表1に示すように、遊離のトリオクチルホスフィン濃
度は反応開始から6日後には0.005重量%に低下し、7
日後には0.001重量%以下となり、γ−ブチロラクトン
の選択率は大幅に低下した。
As shown in Table 1, the concentration of free trioctylphosphine decreased to 0.005% by weight after 6 days from the start of the reaction.
After 1 day, it became 0.001% by weight or less, and the selectivity of γ-butyrolactone decreased significantly.

(発明の効果) 本発明方法によれば、ルテニウム触媒を使用してジカ
ルボン酸、ジカルボン酸無水物及び/又はジカルボン酸
エステルを液相で水素化することによりラクトン類を製
造する場合に、水素化反応生成物からラクトン類を分離
した触媒液を水素化反応に循環使用し、かつ水素化反応
帯域の液相における遊離の有機ホスフィンの濃度を0.01
〜0.1重量%の範囲に保持することにより、ラクトン類
の収率が向上すると共に触媒活性が安定に保持され、工
業的に実施する場合の価値は大きい。
(Effect of the Invention) According to the method of the present invention, when a lactone is produced by hydrogenating a dicarboxylic acid, a dicarboxylic acid anhydride and / or a dicarboxylic acid ester in a liquid phase using a ruthenium catalyst, hydrogenation is performed. The catalyst liquid obtained by separating the lactones from the reaction product is recycled for the hydrogenation reaction, and the concentration of the free organic phosphine in the liquid phase of the hydrogenation reaction zone is 0.01%.
By maintaining the content in the range of 0.1 wt% to 0.1% by weight, the yield of lactones is improved and the catalytic activity is stably maintained, which is of great value in industrial implementation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施に使用される流通型反応設備の工
程図を示す。 図中1は反応器、2は触媒容器、3は圧縮機、4は原料
容器、5は気液分離器、6は蒸留塔、7は有機ホスフィ
ン容器である。
FIG. 1 is a process diagram of a flow-type reaction facility used for carrying out the present invention. In the figure, 1 is a reactor, 2 is a catalyst container, 3 is a compressor, 4 is a raw material container, 5 is a gas-liquid separator, 6 is a distillation column, and 7 is an organic phosphine container.

フロントページの続き (72)発明者 亀尾 広志 岡山県倉敷市潮通3丁目10番地 三菱化 成株式会社水島工場内 (56)参考文献 特開 平1−25771(JP,A) 特開 平1−221373(JP,A)Continued Front Page (72) Hiroshi Gumi Hiroshi Gumi 3-10 Shiodori, Kurashiki City, Okayama Prefecture Mizushima Plant, Mitsubishi Kasei Co., Ltd. (56) Reference JP-A-1-25771 (JP, A) JP-A-1- 221373 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジカルボン酸、ジカルボン酸無水物及び/
又はジカルボン酸エステルを、(イ)ルテニウム、
(ロ)有機ホスフィン及び(ハ)pkaが2よりも小さい
酸の共役塩基を含有するルテニウム系触媒の存在下にお
いて液相で水素化することによりラクトン類を製造する
方法において、水素化反応生成物からラクトン類を分離
した触媒液を水素化反応に循環し、かつ水素化反応帯域
の液相における遊離の有機ホスフィンの濃度を0.01〜0.
1重量%の範囲に保持することを特徴とするラクトン類
の製造法。
1. A dicarboxylic acid, a dicarboxylic acid anhydride and / or
Alternatively, the dicarboxylic acid ester may be (i) ruthenium,
(B) A method for producing a lactone by hydrogenating in a liquid phase in the presence of a ruthenium-based catalyst containing a conjugated base of an acid having an organic phosphine and (c) pka of less than 2, a hydrogenation reaction product The catalyst solution from which the lactones have been separated is circulated in the hydrogenation reaction, and the concentration of free organic phosphine in the liquid phase of the hydrogenation reaction zone is adjusted to 0.01 to 0.
A method for producing lactones, which is characterized in that the content is kept in the range of 1% by weight.
JP2246341A 1989-10-04 1990-09-18 Method for producing lactones Expired - Fee Related JP2516836B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-257960 1989-10-04
JP25796089 1989-10-04

Publications (2)

Publication Number Publication Date
JPH03204870A JPH03204870A (en) 1991-09-06
JP2516836B2 true JP2516836B2 (en) 1996-07-24

Family

ID=17313602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246341A Expired - Fee Related JP2516836B2 (en) 1989-10-04 1990-09-18 Method for producing lactones

Country Status (1)

Country Link
JP (1) JP2516836B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0210143D0 (en) 2002-05-02 2002-06-12 Davy Process Techn Ltd Process
GB0325384D0 (en) 2003-10-30 2003-12-03 Davy Process Techn Ltd Process
GB0325526D0 (en) * 2003-10-31 2003-12-03 Davy Process Techn Ltd Process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778054B2 (en) * 1986-08-19 1995-08-23 三菱化学株式会社 Method for producing lactones
JPH0778055B2 (en) * 1988-02-29 1995-08-23 三菱化学株式会社 Method for producing lactone

Also Published As

Publication number Publication date
JPH03204870A (en) 1991-09-06

Similar Documents

Publication Publication Date Title
KR940003294B1 (en) Method for producing a lactone
JPH0778054B2 (en) Method for producing lactones
JP2516836B2 (en) Method for producing lactones
JP2516815B2 (en) Method for producing lactones
JP2516809B2 (en) Method for producing lactones
JP2516805B2 (en) Method for producing lactones
JP2785967B2 (en) Method for producing lactones
JP2825286B2 (en) Production method of lactones
KR0145318B1 (en) Process for producing a lactone
JPH02121976A (en) Production of phthalides
JP3386569B2 (en) Method for concentration separation and reuse of ruthenium complex
JP3758226B2 (en) Separation and recovery of ruthenium complex
JPH07121927B2 (en) Method for producing lactones
JP2785363B2 (en) Lactone purification method
JPH04217636A (en) Production of 1,4-butanediol
JP2863266B2 (en) Production method of lactones
JPH07121928B2 (en) Lactone purification method
JPH02200680A (en) Production of gamma-butyrolactone
JPH0491085A (en) Production of lactones
JP2611831B2 (en) Method for producing 1,4-butanediol and / or tetrahydrofuran
JPH03112972A (en) Production of lactones
JPS6114139B2 (en)
JPH02233674A (en) Production of lactones
JP2022156346A (en) Method for producing lactones
JPH09227129A (en) Recovery of ruthenium complex

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees