JP2023079156A - Multi-energy-field nano lubricant micro-scale bone grinding machining measuring system - Google Patents

Multi-energy-field nano lubricant micro-scale bone grinding machining measuring system Download PDF

Info

Publication number
JP2023079156A
JP2023079156A JP2022124226A JP2022124226A JP2023079156A JP 2023079156 A JP2023079156 A JP 2023079156A JP 2022124226 A JP2022124226 A JP 2022124226A JP 2022124226 A JP2022124226 A JP 2022124226A JP 2023079156 A JP2023079156 A JP 2023079156A
Authority
JP
Japan
Prior art keywords
grinding
micro
ultrasonic
measurement system
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022124226A
Other languages
Japanese (ja)
Other versions
JP7349185B2 (en
Inventor
楊玉瑩
Yu Ying Yang
李長河
Changhe Li
周宗明
Zongming Zhou
劉波
Bo Liu
陳云
Yun Chen
楊敏
Min Yang
張彦彬
Yanbin Zhang
趙緒峰
Zechen Zhang
張乃慶
Naiqing Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Publication of JP2023079156A publication Critical patent/JP2023079156A/en
Application granted granted Critical
Publication of JP7349185B2 publication Critical patent/JP7349185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/02Frames; Beds; Carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surgical Instruments (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Lubricants (AREA)

Abstract

To provide a multi-energy-field nano lubricant micro-scale bone grinding machining measuring system.SOLUTION: The multi-energy-field nano lubricant micro-scale bone grinding machining measuring system comprises: a three-dimensional displacement workbench; an ultrasonic vibration device; a fluid charge atomization device; and a measuring device. A clamp is mounted on the three-dimensional displacement workbench; the ultrasonic vibration device includes an ultrasonic generator and an ultrasonic motorized spindle, and a horn of the ultrasonic motorized spindle is fitted with a grinding tool; the fluid charge atomization device includes a charge atomization nozzle and a plurality of ultrasonic vibration rods; the ultrasonic vibration rods are arranged in containers with different media, and the containers are connected with the mixing chamber; a minimum quantity lubrication pump is connected between the mixing chamber and the charged atomizing nozzle; and the measuring device includes a grinding force measuring part, a micro-droplet measuring part arranged on the side surface of the clamp, and a grinding temperature measuring part. A coupling effect of ultrasonic vibration, nano-fluid and charge atomization is comprehensively considered, and nanoparticle micro-droplets, the grinding temperature and the grinding force can be detected online in real time.SELECTED DRAWING: Figure 1

Description

本発明は、研削加工の技術分野に関し、特にマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システムに関する。 The present invention relates to the technical field of grinding, and more particularly to a multi-energy field nano-lubricant microscale bone grinding measurement system.

臨床手術における全膝関節置換のマイクロ研削の冷却能力の不足及び手術領域の可視性の悪さ等の問題に対して、微量潤滑研削加工技術、ナノ粒子ジェット微量潤滑技術、帯電噴霧技術等が徐々に出現している。しかし、本発明者らは、従来の骨研削技術、例えば超音波振動アシストマイクロ研削、ナノ流体微量潤滑マイクロ研削又はナノ流体微量潤滑帯電噴霧結合マイクロ研削などが実際の生産加工における要件を満たすことが困難であることを発見した。 Micro-lubrication grinding technology, nanoparticle jet micro-lubrication technology, electrostatic atomization technology, etc. are gradually being developed to address problems such as insufficient cooling capacity of micro-grinding for total knee joint replacement and poor visibility of the surgical area in clinical surgery. appearing. However, the inventors found that conventional bone grinding techniques, such as ultrasonic vibration-assisted micro-grinding, nano-fluid micro-lubrication micro-grinding or nano-fluid micro-lubrication charged atomization coupled micro-grinding, could not meet the requirements in practical production processing. found it difficult.

(1)超音波振動アシストマイクロ研削は、研削力による損傷、熱による損傷及び研削工具の目詰まりを効果的に低減できるが、加工中に研削手術の可視性の低さや対流熱交換能力の不足などの臨床上の問題が発生しやすい。(2)ナノ流体微量潤滑マイクロ研削は、研削領域の対流熱交換能力及び手術領域の可視性が低いというボトルネックを解決できるが、加工中に微小液滴が飛散するという問題が発生しやすい。(3)ナノ流体微量潤滑帯電噴霧結合マイクロ研削は、臨床マイクロ研削手術における可視性の低さ、対流熱交換能力の不足及び微小液滴の飛散などの問題を良好に解決するが、該装置は研削屑の排出及び研削工具の深刻な目詰まりの問題を考慮していない。 (1) Ultrasonic vibration-assisted micro-grinding can effectively reduce grinding force damage, heat damage and clogging of grinding tools, but the poor visibility of grinding operations and lack of convective heat exchange capability during processing clinical problems such as (2) Nano-fluid micro-lubrication micro-grinding can solve the bottleneck of the convective heat exchange capability of the grinding area and the poor visibility of the surgical area, but it is easy to cause the problem of micro-droplet scattering during processing. (3) Nano-fluid micro-lubricated charged spray coupled micro-grinding can well solve the problems such as poor visibility, lack of convective heat exchange ability and micro-droplet splattering in clinical micro-grinding surgery, but the device It does not take into account the problem of grinding swarf evacuation and severe clogging of grinding tools.

超音波振動、ナノ潤滑剤、帯電噴霧及びマイクロ研削加工技術を組み合わせて、音響-電気-力のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工技術を形成することにより、上記問題を効果的に解決できる。しかし、どのように加工パラメータを正確に制御し、音響-電気-力のマルチエネルギー場結合加工プロセスを実現するかは常に該技術を悩ませる中心的な問題である。また、従来技術は、マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削の研削力、研削温度及びナノ粒子微小液滴のリアルタイムオンライン検出に欠けている。 By combining ultrasonic vibration, nano-lubricant, electrostatic atomization and micro-grinding technology to form an acoustic-electric-force multi-energy field nano-lubricant micro-scale bone grinding technology, effectively solving the above problems. can. However, how to precisely control the processing parameters and realize the acoustic-electrical-force multi-energy field coupling processing process is always a central problem plaguing the technology. The prior art also lacks real-time online detection of grinding force, grinding temperature and nanoparticle microdroplets for multi-energy field nano-lubricant microscale bone grinding.

中国実用新案第204671221号明細書Chinese Utility Model No. 204671221 中国実用新案第209060230号明細書Chinese Utility Model No. 209060230

アトゥール・バッバル(Atul Babbar) 他2名,『骨研削中に超音波作動を用いた熱発生の軽減:CEM43°Cとアレニウスモデルを用いたハイブリッドアプローチ(Thermogenesis mitigation using ultrasonic actuation during bone grinding:a hybrid approach using CEM43°C and Arrhenius model)』,Journal of the Brazilian Society of Mechanical Sciences and Engineering,(2019)41:401Atul Babbar et al., 2013. Thermogenesis mitigation using ultrasonic actuation during bone grinding: a hybrid. approaching CEM43°C and Arrhenius model)”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, (2019) 41: 401 楊敏 他5名,『神経外科用頭蓋骨研削温度場予測の新しいモデル』,機械工学ジャーナル(JOURNAL OF MECHANICAL ENGINEERING),2018年12月,第54巻,第23号,215~222頁Yang Min et al., ``A new model for predicting the temperature field of skull grinding for neurosurgery'', JOURNAL OF MECHANICAL ENGINEERING, December 2018, Vol. 54, No. 23, pp. 215-222 張麗輝 他3名,『脳神経外科骨研削におけるミスト冷却(Mist cooling in neurosurgical bone grinding)』,エルゼビア(ELSEVIER),2013年,第62巻,第1号,367頁~370頁Lihui Zhang and three others, "Mist cooling in neurosurgical bone grinding", ELSEVIER, 2013, Vol.62, No.1, pp.367-370 アルバート・J・シー(Albert J. Shih) 他4名,『頭蓋底脳神経外科における骨研削温度の予測(Prediction of bone grinding temperature in skull base neurosurgery)』,エルゼビア(ELSEVIER),2012年,第61巻,第1号,307頁~310頁Albert J. Shih et al., "Prediction of bone grinding temperature in skull base neurosurgery", ELSEVIER, 2012, Vol. 61 , No. 1, pp. 307-310 楊敏 他4名,『ナノ流体エアロゾル冷却を用いた骨マイクロ研削における対流熱伝達係数の予測モデル(Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling)』,エルゼビア(ELSEVIER),2021年6月,第125巻,105317Min Yang et al., ``Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling'', Elsevier (ELSEVI) ER), June 2021, Vol. 125, 105317

従来技術の欠点に対し、本発明の目的は、超音波振動、ナノ流体、帯電噴霧の結合作用を総合的に考慮し、ナノ粒子微小液滴、研削温度及び研削力をリアルタイムにオンラインで検出でき、臨床マイクロ研削手術における可視性の低さ、対流熱交換能力の不足及び微小液滴の飛散などの問題を解決する、マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システムを提供することである。 In view of the shortcomings of the prior art, the purpose of the present invention is to comprehensively consider the combined effects of ultrasonic vibration, nanofluid and charged spray, and to detect nanoparticle microdroplets, grinding temperature and grinding force online in real time. , to provide a multi-energy field nano-lubricant micro-scale bone grinding measurement system, which solves the problems such as poor visibility, lack of convective heat exchange ability and micro-droplet splatter in clinical micro-grinding surgery. .

上記目的を達成するために、本発明は、以下の技術的解決手段によって実現される。 To achieve the above objects, the present invention is implemented by the following technical solutions.

本発明の実施例は、マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システムを提供し、ワークをクランプするための治具が載置された3次元変位作業台と、導線を介して接続された超音波発生器及び超音波電動スピンドルを含み、超音波電動スピンドルのホーンにワークを研削するための研削工具が取り付けられた超音波振動装置と、帯電噴霧ノズル及び超音波発生器に接続された複数の超音波振動棒を含み、各超音波振動棒は異なる媒体の容器内に配置され、各容器はいずれも混合室に接続され、前記混合室と帯電噴霧ノズルとの間に微量潤滑ポンプが接続された流体帯電噴霧装置と、治具と3次元変位作業台との間に設けられた研削力測定部、治具の側面に設けられた微小液滴測定部及び研削温度測定部を備えた測定装置と、を含む。 Embodiments of the present invention provide a multi-energy field nano-lubricant micro-scale bone grinding measurement system, connected via wires to a three-dimensional displacement workbench on which a jig for clamping a workpiece is mounted. It includes an ultrasonic generator and an ultrasonic electric spindle, and is connected to an ultrasonic vibrating device with a grinding tool for grinding a workpiece attached to the horn of the ultrasonic electric spindle, and an electrified spray nozzle and an ultrasonic generator. comprising a plurality of ultrasonic vibrating rods, each ultrasonic vibrating rod being placed in a container of a different medium, each container being connected to a mixing chamber, and a micro-lubricating pump being between the mixing chamber and the electrified atomizing nozzle; Equipped with a connected fluid electrification spray device, a grinding force measurement unit provided between the jig and the three-dimensional displacement workbench, a microdroplet measurement unit and a grinding temperature measurement unit provided on the side of the jig. and a measuring device.

さらなる実施形態として、前記研削力測定部は順次接続された研削力測定器、増幅器、情報収集器及びデータ分析器を含み、治具は、研削力測定器によって3次元変位作業台の上方に設置される。 As a further embodiment, the grinding force measurement unit includes a grinding force measuring device, an amplifier, an information collector and a data analyzer, which are connected in series, and the jig is set above the three-dimensional displacement workbench by the grinding force measuring device. be done.

さらなる実施形態として、前記治具は制限シート及びストッパを含み、制限シート内にワークを配置するための制限溝が設けられ、ストッパは制限溝内に設けられ、クランプボルトと協働してワークを制限する。 As a further embodiment, the jig includes a restricting seat and a stopper, a restricting groove is provided for placing the workpiece in the restricting seat, the stopper is provided in the restricting groove, and cooperates with the clamp bolt to remove the workpiece. Restrict.

さらなる実施形態として、前記制限シートの頂部に平板が取り外し可能に接続され、平板上に間隔が調整可能な複数の押さえ板が取り付けられ、押さえ板はワークの高さ方向を制限するために用いられる。 As a further embodiment, a flat plate is detachably connected to the top of the limiting sheet, and a plurality of holding plates with adjustable intervals are attached on the flat plate, and the holding plates are used to limit the height of the workpiece. .

さらなる実施形態として、前記超音波発生器は2つの超音波振動棒に接続され、そのうちの1つの超音波振動棒は生理食塩水を収容する容器内に配置され、もう1つの超音波振動棒はナノ粒子を収容する容器内に配置され、2つの容器はそれぞれホースを介して混合室の入口に接続される。 In a further embodiment, the ultrasonic generator is connected to two ultrasonic vibrating rods, one of which is placed in a container containing saline and the other ultrasonic vibrating rod is It is placed in a container containing the nanoparticles, and the two containers are each connected to the inlet of the mixing chamber via a hose.

さらなる実施形態として、前記帯電噴霧ノズルとワークとの間に高圧直流電源が接続される。 As a further embodiment, a high-voltage DC power supply is connected between the charged spray nozzle and the work.

さらなる実施形態として、前記研削温度測定部はワーク内に挿入可能な熱電対を含み、前記熱電対は情報収集器及びデータ分析器に順次接続される。 In a further embodiment, the grinding temperature measuring unit includes a thermocouple insertable into the workpiece, the thermocouple being sequentially connected to an information collector and a data analyzer.

さらなる実施形態として、前記微小液滴測定部はワーク研削画像を取得するためのカメラを含み、前記カメラは情報収集器及びデータ分析器に順次接続される。 In a further embodiment, said microdroplet measurement unit includes a camera for acquiring workpiece grinding images, said camera being sequentially connected to an information collector and a data analyzer.

さらなる実施形態として、前記3次元変位作業台の底部にさらに空気浮上プラットフォーム装置が設けられ、空気浮上プラットフォーム装置は台板、空気浮上防振器及び支持アセンブリを含み、空気浮上防振器は台板と支持アセンブリとの間に取り付けられる。 In a further embodiment, the bottom of the three-dimensional displacement working platform is further provided with an air levitation platform device, the air levitation platform device comprising a baseplate, an air levitation isolator and a support assembly, the air levitation isolator being the baseplate and the support assembly.

さらなる実施形態として、前記台板の上表面に透磁性パネルが設けられ、台板の内部にハニカムコア板が設けられる。 In a further embodiment, a magnetically permeable panel is provided on the top surface of the baseplate, and a honeycomb core plate is provided inside the baseplate.

本発明の有益な効果は以下のとおりである。
(1)本発明は従来のマイクロ研削加工プロセスにおける研削工具の目詰まり、研削屑の融着、対流熱交換能力の不足及び微小液滴の飛散などの問題に対して、超音波振動、医療用ナノ流体潤滑、帯電噴霧を統合することにより、生体骨の低損傷抑制マイクロ研削を実現する。
(2)本発明の測定装置は研削力測定部、治具の側面に設けられた微小液滴測定部及び研削温度測定部を含み、ナノ粒子微小液滴、研削力及び研削温度をリアルタイムにオンラインで検出することができ、時間を節約するだけでなく、複数回の組み立てによる加工誤差も避ける。
(3)本発明の研削工具は超音波ホーンに接続され、研削工具は加工要件を満たすことができる振動を発生させ、研削工具ヘッドの振動はピストンの往復運動に類似しており、超音波振動アシストマイクロ研削により、研削領域の冷却液は研削工具の超音波振動を受けて高周波、交互の正負油圧衝撃波を発生させ、研削区間によりポンピングしやすく、研削区間内の冷却液の更新を加速し、冷却媒体の対流熱交換能力を大幅に強化し、且つ砕屑の排出を促進し、研削工具の目詰まりを避ける。
(4)本発明は、空気浮上光学プラットフォーム装置を設置し、空気浮上防振器の防振エアバッグを基礎として、制振液及び高減衰小孔空気と協働して防振を行い、良好な防振性能を有し、入口で調整弁を設置することにより、反応時間を短縮し、空気浮上光学プラットフォーム装置に高さ調整機構が設置され、地面の凹凸によるブラケットの歪みや変形などの問題を解決することができる。
(5)本発明の研削力測定部に治具が取り付けられ、情報取得の精度を保証するために、治具によってワークを3方向に制限する。
Beneficial effects of the present invention are as follows.
(1) The present invention solves problems such as clogging of grinding tools, adhesion of grinding chips, lack of convective heat exchange capability, and scattering of fine droplets in the conventional micro-grinding process. By integrating nano-fluid lubrication and electrostatic atomization, we realize low-damage-suppressed micro-grinding of living bones.
(2) The measurement device of the present invention includes a grinding force measurement unit, a microdroplet measurement unit provided on the side of the jig, and a grinding temperature measurement unit, and measures nanoparticle microdroplets, grinding force, and grinding temperature in real time online. can be detected, not only saving time, but also avoiding machining errors due to multiple assembly.
(3) The grinding tool of the present invention is connected to an ultrasonic horn, the grinding tool generates vibration that can meet the processing requirements, the vibration of the grinding tool head is similar to the reciprocating motion of the piston, and the ultrasonic vibration Through assisted micro-grinding, the coolant in the grinding area is subjected to the ultrasonic vibration of the grinding tool to generate high-frequency, alternating positive and negative hydraulic shock waves, making it easier to pump in the grinding section, accelerating the renewal of the cooling liquid in the grinding section, Greatly enhances the convective heat exchange capacity of the cooling medium and promotes debris evacuation to avoid clogging of grinding tools.
(4) The present invention installs an air-levitation optical platform device, and on the basis of the anti-vibration air bag of the air-levitation anti-vibration isolator, cooperates with the anti-vibration liquid and the high-damping small-hole air to perform anti-vibration. It has excellent anti-vibration performance, the adjustment valve is installed at the entrance to shorten the reaction time, and the height adjustment mechanism is installed on the air-floating optical platform device, so that there are problems such as bracket distortion and deformation due to uneven ground. can be resolved.
(5) A jig is attached to the grinding force measuring unit of the present invention, and the workpiece is restricted in three directions by the jig in order to guarantee the accuracy of information acquisition.

本発明の一部を構成する明細書の図面は本発明のさらなる理解を提供するために用いられ、本発明の例示的な実施例及びその説明は本発明を解釈するために用いられ、本発明を不当に限定するものではない。 The drawings of the specification, which form a part of the invention, are used to provide a further understanding of the invention, and the exemplary embodiments of the invention and their descriptions are used to interpret the invention, and the invention. is not unreasonably limited.

本発明の1つ以上の実施形態に係る全体構造概略図である。1 is an overall structural schematic diagram according to one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係る超音波電動スピンドルの断面図である。1 is a cross-sectional view of an ultrasonic power spindle in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係る超音波振動マイクロ研削プロセスにおける断続切削によるマイクロクラックの生成プロセスの概略図である。FIG. 4 is a schematic illustration of the process of generating microcracks by interrupted cutting in an ultrasonic vibration microgrinding process in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係る超音波振動マイクロ研削プロセスにおける断続切削によるマイクロクラックの生成プロセスの概略図である。FIG. 4 is a schematic illustration of the process of generating microcracks by interrupted cutting in an ultrasonic vibration microgrinding process in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係る超音波振動マイクロ研削プロセスにおける断続切削によるマイクロクラックの生成プロセスの概略図である。FIG. 4 is a schematic illustration of the process of generating microcracks by interrupted cutting in an ultrasonic vibration microgrinding process in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係る超音波振動マイクロ研削プロセスにおける断続切削によるマイクロクラックの生成プロセスの概略図である。FIG. 4 is a schematic illustration of the process of generating microcracks by interrupted cutting in an ultrasonic vibration microgrinding process in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係る研削屑体積の換算の概略図である。FIG. 4 is a schematic diagram of grinding debris volume conversion in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係るナノ粒子微量潤滑帯電噴霧構造の概略図である。1 is a schematic diagram of a nanoparticle microlubricated charged spray structure in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係るナノ粒子微小液滴、研削力及び研削温度の測定装置の概略図である。1 is a schematic diagram of a nanoparticle microdroplet, grinding force, and grinding temperature measurement apparatus in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係るマイクロ研削力測定器の取り付け並びにワーク位置決め及びクランプ装置の概略図である。1 is a schematic diagram of a microgrinding force measurement device mounting and workpiece positioning and clamping apparatus in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係るワークの位置決めの概略図である。FIG. 4 is a schematic diagram of workpiece positioning in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係るワークの断面図及び温度測定装置の接続概略図である。1 is a cross-sectional view of a workpiece and a connection schematic of a temperature measurement device in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係るセルフレベリング空気浮上防振光学プラットフォームである。1 is a self-leveling air-levitated anti-vibration optical platform in accordance with one or more embodiments of the present invention; 本発明の1つ以上の実施形態に係るハニカム台板構造の概略図である。1 is a schematic illustration of a honeycomb baseplate structure in accordance with one or more embodiments of the present invention; FIG. 本発明の1つ以上の実施形態に係る単一自由度防振システムの概略図である。1 is a schematic diagram of a single degree of freedom vibration isolation system in accordance with one or more embodiments of the present invention; FIG.

実施例1: Example 1:

本実施例は、マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システムを提供し、図1に示すように、超音波振動装置I、流体帯電噴霧装置II、測定装置III、空気浮上プラットフォーム装置IV、3次元変位作業台を含み、空気浮上プラットフォーム装置IVは3次元変位作業台の底部に設置され、3次元変位作業台上に治具II-1によってワークII-2をクランプする。 This example provides a multi-energy field nano-lubricant micro-scale bone grinding measurement system, as shown in FIG. , includes a three-dimensional displacement workbench, the air floating platform device IV is installed at the bottom of the three-dimensional displacement workbench, and clamps the workpiece II-2 on the three-dimensional displacement workbench by means of a jig II-1.

本実施例では、試料材料として牛の長骨を選択し、牛の長骨の研削力が大きく、加工中に脆性破壊によるクラックが発生しやすいという特徴に対し、超音波振動装置Iを用いて超音波アシストマイクロ研削プロセスによって加工する。 In this example, a long bone of a bovine was selected as a sample material. Machining by ultrasonically assisted micro-grinding process.

図2に示すように、超音波振動装置Iは超音波発生器I-1及び超音波電動スピンドルI-2を含み、超音波電動スピンドルI-2の超音波トランスデューサI-3と超音波発生器I-1は導線を介して接続され、超音波発生器I-1の交流電流は超音波トランスデューサI-3に高周波電気振動信号を供給する。 As shown in FIG. 2, the ultrasonic vibration device I includes an ultrasonic generator I-1 and an ultrasonic electric spindle I-2, and an ultrasonic transducer I-3 and an ultrasonic generator of the ultrasonic electric spindle I-2. I-1 is connected via a lead and the alternating current of the ultrasonic generator I-1 supplies a high frequency electrical vibration signal to the ultrasonic transducer I-3.

超音波電動スピンドルI-2のハウジングは角度調整装置に接続されて研削角度を調整し、同時に、角度調整装置も3次元変位作業台に取り付けられ、且つX方向、Y方向、Z方向に移動する。前記角度調整装置は従来技術であり、ここでは説明を省略する。 The housing of the ultrasonic electric spindle I-2 is connected to the angle adjusting device to adjust the grinding angle, and at the same time, the angle adjusting device is also mounted on the three-dimensional displacement worktable and moves in the X direction, Y direction and Z direction. . The angle adjustment device is a conventional technology, and the description is omitted here.

研削工具I-5は超音波振動装置IのホーンI-4に接続されており、研削工具I-5は加工要件を満たす振動を発生させることができる。研削工具I-5が骨材料に接近すると、研削工具/骨ギャップの容積が減少し、冷却液がギャップから排出され、熱及び骨研削屑を運び去り、研削工具I-5が骨材料から離れると、ギャップの容積が増加し、新鮮な冷却液が運び込まれる。前記超音波振動装置Iはスピンドルに取り付けられ、それと共に回転し、超音波振動アシストマイクロ研削により、研削領域の冷却液は研削工具の超音波振動を受けて高周波の交互の正負油圧衝撃波を発生させることができ、研削区間によりポンピングしやすく、研削区間内の冷却液の更新を加速し、冷却媒体の対流熱交換能力を大幅に強化し、且つ砕屑の排出を促進し、研削工具I-5の目詰まりを避ける。 The grinding tool I-5 is connected to the horn I-4 of the ultrasonic vibration device I, and the grinding tool I-5 can generate vibrations that meet the processing requirements. As the grinding tool 1-5 approaches the bone material, the volume of the grinding tool/bone gap decreases, coolant is evacuated from the gap, carrying away heat and bone debris, and the grinding tool 1-5 moves away from the bone material. , the gap volume increases and fresh coolant is brought in. Said ultrasonic vibration device I is mounted on the spindle and rotates with it, and with ultrasonic vibration assisted micro-grinding, the coolant in the grinding area receives the ultrasonic vibration of the grinding tool to generate high-frequency alternating positive and negative hydraulic shock waves. can be pumped more easily in the grinding section, accelerates the renewal of the cooling liquid in the grinding section, greatly enhances the convective heat exchange capacity of the cooling medium, and facilitates the evacuation of debris, making the grinding tool I-5 Avoid clogging.

図3(a)に示すように、研削粒子の瞬間的な切削厚さhが最小未変形切り屑厚さhminより小さい場合、加工済みの表面に対して耕起と摺擦作用を発揮するだけで、研削粒子が未加工表面材料に切り込まれていないことを示す。図3(b)~図3(c)に示すように、hの増加に伴い、h=hminの場合、研削粒子が未加工表面にちょうど接触して切り込まれ、材料が徐々に塑性変形し、且つ塑性変形の底部に残留応力が存在し、hが最小未変形の切り屑の厚さhminを超える場合、材料は塑性せん断の作用下で切り屑を形成し、この時、材料は塑性的に除去される。 When the instantaneous cutting thickness h of the abrasive particles is less than the minimum undeformed chip thickness h min , as shown in FIG. alone indicates that the abrasive particles have not cut into the raw surface material. As shown in FIGS. 3(b) to 3(c), with increasing h, when h=h min , the abrasive particles cut just in contact with the raw surface and the material is gradually plastically deformed. and if there is a residual stress at the bottom of the plastic deformation and h exceeds the minimum undeformed chip thickness hmin , the material forms chips under the action of plastic shear, when the material Removed plastically.

図3(d)に示すように、研削粒子が未加工の表層材料に切り込まれると、研削粒子の瞬間的な切削厚さは0から増加し、hが臨界値まで増加すると、最終加工面に横方向クラック及び中間クラックを含むマイクロクラックが発生し、研削プロセスは塑性領域除去から脆性領域除去に変化し、hが徐々に減少すると、研削粒子は再び未加工表面材料から離れ、0になる。したがって、単一の研削粒子の瞬間的な切削厚さという観点から、超音波振動マイクロ研削において断続研削を実現できる。 As shown in FIG. 3(d), as the abrasive grain cuts into the raw surface material, the instantaneous cutting thickness of the abrasive grain increases from 0, and as h increases to a critical value, the final machined surface microcracks including lateral cracks and intermediate cracks occur at , the grinding process changes from removing plastic areas to removing brittle areas, and when h gradually decreases, the abrasive particles again move away from the raw surface material and become 0 . Therefore, intermittent grinding can be achieved in ultrasonic vibration microgrinding in terms of the instantaneous cutting thickness of a single abrasive particle.

超音波振動メカニズム: Ultrasonic vibration mechanism:

超音波とは、人間の聴覚反応を引き起こすことができない、可聴周波数が20kHz以上の振動波である。超音波振動は、トランスデューサを介して超音波電源から送信された高周波信号を高周波振動に変換し、さらに超音波ホーンを介して振動を超音波カッタに伝達し、軸方向の超音波振動振幅の重畳により研削粒子の瞬間的な切削深さも周期的に変化する。 Ultrasound is vibration waves with an audible frequency of 20 kHz or higher, which cannot evoke an auditory response in humans. Ultrasonic vibration converts the high-frequency signal transmitted from the ultrasonic power supply through the transducer into high-frequency vibration, and then transmits the vibration to the ultrasonic cutter through the ultrasonic horn, and superimposes the axial ultrasonic vibration amplitude The instantaneous cutting depth of the abrasive particles also changes periodically.

超音波振動は、研削屑の最大未変形切削厚さ及び研削屑の平均厚さを変えることができ、材料除去率を向上させ、ナノ流体を砥石車及びワークにより十分に浸潤させるため、冷却潤滑効果及びナノ流体の利用率を大幅に向上させ、研削時の研削屑体積の換算の概略図は図4に示すとおりであり、関連計算は以下のとおりである。 Ultrasonic vibration can change the maximum undeformed cutting thickness of the grinding chips and the average thickness of the grinding chips, improve the material removal rate, and make the nano-fluid better infiltrate the grinding wheel and workpiece, so that the cooling lubrication The effect and the utilization rate of nanofluids are greatly improved, and the schematic diagram of the conversion of grinding waste volume during grinding is shown in Fig. 4, and the relevant calculations are as follows.

体積一定の原理によれば、研削未変形研削屑の最大厚さは、

Figure 2023079156000002
であり、ここで、
Figure 2023079156000003
は研削工具の単位面積あたりの有効研削刃数であり、Cは研削屑の幅と研削屑の厚さの比、即ち
Figure 2023079156000004
である。 According to the principle of constant volume, the maximum thickness of undeformed grinding shavings is
Figure 2023079156000002
and where
Figure 2023079156000003
is the effective number of grinding edges per unit area of the grinding tool, and C is the ratio of the width of the grinding chip to the thickness of the grinding chip, i.e.
Figure 2023079156000004
is.

同様の矩形の六面体で魚状体の研削屑を代替すると、

Figure 2023079156000005
であり、式中、
Figure 2023079156000006
は各研削粒子の体積であり、
Figure 2023079156000007
は研削除去されたワーク材料の体積である。 Substituting a similar rectangular hexahedron for the fish debris,
Figure 2023079156000005
, where
Figure 2023079156000006
is the volume of each grinding particle,
Figure 2023079156000007
is the volume of work material ground away.

式(2)は、

Figure 2023079156000008
と書くことができ、式中、
Figure 2023079156000009
は研削屑の平均幅であり、
Figure 2023079156000010
(Cは比例係数であり、研削粒子の歯先円すい角の大きさに関連している)であり、
Figure 2023079156000011
は研削屑の平均厚さであり、
Figure 2023079156000012
であり、
Figure 2023079156000013
は未変形研削屑の長さであり、その数値は幾何学的接触長さの式に応じて求めることができ、即ち
Figure 2023079156000014
であり、
Figure 2023079156000015
は研削工具の研削幅である。 Formula (2) is
Figure 2023079156000008
, where
Figure 2023079156000009
is the average width of grinding chips,
Figure 2023079156000010
(C is a proportionality factor and is related to the size of the tip cone angle of the abrasive particles);
Figure 2023079156000011
is the average thickness of grinding chips,
Figure 2023079156000012
and
Figure 2023079156000013
is the length of the undeformed swarf, and its numerical value can be obtained according to the formula for the geometric contact length, i.e.
Figure 2023079156000014
and
Figure 2023079156000015
is the grinding width of the grinding tool.

式(3)から、

Figure 2023079156000016
が得られ、最大未変形切り屑厚さは、
Figure 2023079156000017
である。 From equation (3),
Figure 2023079156000016
and the maximum undeformed chip thickness is
Figure 2023079156000017
is.

超音波振動アシスト研削メカニズム: Ultrasonic Vibration Assisted Grinding Mechanism:

マイクロ研磨プロセスにおいて、加工メカニズムは主に研削粒子の半径と未変形切り屑厚さの比に影響され、研削粒子の半径と未変形切り屑厚さが同じスケールであるため、未変形切り屑厚さの微小な変化量が加工メカニズムに大きな影響を与える。サイズ効果、最小切り屑厚さの原理などの総合的な作用を考慮すると、その材料除去メカニズムは従来の加工方法と異なる。動的衝撃荷重下で、材料の動的破壊靭性は静的破壊靭性に比べて70%以上低下する。したがって、静的破壊靭性KICの代わりに、超音波振動下で脆性材料の動的破壊靭性KIDを計算し、即ち、

Figure 2023079156000018
である。 In the micro-polishing process, the machining mechanism is mainly affected by the ratio of the radius of the grinding particle and the undeformed chip thickness, because the radius of the grinding particle and the undeformed chip thickness are on the same scale, so the undeformed chip thickness A small amount of change in thickness has a large effect on the processing mechanism. Considering the comprehensive effects of size effect, minimum chip thickness principle, etc., its material removal mechanism is different from conventional machining methods. Under dynamic impact loading, the dynamic fracture toughness of the material is reduced by more than 70% compared to the static fracture toughness. Therefore, instead of the static fracture toughness KIC , we calculate the dynamic fracture toughness KID of the brittle material under ultrasonic vibration, i.e.
Figure 2023079156000018
is.

したがって、超音波振動端面のマイクロ研削において、従来の端面のマイクロ研削に比べて、超音波振動の追加により、研削粒子と材料の間の相対速度及び加速度が大きくなり、研削粒子と材料の間の動的衝撃作用が大きくなり、この動的衝撃作用を考慮すると、超音波振動端面のマイクロ研削で塑性領域の研削をより容易に実現し、塑性領域研削を前提として、より大きな材料除去率を達成できる。 Therefore, in the ultrasonic vibration end face micro-grinding, the addition of ultrasonic vibration increases the relative velocity and acceleration between the grinding particles and the material compared to the conventional end face micro-grinding. Considering this dynamic impact effect, the micro-grinding of the ultrasonic vibration end face can more easily realize the grinding of the plastic area, and on the premise of the plastic area grinding, achieve a greater material removal rate can.

インデント破壊力学によれば、加工荷重が臨界荷重より小さい場合、生体骨材料は主に塑性的に除去され、加工荷重が臨界荷重より大きい場合、主に脆性破壊によって除去される。超音波作用下での臨界荷重Fmax及び臨界切削厚さhmaxは、

Figure 2023079156000019
であり、式中、αは幾何学的係数であり、βは定数であり、Hは生体骨材料の硬度であり、KIDは動的破壊靭性であり、Kは値が1より大きい影響係数であり、生体骨材料の超音波作用下での硬度変化に関連しており、Eは骨材料の弾性率である。KIDが増加し、Hが減少すると、硬脆材料は脆性状態から塑性状態へ変化しやすく、逆もまた同様である。したがって、超音波振動アシストマイクロ研削プロセスにおいて、超音波振動の導入によりワーク材料を軟化させる効果があり、ワーク材料の硬度Hをある程度低下させ、同時に、超音波振動の導入により、研削工具とワークとの間の弾性反発が低下し、加工プロセスがより安定し、動的衝撃作用が減少し、これは、材料の動的破壊靭性KIDの増加として現れる。したがって、式(7)~(8)から分かるように、超音波振動により臨界荷重及び臨界切削厚さが増加し、臨界切削深さは一般に通常の研削の2~3倍である。 According to indentation fracture mechanics, when the working load is less than the critical load, the biological bone material is removed mainly plastically, and when the working load is greater than the critical load, it is removed mainly by brittle fracture. The critical load F max and the critical cutting thickness h max under ultrasonic action are
Figure 2023079156000019
where α is a geometric coefficient, β is a constant, HV is the hardness of the biogenic bone material, K ID is the dynamic fracture toughness, and K V has a value greater than 1 is the influence coefficient, which is related to the change in hardness of living bone material under the action of ultrasound, and E is the elastic modulus of the bone material. As KID increases and HV decreases, hard-brittle materials tend to change from a brittle state to a plastic state and vice versa. Therefore, in the ultrasonic vibration-assisted micro-grinding process, the introduction of ultrasonic vibration has the effect of softening the workpiece material, and reduces the hardness HV of the workpiece material to some extent. The elastic recoil between and becomes lower, the working process is more stable, and the dynamic impact action is reduced, which manifests itself as an increase in the dynamic fracture toughness KID of the material. Therefore, as can be seen from equations (7)-(8), ultrasonic vibration increases the critical load and the critical cutting depth, and the critical cutting depth is typically two to three times that of normal grinding.

さらに、図5に示すように、流体帯電噴霧装置IIは帯電噴霧ノズルII-6、微量潤滑ポンプII-15、混合室II-13及び超音波振動棒II-10を含み、超音波振動棒II-10は超音波トランスデューサI-3に接続され、超音波振動棒II-10の数は混合対象の媒体の数に応じて決定され、本実施例では、2つの超音波振動棒II-10が設置され、そのうちの1つの超音波振動棒II-10は生理食塩水II-11に対して超音波振動を行うために用いられ、もう1つの超音波振動棒II-10はナノ粒子II-9に対して超音波振動を行うために用いられ、ナノ粒子は超音波振動によって均一に分散される。 Further, as shown in FIG. 5, the fluid electrified spray device II includes an electrified spray nozzle II-6, a micro-lubricating pump II-15, a mixing chamber II-13 and an ultrasonic vibration rod II-10. -10 is connected to the ultrasonic transducer I-3, the number of ultrasonic vibration rods II-10 is determined according to the number of media to be mixed, and in this example, two ultrasonic vibration rods II-10 are One of the ultrasonic vibrating rods II-10 is used to perform ultrasonic vibrations on the physiological saline II-11, and the other ultrasonic vibrating rod II-10 is the nanoparticles II-9. The nanoparticles are uniformly dispersed by the ultrasonic vibration.

ナノ粒子II-9を収容する容器は第1ホースII-8を介して混合室II-13の第1入口に接続され、生理食塩水II-11を収容する容器は第2ホースII-12を介して混合室II-13の第2入口に接続され、生理食塩水II-11及びナノ粒子II-9は混合室II-13内で混合されて低濃度のナノ流体に調製される。混合室II-13の出口は第3ホースII-14を介して微量潤滑ポンプII-15に接続され、微量潤滑ポンプII-15は接続線II-7を介して帯電噴霧ノズルII-6に接続される。 The container containing nanoparticles II-9 is connected through a first hose II-8 to the first inlet of mixing chamber II-13, and the container containing saline II-11 is connected through a second hose II-12. The saline solution II-11 and the nanoparticles II-9 are mixed in the mixing chamber II-13 to prepare a low-concentration nanofluid. The outlet of the mixing chamber II-13 is connected through a third hose II-14 to a micro-lubricating pump II-15, which is connected through a connecting line II-7 to an electrostatic spray nozzle II-6. be done.

帯電噴霧ノズルII-6は高圧直流電源II-4に接続され、微量潤滑ポンプII-15はナノ流体を帯電噴霧ノズルII-6から噴出した後、高圧直流電源II-4によってナノ流体液滴を帯電噴霧させて帯電微小液滴群を形成し、帯電液滴群は電界力の駆動下で制御可能かつ整然とした方法でワークII-2の表面(ワークII-2は治具II-1によってクランプ及び固定される)に輸送され、研削運動において主に潤滑と冷却の役割を果たす。 The charged spray nozzle II-6 is connected to a high-voltage DC power supply II-4, and the micro lubrication pump II-15 ejects the nanofluid from the charged spray nozzle II-6, and then the nanofluid droplets are generated by the high-voltage DC power supply II-4. A group of charged microdroplets is formed by charging and spraying, and the group of charged droplets is controlled by an electric field force and applied to the surface of the work II-2 (the work II-2 is clamped by the jig II-1) in a controllable and orderly manner. and fixed) and play the main role of lubrication and cooling in the grinding motion.

高圧直流電源II-4はシステムに高圧直流電源を供給し、高圧直流電源II-4の負極電流は帯電噴霧ノズルII-6の導線II-5に輸送され、正極電流は導線を介してワークII-2に輸送され、且つ接地線II-3を介して接地され、ノズルとワークとの間に安定した電界が形成されることを保証する。 A high-voltage DC power supply II-4 supplies a high-voltage DC power supply to the system. -2 and grounded through ground line II-3 to ensure that a stable electric field is formed between the nozzle and the workpiece.

さらに、図6に示すように、測定装置IIIは微小液滴測定部、研削力測定部及び研削温度測定部を含み、ここで、微小液滴測定部は高速カメラIII-8、第3情報収集器III-6及び第3データ分析器III-7を含み、高速カメラIII-8は導線を介して第3情報収集器III-6に接続され、第3情報収集器III-6は導線を介して第3データ分析器III-7に接続される。 Further, as shown in FIG. 6, the measurement device III includes a microdroplet measurement unit, a grinding force measurement unit and a grinding temperature measurement unit, where the microdroplet measurement unit is a high-speed camera III-8, a third information collection and a third data analyzer III-7, the high-speed camera III-8 is connected via a lead to the third information collector III-6, the third information collector III-6 via a lead to the third data analyzer III-7.

研削工具I-5がワークII-2を研削して研削力を発生させる時、高速カメラIII-8はナノ流体微小液滴のナノ流体気流場、帯電場及び超音波高周波振動衝撃エネルギー場の結合作用下での運動軌跡を収集し、且つ第3情報収集器III-6に伝送し、最後に第3データ分析器III-7に伝送し、さらに研削工具/生体骨拘束界面におけるナノ流体微小液滴のマイクロチャネル毛細管の形成メカニズムを分析することができる。 When the grinding tool I-5 grinds the workpiece II-2 to generate grinding force, the high-speed camera III-8 captures the combination of the nanofluidic airflow field, the electrostatic field and the ultrasonic high frequency vibration impact energy field of the nanofluidic microdroplets. The motion trajectory under action is collected and transmitted to a third information collector III-6 and finally to a third data analyzer III-7, and the nanofluidic microfluidic at the grinding tool/biological bone constraint interface The mechanism of droplet microchannel capillary formation can be analyzed.

図9に示すように、研削温度測定部は順次接続された熱電対III-10、第1情報収集器III-2及び第1データ分析器III-1を含み、測定信号は第1情報収集器III-2を介して第1データ分析器III-1に伝送され、且つ第1データ分析器III-1によって熱電対III-10の作業端、即ちワークII-2の温度を表示する。 As shown in FIG. 9, the grinding temperature measurement unit includes a thermocouple III-10, a first information collector III-2 and a first data analyzer III-1, which are connected in series, and the measurement signal is sent from the first information collector III-2 to the first data analyzer III-1, and displays the temperature of the working end of the thermocouple III-10, ie, the work II-2, by the first data analyzer III-1.

ワークII-2の底部には、熱電対III-10を挿入するための溝がある。本実施例は2本の熱電対III-10を例とし、それぞれTC1、TC2とマークされ、その作業端はワークII-2の上表面からそれぞれ0.5mm、1mm下に位置し、TC2に近いワークII-2の表面をa面とマークし、TC1に近い一面をb面とマークする。研削ヘッドI-5を矢印方向(a→b)に応じて初めて研削した場合、TC2はまず研削され、第1測定端になり、TC1は第2測定端になる。 The bottom of work II-2 has a groove for inserting thermocouple III-10. This example takes two thermocouples III-10 as an example, marked TC1 and TC2 respectively, and their working ends are located 0.5 mm and 1 mm respectively below the upper surface of workpiece II-2, close to TC2. The surface of work II-2 is marked as the a-plane, and the one near TC1 is marked as the b-plane. When the grinding head I-5 is ground for the first time according to the direction of the arrow (a→b), TC2 is ground first and becomes the first measuring end, and TC1 becomes the second measuring end.

さらに、図6に示すように、研削力測定部は研削力測定器III-9、増幅器III-3、第2情報収集器III-5、第2データ分析器III-4を含み、研削力測定器III-9は治具II-1の下方に取り付けられ、研削力測定器III-9、増幅器III-3、第2情報収集器III-5及び第2データ分析器III-4は導線を介して順次接続される。研削工具I-5がワークII-2を研削して研削力を生成する時、測定信号は増幅器III-3によって増幅された後に第2情報収集器III-5に伝送され、最後に第2データ分析器III-4に伝送され、該データ分析器はディスプレイ付きのプログラマブルコントローラであり、且つ研削力の大きさを表示する。 Further, as shown in FIG. 6, the grinding force measurement unit includes a grinding force measurement device III-9, an amplifier III-3, a second information collector III-5, and a second data analyzer III-4. The instrument III-9 is attached below the jig II-1, and the grinding force measuring instrument III-9, the amplifier III-3, the second information collector III-5 and the second data analyzer III-4 are connected via leads. connected sequentially. When the grinding tool I-5 grinds the workpiece II-2 to generate a grinding force, the measurement signal is amplified by the amplifier III-3 and then transmitted to the second information collector III-5, and finally the second data The data is transmitted to analyzer III-4, which is a programmable controller with a display and displays the magnitude of the grinding force.

本実施例では、図7に示すように、研削力測定器III-9の両側にベースIII-1107が対称的に取り付けられ、ベースIII-1107と研削力測定器III-9はボルトによって接続され、前記ベースIII-1107は透磁性金属材質であり、空気浮上プラットフォーム装置IVの作業台を起動した後、作業台が着磁されて研削力測定器III-9のベースIII-1107をその上に吸着させることができる。 In this embodiment, as shown in FIG. 7, the base III-1107 is symmetrically mounted on both sides of the grinding force measuring device III-9, and the base III-1107 and the grinding force measuring device III-9 are connected by bolts. , the base III-1107 is made of magnetically permeable metal material, after starting the work table of the air levitation platform device IV, the work table is magnetized so that the base III-1107 of the grinding force measuring instrument III-9 is placed on it. can be adsorbed.

さらに、研削力測定器III-9に治具II-1が取り付けられ、図8に示すように、治具II-1は制限シートIII-1110及びストッパIII-1104を含み、制限シートIII-1110は研削力測定器III-9の作業台に固定され、本実施例では、制限シートIII-1110は矩形枠構造であり、制限シートIII-1110内に矩形の制限溝が開けられる。 Furthermore, a jig II-1 is attached to the grinding force measuring device III-9, and as shown in FIG. is fixed to the workbench of the grinding force measuring instrument III-9, and in this embodiment, the limiting sheet III-1110 has a rectangular frame structure, and rectangular limiting grooves are cut in the limiting sheet III-1110.

理解できるように、他の実施例では、制限シートIII-1110の制限溝がワークII-2の形状に適合している限り、制限シートIII-1110を他の構造に設置してもよい。 As can be appreciated, in other embodiments, the restricting sheet III-1110 may be installed in other configurations as long as the restricting groove of the restricting sheet III-1110 conforms to the shape of the workpiece II-2.

ワークII-2は制限溝の一角に貼り合わせて設置され、ワークII-2の片側と制限溝の内壁との間にストッパIII-1104が設置され、ストッパIII-1104は第1クランプボルトIII-1102と協働してワークII-2をX方向に制限する。ストッパIII-1104の片側の表面はワークII-2の側面に貼り合わされ、他側の表面は第1クランプボルトIII-1102の端部に貼り合わされ、第1クランプボルトIII-1102は制限シートIII-1110を貫通する。 The workpiece II-2 is attached to one corner of the limiting groove, and a stopper III-1104 is installed between one side of the workpiece II-2 and the inner wall of the limiting groove. Work II-2 is restricted in the X direction in cooperation with 1102 . One surface of the stopper III-1104 is attached to the side surface of the workpiece II-2, the other surface is attached to the end of the first clamp bolt III-1102, and the first clamp bolt III-1102 is attached to the limit sheet III- Penetrate 1110.

ワークII-2のY方向は第2クランプボルトIII-1106及び制限シートIII-1110によって制限され、第2クランプボルトIII-1106は制限シートIII-1110を貫通し、且つその端部はワークII-2の端面に貼り合わせることができ、ワークII-2の他の端面を制限溝の側壁に密着させる。 The Y direction of Work II-2 is restricted by a second clamping bolt III-1106 and a limiting sheet III-1110, the second clamping bolt III-1106 passes through the limiting sheet III-1110, and its end is the work II- 2, and the other end face of work II-2 is brought into close contact with the side wall of the limiting groove.

ワークII-2のZ方向は複数の押さえ板によって制限され、ワークII-2のX方向の両側にそれぞれ複数の押さえ板が設置される。本実施例では、ワークII-2のX方向の正方向に2つの押さえ板III-1109が設置され、当然ながら、他の実施例では、押さえ板III-1109は他の個数を設置してもよい。 The Z direction of the work II-2 is restricted by a plurality of holding plates, and a plurality of holding plates are installed on both sides of the work II-2 in the X direction. In this embodiment, two holding plates III-1109 are installed in the positive direction of the X direction of Work II-2. good.

さらに、ストッパIII-1104の上表面は第1平板III-1105に取り外し可能に接続され、第1平板III-1105は取り付けボルトIII-1103をねじ込むことによってストッパIII-1104の固定を実現し、ボルトIII-1103とストッパIII-1104との間にガスケットIII-1101が取り付けられる。 In addition, the upper surface of the stopper III-1104 is detachably connected to the first flat plate III-1105, and the first flat plate III-1105 realizes the fixation of the stopper III-1104 by screwing the mounting bolt III-1103, and the bolt Gasket III-1101 is attached between III-1103 and stopper III-1104.

ワークII-2の片側に制限シートIII-1110に取り外し可能に接続された第2平板III-1111が設けられ、第2平板III-1111にストリップ状穴が開設され、ストリップ状穴に調整ボルトIII-1108をねじ込むことによって押さえ板III-1109の取り付けを実現し、押さえ板III-1109の位置はストリップ状穴に沿って移動することによって調整できる。 A second flat plate III-1111 is provided on one side of the work II-2 and is detachably connected to the limiting sheet III-1110. -1108 is screwed to realize the mounting of the holding plate III-1109, and the position of the holding plate III-1109 can be adjusted by moving along the strip-like hole.

押さえ板III-1109の形状はワークII-2の高さに応じて決定され、押さえ板III-1109の一端がワークII-2の上表面に接触でき,他端が第2平板III-1111の上表面に接触できることを満たせばよい。ワークII-2の長さ・幅・高さの3つの寸法が変化する時、第2クランプボルトIII-1106、第1クランプボルトIII-1102及び押さえ板III-1109によって装置の調整可能性を実現し、ワークII-2の寸法変化の要件を満たす。 The shape of the holding plate III-1109 is determined according to the height of the work II-2, one end of the holding plate III-1109 can contact the upper surface of the work II-2, and the other end is the second flat plate III-1111. All that is required is to be able to contact the upper surface. The second clamp bolt III-1106, the first clamp bolt III-1102 and the holding plate III-1109 realize the adjustability of the device when the three dimensions of length, width and height of the workpiece II-2 change. and satisfies the requirement for dimensional change of Work II-2.

さらに、図10に示すように、空気浮上プラットフォーム装置IVは台板IV-1、空気浮上防振器IV-2及び支持アセンブリを含み、空気浮上防振器IV-2は台板IV-1と支持アセンブリとの間に取り付けられる。本実施例では、支持アセンブリは複数、例えば4つの支持柱IV-3を含み、対向して設置された支持柱IV-3は接続部IV-6を介して接続され、支持柱IV-3の安定性を補強し、さらに台板IV-1の安定性を向上させるために用いられる。 Further, as shown in FIG. 10, the air-levitated platform apparatus IV includes a baseplate IV-1, an air-levitated isolator IV-2 and a support assembly, the air-levitated isolators IV-2 and the baseplate IV-1. Mounted between the support assembly. In this embodiment, the support assembly includes a plurality of, for example four, support columns IV-3, which are oppositely mounted support columns IV-3 and are connected via connections IV-6 to the support columns IV-3. It is used to reinforce the stability and further improve the stability of the base plate IV-1.

各支持柱IV-3の頂部と台板IV-1の底面との間にいずれも空気浮上防振器IV-2が接続され、支持柱IV-3の底部に収容溝IV-4が開けられ、収容溝IV-4内に昇降接地ピンIV-5が取り付けられ、昇降接地ピンIV-5によって台板IV-1の高さ及び平坦度を調整する。 An air levitation vibration isolator IV-2 is connected between the top of each support column IV-3 and the bottom surface of the base plate IV-1, and an accommodation groove IV-4 is formed in the bottom of the support column IV-3. , and an elevating ground pin IV-5 is mounted in the accommodation groove IV-4, and the height and flatness of the base plate IV-1 are adjusted by the elevating ground pin IV-5.

好ましくは、収容溝IV-4の内壁にねじが設けられ、収容溝IV-4は昇降接地ピンIV-5にねじ接続される。さらに、昇降接地ピンIV-5の底部には、台板IV-1の重量を支えるために用いられる耐荷重パッドIV-7が設置される。 Preferably, the inner wall of the receiving groove IV-4 is threaded, and the receiving groove IV-4 is threadedly connected to the lifting ground pin IV-5. Further, a load-bearing pad IV-7 used to support the weight of the base plate IV-1 is installed at the bottom of the lifting ground pin IV-5.

さらに、図11に示すように、前記台板IV-1はハニカム台板であり、それは互いに平行で間隔を置いて設置された2つの支持板IV-105を含み、支持板IV-105の周方向は第1枠板IV-102によって密閉され、第1枠板IV-102の外表面にレザーライニングIV-101が設けられ、内表面に減衰材料の第2枠板IV-103が設けられ、第2枠板IV-103の内側にハニカムコア板IV-106が設けられ、上側に位置する支持板IV-105の頂部に透磁性パネルIV-104が設けられる。 Further, as shown in FIG. 11, the baseplate IV-1 is a honeycomb baseplate, which includes two support plates IV-105 parallel and spaced apart from each other, and the support plates IV-105 The direction is sealed by a first frame plate IV-102, the outer surface of which is provided with a leather lining IV-101 and the inner surface is provided with a second frame plate IV-103 of damping material, A honeycomb core plate IV-106 is provided inside the second frame plate IV-103, and a magnetically permeable panel IV-104 is provided on top of the support plate IV-105 positioned above.

本実施例では、透磁性パネルIV-104は高透磁性ステンレス鋼パネルであり、ハニカムコア板IV-106は正方形のアルミニウム亜鉛めっき鋼板及び強化アルミニウム亜鉛めっき鋼板を用いて互いに接着し、正方形のアルミニウム亜鉛めっき鋼板の内部に凹溝がプレスされ、従来の正方形の薄い鋼板より強度が大きく、液体がハニカム層に浸透することを防止し、且つねじ穴部品でのガスの対流を阻止することができる。 In this example, the permeable panel IV-104 is a high permeable stainless steel panel, and the honeycomb core plate IV-106 is bonded together using square aluminum galvanized steel and reinforced aluminum galvanized steel, and square aluminum A groove is pressed inside the galvanized steel plate, which is stronger than the traditional square thin steel plate, can prevent liquid from penetrating into the honeycomb layer, and can prevent gas convection in screw hole parts. .

空気浮上プラットフォーム防振システム理論: Air levitation platform anti-vibration system theory:

防振とは振動源と防振対象機器との間に適切な防振器を配置して振動の直接伝達を除去又は抑制することである。図12に示すように、防振装置のそれぞれ独立した自由度はいずれも単一自由度の防振システムに簡略化することができ、ここで、制御対象は1つの剛性質量ブロックであり、防振器は理想的なダンパで並列接続された無質量素子であり、地盤は質量が無限大の剛体である。 Vibration isolation is to remove or suppress direct transmission of vibration by placing an appropriate vibration isolator between the vibration source and the equipment to be isolated. As shown in FIG. 12, each independent degree of freedom of the isolator can be simplified to a single degree of freedom isolator system, where the object of control is one rigid mass block and the isolator The oscillator is a massless element connected in parallel with an ideal damper, and the ground is a rigid body with infinite mass.

単一自由度の防振システムの振動微分方程式は、

Figure 2023079156000020
であり、式中、mは負荷質量であり、kはシステム剛性であり、cはシステム減衰である。 The vibratory differential equation for a single-degree-of-freedom isolation system is
Figure 2023079156000020
where m is the load mass, k is the system stiffness and c is the system damping.

Figure 2023079156000021
とすると、
Figure 2023079156000022
である。
Figure 2023079156000021
and
Figure 2023079156000022
is.

Figure 2023079156000023
とし、式中、
Figure 2023079156000024
は該システムの地盤振動伝達関数であり、システムが地盤に対して防振システムを介して絶縁されるシステムの物体に伝達される振動の伝達効果を特徴付ける。図12から分かるように、システムの伝達表現式は同じであれば、
Figure 2023079156000025
である。
Figure 2023079156000023
and in the formula,
Figure 2023079156000024
is the ground vibration transfer function of the system, which characterizes the transfer effect of vibrations transmitted to the bodies of the system that are insulated from the ground via the isolation system. As can be seen from FIG. 12, if the transfer expressions of the system are the same,
Figure 2023079156000025
is.

Figure 2023079156000026
のモード
Figure 2023079156000027
は地上の単振動干渉下でのシステムの定常状態振幅伝達と呼ばれ、
Figure 2023079156000028
である。
Figure 2023079156000026
mode of
Figure 2023079156000027
is called the steady-state amplitude transfer of the system under terrestrial simple harmonic interference,
Figure 2023079156000028
is.

式中、

Figure 2023079156000029
は防振システムの減衰比であり、
Figure 2023079156000030
は地上干渉振動の振動周波数であり、
Figure 2023079156000031
は防振システムの非減衰固有周波数である。固有周波数とは振動システムの自由振動周波数を指し、固有周波数が低いほどシステムの自由振動周期が長い。以上から分かるように、防振システムの固有周波数を低下させ、システムの減衰比を増加させることは地面に対する大型防振プラットフォームの振動を効果的に向上させることができる。 During the ceremony,
Figure 2023079156000029
is the damping ratio of the vibration isolation system,
Figure 2023079156000030
is the vibration frequency of the ground interference vibration,
Figure 2023079156000031
is the undamped natural frequency of the vibration isolation system. Eigenfrequency refers to the free oscillation frequency of an oscillating system, the lower the eigenfrequency, the longer the free oscillation period of the system. It can be seen from the above that lowering the natural frequency of the anti-vibration system and increasing the damping ratio of the system can effectively improve the vibration of the large anti-vibration platform with respect to the ground.

以上の記載は本出願の好ましい実施例に過ぎず、本出願を限定するものではなく、当業者であれば、本出願に対して様々な変更及び変化を行うことができる。本出願の精神及び原則内で行われた任意の修正、同等置換、改善などは、いずれも本出願の保護範囲内に含まれるべきである。 The above descriptions are only preferred embodiments of the present application and are not intended to limit the present application, and those skilled in the art can make various modifications and changes to the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall all fall within the protection scope of this application.

I 超音波振動装置
II 流体帯電噴霧装置
III 測定装置
IV 空気浮上プラットフォーム装置
I-1 超音波発生器
I-2 超音波電動スピンドル
I-3 超音波トランスデューサ
I-4 ホーン
I-5 研削工具
I-6 内視鏡
II-1 治具
II-2 ワーク
II-3 接地線
II-4 高圧直流電源
II-5 導線
II-6 帯電噴霧ノズル
II-7 接続線
II-8 第1ホース
II-9 ナノ粒子
II-10 超音波振動棒
II-11 生理食塩水
II-12 第2ホース
II-13 混合室
II-14 第3ホース
II-15 微量潤滑ポンプ
III-1 第1データ分析器
III-2 第1情報収集器
III-3 増幅器
III-4 第2データ分析器
III-5 第2情報収集器
III-6 第3情報収集器
III-7 第3データ分析器
III-8 高速カメラ
III-9 研削力測定器
III-10 熱電対
III-1101 ガスケット
III-1102 第1クランプボルト
III-1103 取り付けボルト
III-1104 ストッパ
III-1105 第1平板
III-1106 第2クランプボルト
III-1107 ベース
III-1108 調整ボルト
III-1109 押さえ板
III-1110 制限シート
III-1111 第2平板
IV-1 台板
IV-2 空気浮上防振器
IV-3 支持柱
IV-4 収容溝
IV-5 昇降接地ピン
IV-6 接続部
IV-7 耐荷重パッド
IV-101 レザーライニング
IV-102 第1枠板
IV-103 第2枠板
IV-104 透磁性パネル
IV-105 支持板
IV-106 ハニカムコア板
I Ultrasonic vibrating device II Fluid charging spray device III Measuring device IV Air floating platform device I-1 Ultrasonic generator I-2 Ultrasonic electric spindle I-3 Ultrasonic transducer I-4 Horn I-5 Grinding tool I-6 Endoscope II-1 Jig II-2 Work II-3 Ground wire II-4 High-voltage DC power supply II-5 Lead wire II-6 Electrostatic spray nozzle II-7 Connection wire II-8 First hose II-9 Nanoparticles II -10 Ultrasonic vibrating rod II-11 Saline solution II-12 Second hose II-13 Mixing chamber II-14 Third hose II-15 Micro lubrication pump III-1 First data analyzer III-2 First information gathering Instrument III-3 Amplifier III-4 Second data analyzer III-5 Second information collector III-6 Third information collector III-7 Third data analyzer III-8 High-speed camera III-9 Grinding force measuring device III -10 Thermocouple III-1101 Gasket III-1102 First clamp bolt III-1103 Mounting bolt III-1104 Stopper III-1105 First plate III-1106 Second clamp bolt III-1107 Base III-1108 Adjustment bolt III-1109 Presser Plate III-1110 Restriction sheet III-1111 Second plate IV-1 Base plate IV-2 Air levitation vibration isolator IV-3 Support column IV-4 Accommodating groove IV-5 Lifting ground pin IV-6 Connecting part IV-7 Resistance Load pad IV-101 Leather lining IV-102 First frame plate IV-103 Second frame plate IV-104 Permeable magnetic panel IV-105 Support plate IV-106 Honeycomb core plate

Claims (10)

マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システムであって、
ワークをクランプするための治具が載置された3次元変位作業台と、
導線を介して接続された超音波発生器及び超音波電動スピンドルを含み、超音波電動スピンドルのホーンにワークを研削するための研削工具が取り付けられた超音波振動装置と、
帯電噴霧ノズル及び超音波発生器に接続された複数の超音波振動棒を含み、各超音波振動棒が異なる媒体の容器内に配置され、各容器がいずれも混合室に接続され、前記混合室と帯電噴霧ノズルとの間に微量潤滑ポンプが接続された流体帯電噴霧装置と、
治具と3次元変位作業台との間に設けられた研削力測定部、治具の側面に設けられた微小液滴測定部及び研削温度測定部を備えた測定装置と、を含むことを特徴とする
マルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
A multi-energy field nano-lubricant micro-scale bone grinding measurement system comprising:
a three-dimensional displacement workbench on which a jig for clamping a work is mounted;
an ultrasonic vibration device including an ultrasonic generator and an ultrasonic electric spindle connected via a lead wire, wherein a grinding tool for grinding a workpiece is attached to the horn of the ultrasonic electric spindle;
comprising a plurality of ultrasonic vibration rods connected to a charged atomizing nozzle and an ultrasonic generator, each ultrasonic vibration rod being placed in a container of a different medium, each container being connected to a mixing chamber, said mixing chamber A fluid electrified spray device in which a micro-lubricating pump is connected between the and the electrified spray nozzle;
A grinding force measuring unit provided between the jig and the three-dimensional displacement work table, and a measuring device provided with a microdroplet measuring unit and a grinding temperature measuring unit provided on the side surface of the jig. and a multi-energy field nano-lubricant micro-scale bone grinding measurement system.
前記研削力測定部は順次接続された研削力測定器、増幅器、情報収集器及びデータ分析器を含み、
治具は研削力測定器によって3次元変位作業台の上方に設置されることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
The grinding force measuring unit includes a grinding force measuring device, an amplifier, an information collector and a data analyzer, which are connected in series;
The multi-energy field nano-lubricant micro-scale bone grinding measurement system of claim 1, wherein the jig is placed above the three-dimensional displacement workbench by the grinding force measuring instrument.
前記治具は制限シート及びストッパを含み、制限シート内にワークを配置するための制限溝が設けられ、ストッパは制限溝内に設けられ、且つクランプボルトと協働してワークを制限することを特徴とする
請求項2に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
The jig includes a restricting seat and a stopper, a restricting groove for placing the work in the restricting seat, the stopper being provided in the restricting groove, and cooperating with the clamp bolt to restrict the work. 3. The multi-energy field nano-lubricant microscale bone grinding measurement system of claim 2.
前記制限シートの頂部に平板が取り外し可能に接続され、平板に間隔が調整可能な複数の押さえ板が取り付けられ、押さえ板はワークの高さ方向を制限するために用いられることを特徴とする
請求項3に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
A flat plate is detachably connected to the top of the limiting sheet, and a plurality of holding plates with adjustable intervals are attached to the flat plate, and the holding plates are used to limit the height of the workpiece. 4. The multi-energy field nano-lubricant microscale bone grinding measurement system of claim 3.
前記超音波発生器は2つの超音波振動棒に接続され、そのうちの1つの超音波振動棒は生理食塩水を収容する容器内に配置され、もう1つの超音波振動棒はナノ粒子を収容する容器内に配置され、2つの容器はそれぞれホースを介して混合室の入口に接続されることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
The ultrasonic generator is connected to two ultrasonic vibrating rods, one of which is placed in a container containing saline and another ultrasonic vibrating rod containing nanoparticles. 2. The multi-energy field nano-lubricant micro-scale bone grinding measurement system of claim 1, wherein the multi-energy field nano-lubricant micro-scale bone grinding measurement system is disposed within a container, wherein the two containers are each connected to the inlet of the mixing chamber via a hose.
前記帯電噴霧ノズルとワークとの間に高圧直流電源が接続されることを特徴とする
請求項1又は5に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
6. The multi-energy field nano-lubricant micro-scale bone grinding measurement system of claim 1 or 5, wherein a high voltage DC power supply is connected between the charged spray nozzle and the workpiece.
前記研削温度測定部はワーク内に挿入可能な熱電対を含み、前記熱電対は情報収集器及びデータ分析器に順次接続されることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
2. The multi-energy field nano-lubricant of claim 1, wherein the grinding temperature measuring unit comprises a thermocouple insertable into the workpiece, and wherein the thermocouple is sequentially connected to an information collector and a data analyzer. Microscale bone grinding measurement system.
前記微小液滴測定部はワークの研削画像を取得するためのビデオカメラを含み、前記ビデオカメラは情報収集器及びデータ分析器に順次接続されることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
2. The multi-energy of claim 1, wherein the micro-droplet measurement unit includes a video camera for acquiring grinding images of the workpiece, and the video camera is sequentially connected to an information collector and a data analyzer. field nano-lubricant micro-scale bone grinding measurement system.
前記3次元変位作業台の底部にさらに空気浮上プラットフォーム装置が設けられ、空気浮上プラットフォーム装置は台板、空気浮上防振器及び支持アセンブリを含み、空気浮上防振器は台板と支持アセンブリとの間に取り付けられることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
An air-levitation platform device is further provided at the bottom of the three-dimensional displacement worktable, the air-levitation platform device includes a base plate, an air-levitation vibration isolator and a support assembly, and the air-levitation vibration isolator is between the base plate and the support assembly. The multi-energy field nano-lubricant micro-scale bone grinding measurement system of claim 1, mounted between.
前記台板の上表面に透磁性パネルが設けられ、台板の内部にハニカムコア板が設けられることを特徴とする
請求項1に記載のマルチエネルギー場ナノ潤滑剤マイクロスケール骨研削加工測定システム。
The multi-energy field nano-lubricant micro-scale bone grinding measurement system of claim 1, wherein a magnetically permeable panel is provided on the top surface of the base plate, and a honeycomb core plate is provided inside the base plate.
JP2022124226A 2021-11-26 2022-08-03 Multi-energy field nano-lubricant microscale bone grinding measurement system Active JP7349185B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111422746.8 2021-11-26
CN202111422746.8A CN114083359A (en) 2021-11-26 2021-11-26 Multi-energy-field nano lubricant microscale bone grinding processing measurement system

Publications (2)

Publication Number Publication Date
JP2023079156A true JP2023079156A (en) 2023-06-07
JP7349185B2 JP7349185B2 (en) 2023-09-22

Family

ID=80305063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022124226A Active JP7349185B2 (en) 2021-11-26 2022-08-03 Multi-energy field nano-lubricant microscale bone grinding measurement system

Country Status (3)

Country Link
JP (1) JP7349185B2 (en)
CN (1) CN114083359A (en)
AU (1) AU2022201185B1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930628A (en) * 1982-08-09 1984-02-18 Honda Motor Co Ltd Clamping device
JPH05253838A (en) * 1992-03-10 1993-10-05 Fuji Seiki Mach Works Ltd Dressing method and device of grinding wheel
JPH06210533A (en) * 1993-01-14 1994-08-02 Ricoh Co Ltd Grinding device
JPH06330186A (en) * 1993-05-24 1994-11-29 Topy Ind Ltd Hardening temperature control method
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP3127803U (en) * 2006-09-29 2006-12-14 村中医療器株式会社 Spray irrigation device and nozzle for spray irrigation used during surgery
JP2008098368A (en) * 2006-10-11 2008-04-24 Ushio Inc Stage apparatus
JP2009261667A (en) * 2008-04-25 2009-11-12 Miwatec:Kk Ultrasonic horn and ultrasonic handpiece
JP2011222846A (en) * 2010-04-13 2011-11-04 Tokyo Seimitsu Co Ltd Inspection method by dicing apparatus
JP2016026559A (en) * 2014-07-07 2016-02-18 株式会社インプラントデント Bone flat surface formation tool for implant
JP2016084838A (en) * 2014-10-23 2016-05-19 ファナック株式会社 Vibration isolator and positioning device mounted with robot
US20170333053A1 (en) * 2015-09-21 2017-11-23 Qingdao Technology University Bone surgery grinding experimental device capable of cooling and electrostatic atomization film formation
CN209060230U (en) * 2018-05-22 2019-07-05 浙江工业大学 A kind of physiological saline cold nebulization cooling device for bone grinding

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT190826B (en) * 1944-04-01 1957-07-25 Cavitron Corp Methods and devices for processing hard, in particular also brittle, workpieces.
JPH03234450A (en) * 1990-02-06 1991-10-18 Brother Ind Ltd Ultrasonic machine
JPH03277466A (en) * 1990-03-22 1991-12-09 Naotake Mori Processing device
JPH09239636A (en) * 1996-03-06 1997-09-16 Fuji Oozx Inc Scattering preventive device of mist
KR20040056601A (en) * 2002-12-24 2004-07-01 류동욱 Supersonic processing apparatus
CN104002220B (en) * 2014-05-30 2016-06-08 河南理工大学 An abrasive particle grinding experiment device and method that places an order is assisted in supersonic vibration
CN105215852B (en) * 2015-05-29 2017-09-22 青岛理工大学 A kind of measurement apparatus and method of abrasion of grinding wheel and G ratio
CN204954631U (en) * 2015-09-21 2016-01-13 青岛理工大学 Acoustic emission and dynamometer integrated emery wheel block up and detect belt cleaning device
CN105538155B (en) * 2015-12-07 2018-10-26 广州汇专工具有限公司 A kind of on-Line Monitor Device for ultrasound ELID internal grinding cavitation effects
CN105945657A (en) * 2016-06-22 2016-09-21 河源市新天彩科技有限公司 Multifunctional ultrasonic vibration grinding mechanism
CN107133392B (en) * 2017-04-19 2020-06-26 南京理工大学 Method for predicting grinding temperature of ultrasonic vibration-assisted grinding brittle material
CN107336086A (en) * 2017-09-11 2017-11-10 青岛理工大学 The nano-fluid micro lubricating experimental system and method for ultrasonic activation assistant grinding
CN107789031A (en) * 2017-11-21 2018-03-13 青岛理工大学 Water mill turning device is caught in a kind of hand-held neurosurgery rotary ultrasonic resonance
CN107855836B (en) * 2017-12-06 2019-10-29 青岛理工大学 Nano-fluid micro lubricating grinding attachment
CN208431313U (en) * 2018-04-17 2019-01-25 刘新英 A kind of magnetic suspension shockproof platform
CN109571159B (en) * 2019-01-02 2021-04-02 南京航空航天大学 Free abrasive material micro-ultrasonic machining device and feed adjusting method
CN110531478A (en) * 2019-09-02 2019-12-03 武汉鑫联兴精密机电有限公司 A kind of various dimensions precision vibration isolation optical platform
CN110793967B (en) * 2019-11-13 2022-08-26 中国石油大学(华东) Device and method for testing electrostatic coalescence microscopic characteristics of liquid drops in flowing process
CN211527322U (en) * 2020-04-08 2020-09-18 昆明超泰经贸有限公司 Optical vibration reduction rack for detecting cigarette paper indentation
CN213981807U (en) * 2020-09-30 2021-08-17 微纳光科(廊坊)仪器有限公司 Air flotation vibration isolation platform
CN112405125B (en) * 2020-11-17 2021-09-14 武汉理工大学 Ultrasonic auxiliary grinding device and grinding method for modified carbon fiber composite material
CN112733418A (en) * 2020-11-27 2021-04-30 北京工业大学 Method for monitoring fluid characteristic change of ejected liquid in pneumatic droplet ejection process
CN112276695A (en) * 2020-12-04 2021-01-29 平顶山学院 Multi-dimensional multi-angle controllable ultrasonic ELID inner circle grinding device
CN113049454B (en) * 2021-03-26 2022-04-19 福州大学 Method for measuring and calculating dynamic interfacial tension of multi-phase emulsion in micro-channel
CN113324580B (en) * 2021-04-06 2023-06-23 北京工业大学 Static droplet jetting state detection method based on induced current and machine vision
CN113466333B (en) * 2021-05-21 2023-01-20 天津大学 Experimental system and detection method for researching focused ultrasound excited liquid drop ejection characteristics

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930628A (en) * 1982-08-09 1984-02-18 Honda Motor Co Ltd Clamping device
JPH05253838A (en) * 1992-03-10 1993-10-05 Fuji Seiki Mach Works Ltd Dressing method and device of grinding wheel
JPH06210533A (en) * 1993-01-14 1994-08-02 Ricoh Co Ltd Grinding device
JPH06330186A (en) * 1993-05-24 1994-11-29 Topy Ind Ltd Hardening temperature control method
JP2004098111A (en) * 2002-09-06 2004-04-02 National Institute Of Advanced Industrial & Technology Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
JP3127803U (en) * 2006-09-29 2006-12-14 村中医療器株式会社 Spray irrigation device and nozzle for spray irrigation used during surgery
JP2008098368A (en) * 2006-10-11 2008-04-24 Ushio Inc Stage apparatus
JP2009261667A (en) * 2008-04-25 2009-11-12 Miwatec:Kk Ultrasonic horn and ultrasonic handpiece
JP2011222846A (en) * 2010-04-13 2011-11-04 Tokyo Seimitsu Co Ltd Inspection method by dicing apparatus
JP2016026559A (en) * 2014-07-07 2016-02-18 株式会社インプラントデント Bone flat surface formation tool for implant
JP2016084838A (en) * 2014-10-23 2016-05-19 ファナック株式会社 Vibration isolator and positioning device mounted with robot
US20170333053A1 (en) * 2015-09-21 2017-11-23 Qingdao Technology University Bone surgery grinding experimental device capable of cooling and electrostatic atomization film formation
CN209060230U (en) * 2018-05-22 2019-07-05 浙江工业大学 A kind of physiological saline cold nebulization cooling device for bone grinding

Also Published As

Publication number Publication date
JP7349185B2 (en) 2023-09-22
CN114083359A (en) 2022-02-25
AU2022201185B1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP5540287B2 (en) Packing and removal of particulate matter in microchannel reactors
Jia et al. Experimental evaluation of surface topographies of NMQL grinding ZrO 2 ceramics combining multiangle ultrasonic vibration
Yang et al. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding
WO2018049790A1 (en) Multi-angle two-dimensional ultrasonic vibration assisted grinding device of nano-fluid minimum quantity lubrication type
Krajnik et al. Nanofluids: properties, applications and sustainability aspects in materials processing technologies
CN207915123U (en) The ultrasonic vibration mechanism and device of a kind of adjustable ultrasonic oscillator space position
AU2018381738A1 (en) Nano-fluid minimum quantity lubrication grinding apparatus with grinding fluid infiltration microchannel assisted by ultrasonic vibration
US9346139B2 (en) Vibrating device with workpiece receiving portion and compensating mass
Su et al. Machining and environmental effects of electrostatic atomization lubrication in milling operation
CN107855836B (en) Nano-fluid micro lubricating grinding attachment
WO2019100587A1 (en) Electrostatic-atomization ultrasonic wave assisted low-damage and controllable biologic bone grinding process and apparatus
CN110961031B (en) Non-contact micro/nano particle control method
CN116287768A (en) Apparatus and method for filtering metal
JP7349185B2 (en) Multi-energy field nano-lubricant microscale bone grinding measurement system
CN207104515U (en) A kind of shake table for precision ultrasonic processing
Li et al. Surface and subsurface formation mechanism of SiCp/Al composites under ultrasonic scratching
Hadad et al. A novel approach to improve environmentally friendly machining processes using ultrasonic nozzle–minimum quantity lubrication system
Xu et al. Atomization mechanism and machinability evaluation with electrically charged nanolubricant grinding of GH4169
Li et al. Experimental evaluation on tribological properties of nano–particle jet MQL grinding
ALI et al. Recent developments in MQL machining of aeronautical materials: a comparative review
CN205404488U (en) Ultrasonic flaw detector
Lerma et al. Characterization of micromist for effective minimum quantity lubrication
Li Thermodynamic mechanism of MQL grinding with nano bio-lubricant
Liu et al. Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15
Liang et al. Comprehensive evaluation of welding quality for butt-welded by means of CO 2 arc vibratory welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7349185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150