JP2023076806A - 半導体装置内の信号干渉を減らすための装置及び方法 - Google Patents

半導体装置内の信号干渉を減らすための装置及び方法 Download PDF

Info

Publication number
JP2023076806A
JP2023076806A JP2022177087A JP2022177087A JP2023076806A JP 2023076806 A JP2023076806 A JP 2023076806A JP 2022177087 A JP2022177087 A JP 2022177087A JP 2022177087 A JP2022177087 A JP 2022177087A JP 2023076806 A JP2023076806 A JP 2023076806A
Authority
JP
Japan
Prior art keywords
memory
memory device
buffers
activation
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022177087A
Other languages
English (en)
Inventor
ス ヨル チェ
Soo Yeol Chai
ジン ヘン イ
Jin Haeng Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
SK Hynix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Hynix Inc filed Critical SK Hynix Inc
Publication of JP2023076806A publication Critical patent/JP2023076806A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/20Initialising; Data preset; Chip identification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

【課題】半導体装置内の信号干渉を減らすことができる装置及び方法を提供すること。【解決手段】本技術は、データを格納する不揮発性メモリセルと連結される複数のページバッファが予め設定された方向に隣接して配置されたメモリ構造物及び前記複数のページバッファのうち、隣り合った2つのページバッファのリセット区間を少なくとも1回のリセット区間以上の分だけ互いに離間させる制御装置を含むメモリ装置を提供する。【選択図】図1

Description

本発明は、半導体装置に関し、具体的に、半導体装置内の信号干渉を減らすための装置及び方法に関する。
近年、コンピュータ環境に対するパラダイム(paradigm)がいつ、どこでもコンピュータシステムを使用できるようにするユビキタスコンピューティング(ubiquitous computing)に切り換えられている。これにより、携帯電話、デジタルカメラ、ノートブックコンピュータなどのような携帯用電子装置の使用が急増している。このような携帯用電子装置は、一般に、メモリ装置を利用するメモリシステム、言い換えれば、データ格納装置を使用する。データ格納装置は、携帯用電子装置の主記憶装置または補助記憶装置として使用される。
磁気ディスクと機械的な駆動装置(例、mechanical arm)を含むハードディスクと比較すると、不揮発性メモリ装置は、半導体工程技術の発達により、小さい面積に多くのデータを格納できるだけでなく、機械的な駆動装置を使用する必要がなく、データをアクセスする速度が速くかつ電力消費が少ないことができる。このような長所を有する不揮発性メモリ装置を含むメモリシステムの例として、USB(Universal Serial Bus)メモリ装置、様々なインターフェースを有するメモリカード、ソリッドステートドライブ(SSD:Solid State Drive)などがある。
本発明の一実施形態は、半導体装置内の信号干渉を減らすことができる装置及び方法を提供できる。また、本発明の一実施形態は、メモリ装置の集積度を改善できる装置及び方法を提供できる。
本発明においてなそうとする技術的課題は、以上で言及した技術的課題に制限されず、言及していないさらに他の技術的課題は、下記の記載から本発明の属する技術分野における通常の知識を有する者に明確に理解され得るであろう。
本発明の実施形態は、半導体装置、メモリシステム、メモリシステムに含まれるコントローラ、あるいはメモリシステムを含むデータ処理装置を提供できる。
本発明の一実施形態に係るメモリ装置は、データを格納する不揮発性メモリセルと連結される複数のページバッファが予め設定された方向に隣接して配置されたメモリ構造物と、前記複数のページバッファのうち、隣り合った2つのページバッファのリセット区間を少なくとも1回のリセット区間以上の分だけ互いに離間させる制御装置とを含むことができる。
本発明の他の実施形態に係る半導体装置は、データを一時格納するラッチを備える複数のバッファが予め設定された方向に隣接して配置された構造物と、前記複数のバッファのうち、隣り合った2つのバッファのそれぞれの活性化区間を少なくとも1回の活性化区間以上の分だけ互いに離間させる制御装置とを含むことができる。
本発明の他の実施形態に係るメモリ装置は、複数の列を有するメモリセルアレイと、物理的に互いに隣接して配置され、対応する列に連結された第1及び第2のラッチを各々備える第1及び第2のページバッファと、前記第1及び第2のページバッファ内の第1のラッチに第1及び第2の信号を印加して前記第1のラッチをリセットするように構成された制御回路とを備え、前記第1のページバッファの前記第2のラッチは、前記第2のページバッファの前記第1のラッチに物理的に隣接して配置され、第1及び第2の信号は、任意の時間量により分離されたそれぞれの時間の間、イネーブル状態を維持できる。
前記本発明の態様は、本発明の望ましい実施形態のうち一部に過ぎず、本願発明の技術的特徴が反映された様々な実施形態が当該技術分野の通常的な知識を有する者により、以下に詳述する本発明の詳細な説明に基づいて導出され、理解されることができる。
本発明に係る装置についての効果について説明すれば、次のとおりである。
本発明の一実施形態に係る半導体装置は、集積度が高い回路で隣接した回路が動作するとき点が重ならないように信号を分離させて、隣接した回路により干渉が発生して信号あるいはデータが歪むことを防止できる。
また、本発明の一実施形態に係るメモリ装置は、複数の不揮発性メモリセルと連結され、データを入出力するために一時格納できるページバッファが密集された環境で隣接したページバッファの活性化信号を重ならないように活性化して干渉(interference)を減らすことができる。
本発明において得ることができる効果は、以上で言及した効果に制限されず、言及していないさらに他の効果は、下記の記載から本発明の属する分野における通常の知識を有する者に明確に理解され得るであろう。
本発明の一実施形態に係るデータ処理システムを説明する。 本発明の一実施形態に係るメモリ装置を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第1の例を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファ領域の第1の構造を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファ領域の第2の構造を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第2の例を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第3の例を説明する。 本発明の一実施形態に係るメモリ装置内のページバッファを説明する。 メモリ装置内のページバッファを制御する第1の動作方法を説明する。 第1の動作方法によりページバッファで発生する干渉を説明する。 第1の動作方法により発生した干渉(interference)によるデータ歪みを説明する。 本発明の一実施形態に係るメモリ装置内のページバッファを制御する第2の動作方法を説明する。 本発明の一実施形態に係る第2の動作方法によりページバッファで干渉が防止されることを説明する。 本発明の一実施形態に係る第2の動作方法により発生した干渉にもデータが歪まない過程を説明する。
以下、本発明に係る望ましい実施形態を添付した図面を参照して詳細に説明する。下記の説明では、本発明に係る動作を理解するのに必要な部分だけが説明され、それ以外の部分の説明は、本発明の要旨を濁さないように省略されるであろうということに留意すべきである。
以下、図面を参照して本発明の実施形態等についてより具体的に説明する。
図1は、本発明の他の実施形態に係るデータ処理システムを説明する。
図1に示すように、データ処理システム100は、ホスト102及びメモリシステム110を備える。例えば、ホスト102とメモリシステム110とは、データバス(data bus)、ホストケーブル(host cable)などのようなデータ伝達手段を介して連結されて、データを送受信することができる。
メモリシステム110は、メモリ装置150とコントローラ130とを備えることができる。メモリシステム110内のメモリ装置150とコントローラ130とは、物理的に区分される構成要素であることができる。メモリ装置150とコントローラ130とは、少なくとも1つのデータパス(data path)で連結されることができる。例えば、データパスは、チャネル(channel)及び/又はウェイ(way)などで構成されることができる。
実施形態によって、メモリ装置150とコントローラ130とは、機能的に区分される構成要素であることができる。また、実施形態によって、メモリ装置150とコントローラ130とは、1つの半導体装置チップ(chip)あるいは複数の半導体装置チップ(chip)を介して実現されることができる。実施形態によって、高い集積度が求められるメモリシステム110の場合、メモリ装置150とコントローラ130とは、1つの半導体装置チップ(chip)で構成されることもできる。
メモリ装置150は、複数のメモリブロック152、154、156を備えることができる。メモリブロック152、154、156は、削除動作を介して共にデータが除去される不揮発性メモリセル等のグループであると理解することができる。図示されてはいないが、メモリブロック152、154、156は、プログラム動作の際に共にデータが格納されるか、読み出し動作の際にデータを共に出力する不揮発性メモリセル等のグループであるページ(page)を含むことができる。例えば、1つのメモリブロック152、154、156には複数のページが含まれることができる。
図示されてはいないが、メモリ装置150は、複数のメモリプレイン(plane)あるいは複数のメモリダイ(die)を備えることができる。実施形態によって、メモリプレインは、少なくとも1つのメモリブロック152、154、156を備えることができ、複数の不揮発性メモリセルで構成されたアレイを制御できる駆動回路及び複数の不揮発性メモリセルに入力あるいは複数の不揮発性メモリセルから出力されるデータを一時格納できるバッファを備える論理的あるいは物理的なパーティション(partition)であると理解することができる。
実施形態によって、メモリ装置150は、少なくとも1つのメモリブロック152、154、156、少なくとも1つのメモリプレイン、あるいは少なくとも1つのメモリダイを備えることができる。メモリブロック152、154、156は、SLC(Single Level Cell)タイプあるいはMLC(Multi Level Cell)タイプを含むことができる。図2において説明したメモリ装置150は、メモリシステム110の動作性能に対応して内部構成が変わることができる。本発明の一実施形態は、図2において説明した内部構成に限定されないことができる。
図1に示すように、メモリ装置150は、メモリブロック152、154、156に少なくとも1つの電圧を供給できる電圧供給回路170を備えることができる。電圧供給回路170は、読み出し電圧(Vrd)、プログラム電圧(Vprog)、パス電圧(Vpass)、あるいは削除電圧(Vers)をメモリブロック152、154、156に含まれた不揮発性メモリセルに供給することができる。例えば、メモリブロック152、154、156に含まれた不揮発性メモリセルに格納されたデータを読み出すための読み出し動作中、電圧供給回路170は、選択された不揮発性メモリセルに読み出し電圧(Vrd)を供給できる。メモリブロック152、154、156に含まれた不揮発性メモリセルにデータを格納するためのプログラム動作中、電圧供給回路170は、選択された不揮発性メモリセルにプログラム電圧(Vprog)を供給できる。また、選択された不揮発性メモリセルに読み出し動作あるいはプログラム動作中、電圧供給回路170は、選択されなかった不揮発性メモリセルにパス電圧(Vpass)を供給できる。メモリブロック152、154、156に含まれた不揮発性メモリセルに格納されたデータを削除するための削除動作中、電圧供給回路170は、メモリブロック152、154、156に削除電圧(Vers)を供給できる。
メモリ装置150は、メモリブロック152、154、156に供給する様々な電圧に関する情報を格納できる。例えば、メモリブロック152、154、156内の不揮発性メモリセルがマルチビットのデータを格納できる場合、マルチビットのデータを識別するための読み出し電圧(Vrd)のレベルは様々であることができる。メモリ装置150は、マルチビットのデータに対応する複数の読み出し電圧(Vrd)のレベルを含む電圧テーブルを備えることができる。
ホスト102は、電子装置、例えば、携帯電話、MP3プレーヤ、ラップトップコンピュータなどのような携帯用電子装置等、またはデスクトップコンピュータ、ゲーム機、TV、プロジェクタなどのような非携帯用電子装置等を含むことができる。例えば、ホスト102は、コンピューティング装置あるいは有無線電子装置等を含むことができる。
また、ホスト102は、少なくとも1つの運営システム(OS:operating system)を含み、運営システムは、ホスト102の機能及び動作を全般的に管理及び制御し、データ処理システム100またはメモリシステム110を使用するユーザとホスト102との間に相互動作を提供する。ここで、運営システムは、ユーザの使用目的及び用途に相応した機能及び動作を支援し、例えば、ホスト102の移動性(mobility)によって一般運営システムとモバイル運用システムとに区分することができる。また、運営システムにおける一般運営システムは、ユーザの使用環境によって個人用運営システムと企業用運営システムとに区分することができ、一例として、個人用運営システムは、一般ユーザのためのサービス提供機能を支援するように特性化されたシステムを含むことができ、企業用運営システムは、高性能を確保及び支援するように特性化されたシステムを含むことができる。一方、ホスト102は、複数の運営システムを含むことができ、また、ユーザ要請(user request)に相応したメモリシステム110との動作実行のために運営システムを行う。ホスト102は、ユーザ要請に該当する複数のコマンドをメモリシステム110に送信し、メモリシステム110では、複数のコマンドに該当する動作(すなわち、ユーザ要請に相応する動作)を行う。
メモリシステム110内のコントローラ130は、ホスト102からの要請に応答してメモリ装置150を制御できる。例えば、コントローラ130は、読み出し動作を行ってメモリ装置150から読み出されたデータをホスト102に提供することができ、書き込み動作(プログラム動作)を行ってホスト102から提供されたデータをメモリ装置150に格納することができる。このようなデータ入出力動作を行うために、コントローラ130は、読み出し、プログラム(program)、イレイス(erase)などの動作を制御できる。電圧供給回路170は、コントローラ130がメモリ装置150に送信した命令あるいは要請に応じて対象電圧をメモリグループ330あるいはメモリブロック152、154、156に伝達することができる。
実施形態によって、コントローラ130は、ホストインターフェース132、プロセッサ134、エラー訂正部138、パワー管理ユニット(Power Management Unit、PMU)140、メモリインターフェース142、及びメモリ144を備えることができる。図2において説明したコントローラ130に含まれた構成要素は、メモリシステム110の実現形態、動作性能などによって変わることができる。例えば、メモリシステム110は、ソリッドステートドライブ(SSD:Solid State Drive)、MMC、eMMC(embedded MMC)、RS-MMC(Reduced Size MMC)、micro-MMC形態のマルチメディアカード(MMC:Multi Media Card)、SD、mini-SD、micro-SD形態のセキュアデジタル(SD:Secure Digital)カード、USB(Universal Storage Bus)格納装置、UFS(Universal Flash Storage)装置、CF(Compact Flash)カード、スマートメディア(Smart Media(登録商標))カード、メモリスティック(Memory Stick)などのような様々な種類の格納装置のうち、いずれか1つで実現されることができる。コントローラ130の内部に含まれる構成要素等は、メモリシステム110の実現形態によって追加されるか、除去されることができる。
ホスト102とメモリシステム110とは、約束された規格に対応して信号、データなどを送受信するためのコントローラあるいはインターフェースを備えることができる。例えば、メモリシステム110内のホストインターフェース132は、ホスト102に信号、データなどを送信するか、ホスト102から伝達される信号、データなどを受信できる装置を含むことができる。
コントローラ130に含まれたホストインターフェース132は、ホスト102から伝達される信号、コマンド(command)、またはデータを受信することができる。すなわち、ホスト102とメモリシステム110とは、互いに約束された規格を介してデータを送受信できる。データを送受信するための約束された規格の例として、USB(Universal Serial Bus)、MMC(Multi-Media Card)、PATA(Parallel Advanced Technology Attachment)、SCSI(Small Computer System Interface)、ESDI(Enhanced Small Disk Interface)、IDE(Integrated Drive Electronics)、PCIE(Peripheral Component Interconnect Express)、SAS(Serial-attached SCSI)、SATA(Serial Advanced Technology Attachment)、MIPI(Mobile Industry Processor Interface)などのような様々なインターフェースプロトコルがある。実施形態によって、ホストインターフェース132は、ホスト102とデータをやりとりする領域であって、ホストインターフェース階層(HIL:Host Interface Layer、以下、「HIL」と称する)と呼ばれるファームウェア(firmware)を介して実現されるか、駆動されることができる。
図1に示すように、コントローラ130内のエラー訂正部(error correction circuitry、138)は、メモリ装置150で処理されるデータのエラービットを訂正できる。実施形態によって、エラー訂正部138は、ECCエンコーダとECCデコーダとを備えることができる。ここで、ECCエンコーダ(ECC encoder)は、メモリ装置150にプログラムされるデータをエラー訂正エンコーディング(error correction encoding)して、パリティ(parity)ビットが付加されたデータを生成できる。パリティビットが付加されたデータは、メモリ装置150に格納されることができる。ECCデコーダ(ECC decoder)は、メモリ装置150に格納されたデータを読み出す場合、メモリ装置150から読み出されたデータに含まれるエラーを検出及び訂正する。ECCユニット138は、メモリ装置150から読み出されたデータをエラー訂正デコーディング(error correction decoding)した後、エラー訂正デコーディングの成功可否を判断し、判断結果に応じて指示信号、例えば、エラー訂正成功(success)/失敗(fail)信号を出力し、ECCエンコーディング過程で生成されたパリティ(parity)ビットを使用して読み出されたデータのエラービットを訂正できる。ECCユニット138は、エラービット個数が訂正可能なエラービット閾値以上発生すれば、エラービットを訂正できず、エラービットを訂正できないことに相応するエラー訂正失敗信号を出力できる。
実施形態によって、エラー訂正部138は、LDPC(low density parity check)コード(code)、BCH(Bose、Chaudhri、Hocquenghem)コード、ターボコード(turbo code)、読み出し-ソロモンコード(Reed-Solomon code)、コンボリューションコード(convolution code)、RSC(recursive systematic code)、TCM(trellis-coded modulation)、BCM(Block coded modulation)などのコーデッドモジュレーション(coded modulation)を使用してエラー訂正を行うことができ、これに限定されるものではない。また、エラー訂正部138は、データに含まれたエラーを訂正するためのプログラム、回路、モジュール、システム、または装置を含むことができる。
PMU140は、メモリシステム110に印加される電源(例、コントローラ130に供給される電圧)を監視し、コントローラ130に含まれた構成要素にパワーを提供できる。PMU140は、電源のオン(On)あるいはオフ(Off)を感知するだけでなく、供給される電圧レベルが不安定な場合、メモリシステム110が緊急に現在状態をバックアップできるようにトリガー信号を生成できる。実施形態によって、PMU140は、緊急状況で使用されることができる電力を蓄積できる装置を含むことができる。
メモリインターフェース142は、コントローラ130がホスト102からの要請に応答してメモリ装置150を制御するために、コントローラ130とメモリ装置150との間の信号、データを送受信できる。メモリ装置150がフラッシュメモリ(例、NANDフラッシュメモリ)である場合、メモリインターフェース142は、NANDフラッシュコントローラ(NAND Flash Controller、NFC)を含むことができる。プロセッサ134の制御によって、メモリインターフェース142は、メモリ装置150の動作を制御するための信号を生成でき、メモリ装置150から出力されたデータを受信するか、メモリ装置150に格納されるデータを送信できる。実施形態によって、メモリインターフェース142は、メモリ装置150間データ入出力を支援し、メモリ装置150とデータをやりとりする領域であって、フラッシュインターフェース階層(FIL:Flash Interface Layer、以下、「FIL」と称する)と呼ばれるファームウェア(firmware)を介して実現されるか、駆動されることができる。
実施形態によって、メモリインターフェース142は、メモリ装置150間データ入出力のために、Open NAND Flash Interface(ONFi)、トグル(toggle)モードなどを支援できる。例えば、ONFiは、8-ビットあるいは16-ビットの単位データに対する両方向(bidirectional)送受信を支援できる信号線を含むデータ経路(例、チャネル、ウェイ等)を使用できる。コントローラ130とメモリ装置150との間のデータ通信は、非同期式SDR(Asynchronous Single Data Rate)、同期式DDR(Synchronous Double Data Rate)、及びトグルDDR(Toggle Double Data Rate)のうち、少なくとも1つに対するインターフェース(interface)を支援する装置を介して行われることができる。
メモリ144は、メモリシステム110及びコントローラ130の動作メモリ(working memory)であって、メモリシステム110及びコントローラ130の駆動のために必要なデータあるいは駆動中に発生したデータを格納できる。例えば、メモリ144は、コントローラ130がホスト102からの要請に応答してメモリ装置150から提供された読み出しデータをホスト102に提供する前に一時格納することができる。また、コントローラ130は、ホスト102から提供された書き込みデータをメモリ装置150に格納する前、メモリ144に一時格納することができる。メモリ装置150の読み出し、書き込み、プログラム、イレイス(erase)などの動作を制御する場合、メモリシステム110内のコントローラ130とメモリ装置150との間に伝達されるか、発生するデータは、メモリ144に格納されることができる。読み出しデータまたは書き込みデータだけでなく、メモリ144は、ホスト102とメモリ装置150との間のデータ書き込み及び読み出しなどの動作を行うために必要な情報(例、マップデータ、読み出し命令、プログラム命令等)を格納できる。メモリ144は、命令キュー(command queue)、プログラムメモリ、データメモリ、書き込みバッファ(buffer)/キャッシュ(cache)、読み出しバッファ/キャッシュ、データバッファ/キャッシュ、マップ(map)バッファ/キャッシュなどを含むことができる。
実施形態によって、メモリ144は、揮発性メモリで実現されることができ、例えば、静的ランダムアクセスメモリ(SRAM:Static Random Access Memory)、または動的ランダムアクセスメモリ(DRAM:Dynamic Random Access Memory)などで実現されることができる。さらに、メモリ144は、図2において図示したように、コントローラ130の内部に存在するか、またはコントローラ130の外部に存在することができ、このとき、メモリインターフェースを介してコントローラ130からデータが入出力される外部揮発性メモリで実現されることができる。
プロセッサ134は、コントローラ130の動作を制御できる。ホスト102からの書き込み要請または読み出し要請に応答して、プロセッサ134は、メモリ装置150に対するプログラム動作または読み出し動作を行うことができる。プロセッサ134は、コントローラ130のデータ入出力動作を制御するために、フラッシュ変換階層(FTL:Flash Translation Layer、以下、「FTL」と称する)と呼ばれるファームウェア(firmware)を駆動できる。実施形態によって、プロセッサ134は、マイクロプロセッサまたは中央処理装置(CPU)などで実現されることができる。
また、実施形態によって、プロセッサ134は、互いに区別される演算処理領域であるコア(core)が2つ以上集積された回路であるマルチコア(multi-core)プロセッサで実現されることもできる。例えば、マルチコアプロセッサ内の複数のコアは、複数のフラッシュ変換階層(FTL)を各々駆動すれば、メモリシステム110のデータ入出力速度を向上させることができる。
コントローラ130内のプロセッサ134は、ホスト102から入力されたコマンドに対応する動作を行うことができ、ホスト102のような外部装置から入力されるコマンドと関係なく、メモリシステム110が独立的に動作を行うこともできる。通常、ホスト102から伝達されたコマンドに対応してコントローラ130が行う動作がフォアグラウンド(foreground)動作と理解されることができ、ホスト102から伝達されたコマンドと関係なく、コントローラ130が独立的に行う動作がバックグラウンド(background)動作と理解されることができる。フォアグラウンド(foreground)動作またはバックグラウンド(background)動作により、コントローラ130は、メモリ装置150に格納されたデータに対する読み出し(read)、書き込み(write)、あるいはプログラム(program)、削除(erase)などのための動作を行うこともできる。また、ホスト102から伝達されたセットコマンド(set command)としてセットパラメータコマンド(set parameter command)またはセットフィーチャコマンド(set feature command)に該当するパラメータセット動作などもフォアグラウンド動作と理解されることができる。一方、ホスト102から伝達される命令なしにバックグラウンド動作として、メモリ装置150に含まれた複数のメモリブロック152、154、156と関連して、メモリシステム110は、ガーベジコレクション(Garbage Collection、GC)、ウェアーレベリング(Wear Leveling、WL)、バッドブロックを確認して処理するバッドブロック管理(bad block management)などのための動作を行うこともできる。
一方、フォアグラウンド(foreground)動作またはバックグラウンド(background)動作として、実質的に類似した動作が行われることもできる。例えば、メモリシステム110がホスト102の命令に対応して手動ガーベジコレクション(Manual GC)を行うと、フォアグラウンド動作と理解されることができ、メモリシステム110が独立的に自動ガーベジコレクション(Auto GC)を行うと、バックグラウンド動作と理解されることができる。
メモリ装置150が不揮発性メモリセルを含む複数のダイ(dies)あるいは複数のチップ(chips)で構成された場合、コントローラ130は、メモリシステム110の性能向上のために、ホスト102から伝達された要請あるいは命令をメモリ装置150内の複数のダイ(dies)あるいは複数のチップ(chips)に分けて同時に処理することができる。コントローラ130内のメモリインターフェース142は、メモリ装置150内の複数のダイ(dies)あるいは複数のチップ(chips)と少なくとも1つのチャネル(channel)と少なくとも1つのウェイ(way)を介して連結されることができる。コントローラ130が不揮発性メモリセルで構成される複数のページに対応する要請あるいは命令を処理するために、データを各チャネルあるいは各ウェイを介して分散して格納する場合、当該要請あるいは命令に対する動作が同時にあるいは並列に行われることができる。このような処理方式あるいは方法をインターリビング(interleaving)方式と理解することができる。メモリ装置150内の各ダイ(die)あるいは各チップ(chip)のデータ入出力速度よりインターリビング方式で動作することができるメモリシステム110のデータ入出力速度は速いことができるので、メモリシステム110のデータ入出力性能を向上させることができる。
コントローラ130は、メモリ装置150に含まれた複数のメモリダイと連結された複数のチャネルまたはウェイの状態を確認できる。例えば、チャネルまたはウェイの状態は、ビジー(busy)状態、レディー(ready)状態、アクティブ(active)状態、アイドル(idle)状態、正常(normal)状態、非正常(abnormal)状態などに区分することができる。コントローラ130が命令、要請、及び/又はデータが伝達されるチャネルまたはウェイに対応して、格納されるデータの物理的住所が決定され得る。一方、コントローラ130は、メモリディバイス150から伝達されたディスクリプタ(descriptor)を参照できる。ディスクリプタは、予め決定されたフォーマットまたは構造を有するデータであって、メモリ装置150に関する何かを記述するパラメータのブロックまたはページを含むことができる。例えば、ディスクリプタは、装置ディスクリプタ、構成ディスクリプタ、ユニットディスクリプタなどを含むことができる。コントローラ130は、命令またはデータがあるチャネル(等)または方法(等)を介して交換されるかを決定するために、ディスクリプタを参照するか、使用する。
メモリシステム110内のメモリ装置150は、複数のメモリブロック152、154、156を備えることができる。複数のメモリブロック152、154、156の各々は、複数の不揮発性メモリセルを含む。図示されてはいないが、実施形態によって、複数のメモリブロック152、154、156の各々は、3次元(dimension)立体スタック(stack)構造を有することができる。
メモリ装置150に含まれた複数のメモリブロック152、154、156は、1つのメモリセルに格納または表現できるビットの数によって、単一レベルセル(Single Level Cell、SLC)メモリブロック及びマルチレベルセル(Multi Level Cell、MLC)メモリブロックなどに区分されることができる。SLCメモリブロックは、1つのメモリセルに1ビットデータを格納する不揮発性メモリセルで実現された複数のページを含むことができる。MLCメモリブロックに比べて、SLCメモリブロックは、データ演算性能が速く、かつ耐久性が高いことができる。MLCメモリブロックは、1つのメモリセルにマルチビットデータ(例えば、2ビットまたはそれ以上のビット)を格納するメモリセルで実現された複数のページを含むことができる。SLCメモリブロックに比べて、MLCメモリブロックは、同じ面積、空間により多くのデータを格納できる。メモリ装置150に含まれたMLCメモリブロックは、1つのメモリセルに2ビットデータを格納できるメモリセルにより実現された複数のページを含むダブルレベルセル(Double Level Cell、DLC)、1つのメモリセルに3ビットデータを格納できるメモリセルにより実現された複数のページを含むトリプルレベルセル(Triple Level Cell、TLC)、1つのメモリセルに4ビットデータを格納できるメモリセルにより実現された複数のページを含むクアドラプルレベルセル(Quadruple Level Cell、QLC)、または1つのメモリセルに5ビットまたはそれ以上のビットデータを格納できるメモリセルにより実現された複数のページを含む多重レベルセル(multiple level cell)などを含むことができる。
実施形態によって、コントローラ130は、メモリシステム150に含まれたマルチレベルセル(MLC)メモリブロックを、1つのメモリセルに1ビットデータを格納するSLCメモリブロックのように運用することができる。例えば、マルチレベルセル(MLC)メモリブロックの一部で他のブロックに比べてより速いことができるデータ入出力速度を活用して、コントローラ130は、マルチレベルセル(MLC)メモリブロックの一部をSLCメモリブロックとして運用することにより、データを一時格納するためのバッファ(buffer)として使用することもできる。
また、実施形態によって、コントローラ130は、メモリシステム150に含まれたマルチレベルセル(MLC)メモリブロックに削除動作なしに複数回データをプログラムすることができる。一般に、不揮発性メモリセルは、上書き(overwrite)を支援しない特徴を有している。しかし、マルチレベルセル(MLC)メモリブロックがマルチビットデータを格納できる特徴を利用して、コントローラ130は、不揮発性メモリセルに1ビットデータを複数回プログラムすることもできる。このために、コントローラ130は、不揮発性メモリセルにデータをプログラムした回数を別の動作情報として格納することができ、同じ不揮発性メモリセルに再度プログラムする前、不揮発性メモリセルの閾値電圧のレベルを均一にするための均一化(uniformity)動作を行うこともできる。
実施形態によって、メモリ装置150は、ROM(Read Only Memory)、MROM(Mask ROM)、PROM(Programmable ROM)、EPROM(Erasable ROM)、EEPROM(登録商標)(Electrically Erasable ROM)、FRAM(登録商標)(Ferromagnetic ROM)、PRAM(Phase change RAM)、MRAM(Magnetic RAM)、RRAM(Resistive RAM)、NANDあるいはNORフラッシュメモリ(flash memory)、相変換メモリ(PCRAM:Phase Change Random Access Memory)、抵抗メモリ(RRAM(ReRAM):Resistive Random Access Memory)、強誘電体メモリ(FRAM:Ferroelectrics Random Access Memory)、またはスピン注入磁気メモリ(STT-RAM(STT-MRAM):Spin Transfer Torque Magnetic Random Access Memory)などのようなメモリ装置で実現されることができる。
図2は、本発明の一実施形態に係るメモリ装置を説明する。具体的に、図2は、図1において説明したメモリ装置150に含まれたメモリダイあるいはメモリプレイン内のメモリセルアレイ回路を概略的に説明する。
図2に示すように、メモリ装置150は、複数の不揮発性メモリセルを含むメモリグループ330を備える。メモリグループ330には、複数の不揮発性メモリセルがビットライン(BL0 to BLm-1)に各々連結された複数のセルストリング340を備えることができる。各列(column)に配置されたセルストリング340は、少なくとも1つのドレイン選択トランジスタ(DST)と、少なくとも1つのソース選択トランジスタ(SST)とを備えることができる。選択トランジスタ(DST、SST)間には、複数個のメモリセル、またはメモリセルトランジスタ(MC0 to MCn-1)が直列に連結されることができる。それぞれのメモリセル(MC0 to MCn-1)は、セル当たり複数のビットのデータ情報を格納するMLCで構成されることができる。セルストリング340は、対応するビットライン(BL0 to BLm-1)に各々電気的に連結されることができる。
図2では、ナンド(NAND)フラッシュメモリセルで構成されたメモリグループ330を一例として図示しているが、本発明の実施形態に係るメモリ装置150に含まれたメモリグループ330は、ナンドフラッシュメモリにのみ限定されるものではなく、ノアフラッシュメモリ(NOR-type Flash memory)、少なくとも2種類以上のメモリセルが混合されたハイブリッドフラッシュメモリ、メモリチップ内にコントローラが内蔵されたOne-NANDフラッシュメモリなどで実現されることもできる。さらに、本発明の実施形態に係るメモリグループ330は、電荷蓄積層が伝導性浮遊ゲートで構成されたフラッシュメモリ装置はもちろん、電荷蓄積層が絶縁膜で構成されたチャージトラップ型フラッシュ(Charge Trap Flash、CTF)メモリ装置などで実現されることもできる。
実施形態によって、図2において説明するメモリグループ330は、図1において説明するメモリ装置150内の少なくとも1つのメモリブロック152、154、156を備えることもできる。一方、メモリ装置150は、2次元または3次元の構造を有することができる。3次元構造のメモリ装置では、それぞれのメモリブロック152、154、156が3次元構造(または、垂直構造)で実現されることもできる。例えば、それぞれのメモリブロック152、154、156は、第1の方向ないし第3の方向、例えば、x-軸方向、y-軸方向、及びz-軸方向に沿って延びた構造物を含んで、3次元構造で実現されることができる。
メモリ装置150の複数のメモリブロック152、154、156を構成するメモリグループ330は、複数のビットライン(BL)、複数のストリング選択ライン(SSL)、複数のドレイン選択ライン(DSL)、複数のワードライン(WL)、複数のダミーワードライン(DWL)、そして複数の共通ソースライン(CSL)に連結されることができ、それにより、複数のナンドストリング(NS)を含むことができる。メモリグループ330では、1つのビットライン(BL)に複数のナンドストリング(NS)が連結されて、1つのナンドストリング(NS)に複数のトランジスタが実現され得る。さらに、各ナンドストリング(NS)のストリング選択トランジスタ(SST)は、共通ソースライン(CSL)と連結されることができ、各ナンドストリング(NS)のドレイン選択トランジスタ(DST)は、対応するビットライン(BL)と連結されることができる。ここで、各ナンドストリング(NS)のストリング選択トランジスタ(SST)及びドレイン選択トランジスタ(DST)との間にメモリセル(MC)が含まれ得る。
メモリ装置150の電圧供給回路170は、動作モードによってそれぞれのワードラインに供給されるワードライン電圧(例えば、プログラム電圧、読み出し電圧、パス電圧などの対象電圧(subject voltage))と、メモリセルが形成されたバルク(例えば、ウェル領域)に供給される電圧を提供でき、このとき、電圧供給回路170の電圧発生動作は、制御回路(図示せず)の制御により行われることができる。また、電圧供給回路170は、複数の読み出しデータを生成するために、複数の可変読み出し電圧を生成でき、制御回路の制御に応答してメモリセルアレイのメモリブロック(または、セクター)のうち、1つを選択し、選択されたメモリブロックのワードラインのうち、1つを選択でき、ワードライン電圧を選択されたワードライン及び非選択されたワードラインに各々提供することができる。制御回路180は、電圧供給回路170がメモリグループ330に印加することができる様々な対象電圧を生成し、様々な対象電圧がメモリグループ330のワードラインに印加され得るようにする。
メモリ装置150は、制御回路180によって制御され、動作モードによって感知増幅器(sense amplifier)として、または書き込みドライバー(write driver)として動作できる読み出し/書き込み回路320を備えることができる。例えば、検証/正常読み出し動作の場合、読み出し/書き込み回路320は、メモリセルアレイからデータを読み出すための感知増幅器として動作することができる。また、プログラム動作の場合、読み出し/書き込み回路320は、メモリセルアレイに格納されるデータによってビットラインを駆動する書き込みドライバーとして動作することができる。読み出し/書き込み回路320は、プログラム動作の際、セルアレイに書き込まれるデータをバッファ(図示せず)から受信し、入力されたデータによってビットラインを駆動できる。このために、読み出し/書き込み回路320は、列(column)(または、ビットライン)またはカラムペア(column pair)(または、ビットラインペア)に各々対応する複数のページバッファ(PB)322、324、326を備えることができ、それぞれのページバッファ(page buffer)322、324、326には、複数のラッチ(図示せず)が備えられ得る。
図示されてはいないが、ページバッファ322、324、326は、複数のバス(BUS)を介して入出力素子(例、直列化回路(serialization circuit))と連結されることができる。ページバッファ322、324、326の各々が互いに異なるバスを介して入出力素子と連結されれば、ページバッファ322、324、326でデータを出力するのに発生しうる遅延を減らすことができる。
実施形態によって、メモリ装置150は、書き込み命令、書き込みデータ、及び書き込みデータが格納される位置に関する情報(例、物理住所)を受信できる。制御回路180は、書き込み命令に対応して電圧供給回路170がプログラム動作の際に使用されるプログラムパルス、パス電圧などを生成させ、プログラム動作後に行われる検証動作の際に使用される様々な電圧を生成させる。
図3は、本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第1の例を説明する。具体的に、図3は、図2において説明したメモリ装置150内の読み出し/書き込み回路320に備えられた複数のページバッファ(PB)の例を説明する。
図3に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)は、行と列方向に隣接して配置されることができる。実施形態によって、複数のページバッファ(PB)は、3次元構造で配置されることもできる。ここで、ページバッファ(PB)は、図2において説明したページバッファ322、324、326に対応することができる。
図2及び図3に示すように、ページバッファ(PB)は、不揮発性メモリセルに格納されたデータをビットラインを介して受信して一時格納することができる。ページバッファ(PB)は、少なくとも1つのラッチ(latch)を備え、データを一時格納した後には、新しいデータを格納するためにリセット(reset)されることができる。図2において説明した制御回路180は、ページバッファ(PB)をリセット(reset)するための制御信号XRST<0>、XRST<1>を送信でき、制御信号XRST<0>、XRST<1>に対応してページバッファ(PB)に含まれたラッチ(latch)は初期化されることができる。図3において説明する制御信号XRST<0>、XRST<1>は、図8においてラッチに印加されるリセット信号MRST、DRST、SRSTに対応することができる。
図3において説明した2つの隣り合った制御信号XRST<0>、XRST<1>は、隣り合ったページバッファ(PB)と連結されず、予め設定された距離の分だけ互いに離れて配置されたページバッファ(PB)と連結されることができる。これは、制御回路180が2つの隣り合った制御信号XRST<0>、XRST<1>を順次活性化させるか、2つの隣り合った制御信号XRST<0>、XRST<1>の活性化領域が少なくとも一部で重なる場合、隣り合ったページバッファ(PB)間干渉(interference)が発生することができるためである。2つの隣り合った制御信号XRST<0>、XRST<1>が予め設定された距離の分だけ互いに離れて配置されたページバッファ(PB)と連結されれば、2つの隣り合った制御信号XRST<0>、XRST<1>の活性化領域が少なくとも一部で重なってもページバッファ(PB)が互いに予め設定された距離の分だけ離間しているので、干渉(interference)からデータの歪み(distortion)を避けることができる。
以下では、図4~図5を参照して、メモリ装置150がシールディドビットライン構造(Shielded BL Architecture)を有する例を説明する。ページバッファ(PB)は、1つのセンシング及びラッチ装置と理解されることができる。図2に示すように、1つのビットライン(BL)に1つのページバッファ322が連結されているが、メモリ装置150のこのような構造をオールビットライン構造(All BL Architecture)と呼ぶことができる。図4~図5に示すように、2つ以上のビットライン(BL)に1つのページバッファ(PB)が連結される構造であるシールディドビットライン構造(Shielded BL Architecture)を説明する。
メモリ装置150内のメモリグループ330に含まれたセルの個数が16k Byteと仮定すれば、読み出し/書き込み回路320には、16k Byteに対応する数のセンシング及びラッチ装置を含む必要がある。しかし、メモリ装置150の集積度を向上させるために(例、同じ格納空間を有するメモリ装置150の大きさを減らすために)、メモリ装置150内の読み出し/書き込み回路320に含まれるページバッファ(PB)の段数を異なるようにすることができる。
例えば、ビットラインと平行な縦方向の段数が増加するほど、メモリ装置150の集積度は低くなることができる。図2に示すように、ビットラインと平行な縦方向にセンシング及びラッチ装置の段数が減るほど、より多くの読み出し/書き込み回路320内のページバッファ322、324、326は、ビットラインBL0、BL1、BLm-1と交差する方向に配置されることができ、ビットラインと平行な縦方向にセンシング及びラッチ装置の段数が増加するほど、より少ない読み出し/書き込み回路320内のページバッファ322、324、326は、ビットラインBL0、BL1、BLm-1と並んだ方向に配置されることができる。
図4は、本発明の一実施形態に係るメモリ装置内のページバッファ領域の第1の構造を説明する。図4に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)は、16k Byteのセルに対応し、13mmの幅に12段で配置されることができる。ページバッファ(PB)毎に5個のラインが配置され得る。
図5は、本発明の一実施形態に係るメモリ装置内のページバッファ領域の第2の構造を説明する。図5に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)は、16k Byteのセルに対応し、13mmの幅に8段で配置されることができる。ページバッファ(PB)毎に3.5個のラインが配置され得る。
図4と図5に示すように、同じ大きさ(例、13mmの幅)に同じ数のセンシング及びラッチ装置を互いに異なる段数を基に配置させることができる。図4において説明した第1の構造では、ページバッファ(PB)上に5個のラインが配置されることに対し、図5において説明した第2の構造では、ページバッファ(PB)上に3.5個のラインが配置され得る。各ラインは、半導体装置の製造工程で電気回路の最小線間幅で実現されることができるので、第1の構造より第2の構造を有する読み出し/書き込み回路320の集積度をさらに高くすることができる。
図6は、本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第2の例を説明する。
図6に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)に対する制御信号XRST<0:7>が印加される配線を横方向に配置することができる。複数のページバッファ(PB)に対する制御信号XRST<0:7>は、ページバッファ(PB)の段別に分離されて印加される構造であって、ページバッファ(PB)の段別に制御信号により制御されることができる。8個の制御信号XRST<0:7>を図5において説明した8段で配置されたページバッファ(PB)に印加することができる。
図7は、本発明の一実施形態に係るメモリ装置内のページバッファ及び制御信号の第3の例を説明する。
図7に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)に対する制御信号XRST<0:7>が印加される配線を縦方向に配置することができる。複数のページバッファ(PB)に対する制御信号XRST<0:7>は、ページバッファ(PB)のゾーン(zone)別に分離されて印加される構造であって、各ゾーン(zone)に配置されたページバッファ(PB)のゾーン別に印加される制御信号により制御されることができる。8個の制御信号XRST<0:7>を図5において説明した8個のゾーンで配置されたページバッファ(PB)に印加することができる。
図6及び図7に示すように、複数のページバッファ(PB)に印加される複数の制御信号XRST<0:7>は、横(行)方向(ビットラインと交差する方向)あるいは縦(列)方向(ビットラインと並んだ方向)に配置された配線に沿って印加されることができる。
図8は、本発明の一実施形態に係るメモリ装置内のページバッファを説明する。図8は、オールビットライン構造(All BL Architecture)あるいはシールディドビットライン構造(Shielded BL Architecture)で使用されるページバッファ(PB)の内部構成を説明する。
図2及び図8に示すように、ページバッファ322は、ビットラインBL、BLCMとスイッチング素子を介して連結されることができる。スイッチング素子は、ページバッファ制御信号PB_SENSEにより制御されることができる。ページバッファ制御信号PB_SENSEによりスイッチング素子が点くと、ビットラインBL、BLCMとページバッファ322とが連結されることができる。ページバッファ制御信号PB_SENSEによりスイッチング素子が消えると、ビットラインBL、BLCMとページバッファ322とは、電気的に遮断されることができる。
実施形態によって、ページバッファ322は、メインレジスタ430、第1のサブレジスタ410、及び第2のサブレジスタ420を備える。メインレジスタ430、第1のサブレジスタ410、及び第2のサブレジスタ420の各々は、インバータラッチ(latch)を備え、制御信号TRANM、TRAND、TRANSによりセンシングノード(SO)と連結されることができる。メインレジスタ430に含まれたインバータラッチは、互いに相反した値に対応する電位が維持される2つのノードQS、QS_Nを含み、第1のサブレジスタ410に含まれたインバータラッチは、互いに相反した値に対応する電位が維持される2つのノードQM、QM_Nを含み、第2のサブレジスタ420に含まれたインバータラッチは、互いに相反した値に対応する電位が維持される2つのノードQD、QD_Nを含むことができる。また、メインレジスタ430、第1のサブレジスタ410、及び第2のサブレジスタ420の各々に含まれたインバータラッチ(latch)は、リセット信号MRST、DRST、SRSTにより格納値が初期化され得る。
ビットラインBLCMと連結されたページバッファ322は、プログラム動作、検証動作、あるいは読み出し動作のために制御されることができる。例えば、第1のサブレジスタ410は、サブ検証電圧を基準にプログラム検証動作を行った後、メモリセルの閾値電圧がサブ検証電圧より大きい場合、第1のサブレジスタ410に格納されたデータによって第1のプログラム動作時にビットラインBLCMにプログラム禁止電圧より小さい第1の正電圧を印加するように構成される。第2のサブレジスタ420は、第1のサブレジスタ410から送信されたデータによって第1のプログラム動作後の第2のプログラム動作時にビットラインBLCMに第1の正電圧より大きい第2の正電圧を印加するように構成される。
メインレジスタ430は、メモリセルの閾値電圧が目標検証電圧より小さい場合、ビットラインに第1または第2の正電圧が印加される前に格納されたデータによってビットラインBLCMをディスチャージするように構成される。メインレジスタ430は、メモリセルの閾値電圧が目標検証電圧以上である場合、ビットラインに第1または第2の正電圧が印加される前に格納されたデータによってビットラインBLCMにプログラム禁止電圧を印加するように構成されることができる。
実施形態によって、第2のサブレジスタ420がビットラインBLCMに第2の正電圧を印加するとき、第1のサブレジスタもビットラインBLCMに第1の正電圧を印加することができる。これを介して駆動力(drivability)を増加させてビットラインBLCMをプリチャージするのにかかる時間を減少させることができる。
図8において説明したページバッファPB、322は、サブレジスタ410、420が2個である場合を説明している。サブレジスタ410、420が2個である場合、ビットラインBLCMに互いに異なる2つの第1の正電圧と第2の正電圧を印加することができる。これを介してプログラム動作の際にステップ電圧を減少させたことと同じ効果を得ることができる。実施形態によって、ページバッファPB、322が3個のサブレジスタを含む場合、互いに異なる3つの正電圧をビットラインBLCMに印加することができる。
図9は、メモリ装置内のページバッファを制御する第1の動作方法を説明する。
図2及び図9に示すように、制御回路180は、ページバッファリセット信号PB_xRSTを読み出し/書き込み回路320に出力することができ、読み出し/書き込み回路320は、ページバッファリセット信号PB_xRSTを複数の制御信号XRST<0:7>に分配(split)することができる。読み出し/書き込み回路320は、ページバッファリセット信号PB_xRSTを複数の制御信号XRST<0:7>に分配することができる分配器(splitter)をさらに備えることができる。
実施形態によって、制御回路180が分割された複数の制御信号XRST<0:7>を読み出し/書き込み回路320に出力することもできる。
図9に示すように、複数のページバッファ(PB)に印加される複数の制御信号XRST<0:7>が順次活性化され得る。図6及び図7に示すように、複数のページバッファ(PB)の段別あるいはゾーン別に複数の制御信号XRST<0:7>が印加され得る。隣り合った段あるいは隣り合ったゾーンに印加される隣り合った制御信号(例、xRST<0>、xRST<1>)の活性化区間は、一部重なることができる。
図10は、第1の動作方法によりページバッファで発生する干渉を説明する。図5に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)のように1つのページバッファPB_i、PB_i+1に3.5ラインが配置され得る。
図10に示すように、第1及び第2の制御信号XRST<0>、XRST<1>が隣り合ったページバッファPB_i、PB_i+1に印加されれば、コンタクト(Contact)を介して各ページバッファPB_i、PB_i+1内に含まれたラッチのノードQM2、QM3に格納された値をリセットあるいは初期化することができる。ただし、第1の制御信号XRST<0>は、隣り合ったページバッファPB_i+1の他のラッチのノードQM_N3とは電気的に連結されなかったので、当該ラッチQM_N3には影響を与えないことが望ましい。しかし、メモリ装置150の集積度は極めて高く、隣り合った2つのページバッファPB_i、PB_i+1に含まれた隣り合ったラッチあるいは隣り合ったラッチに含まれたノードQM2、QM_N3が互いに影響を及ぼすことができる。すなわち、第1の制御信号XRST<0>により隣り合った2つのページバッファPB_i、PB_i+1に干渉(interference)が発生しうる。
第2の制御信号XRST<1>により他のページバッファPB_i+1内に含まれたラッチに含まれたノードQM3が初期化され得る。しかし、第1の制御信号XRST<0>によりページバッファPB_i+1内のセンシングノードSO3の電位に影響を及ぼすことができる。また、第1の制御信号XRST<0>と第2の制御信号XRST<1>との活性化区間が一部重なっている。第1の制御信号XRST<0>により隣り合ったページバッファPB_i+1に干渉が発生しうるし、第2の制御信号XRST<1>により隣り合ったページバッファPB_iに干渉が発生しうる。
図11は、第1の動作方法によって発生した干渉(interference)によるデータ歪みを説明する。
図10及び図11に示すように、活性化区間が一部重なった第1及び第2の制御信号XRST<0>、XRST<1>が隣り合ったページバッファPB_i、PB_i+1に印加される場合に発生する干渉(interference)を説明する。
第1の制御信号XRST<0>が活性化されれば、ページバッファPB_iに含まれたラッチのノードQM2の電位が論理ローレベル(例、グラウンド)に低くなることができる。ページバッファPB_iに含まれたラッチのノードQM2の電位が低くなりながら、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が論理ローレベル(例、グラウンド)に低くなることができる。隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が低くなりながら、隣り合ったページバッファPB_i+1に含まれたセンシングノードSO3の電位が論理ローレベル(例、グラウンド)に低くなることができる。
図11に示すように、第2の制御信号XRST<1>が活性化されれば、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位は、論理ハイレバル(例、電源電圧、点線表示)に上昇しなければならない。しかし、前述したように、センシングノードSO3の電位が論理ローレベル(例、グラウンド)に低くなりながら、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が上昇することを妨害することができる。これにより、隣り合ったページバッファPB_i+1に含まれたラッチは、第2の制御信号XRST<1>に対応して正常に初期化されないことがある。すなわち、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位は、論理ハイレバル(例、電源電圧、点線表示)に上昇できないことがある。図8に示すように、隣り合ったページバッファPB_i+1に含まれたラッチの他のノードQM3の電位も変わることができ、隣り合ったページバッファPB_i+1に含まれたラッチが初期化あるいはリセットされないことがある。
図12は、本発明の一実施形態に係るメモリ装置内のページバッファを制御する第2の動作方法を説明する。
図12に示すように、複数のページバッファ(PB)に印加される複数の制御信号XRST<0:7>は、隣接した制御信号の活性化区間が予め設定された時間の分だけ離間することができる。例えば、隣り合った絶縁パッドあるいは絶縁構造物(PAD、図10及び図13参照)間に配置された2つのページバッファPB_i、PB_i+1に印加される隣り合った制御信号XRST<0>、XRST<1>の活性化区間は、制御信号XRST<0>、XRST<1>の活性化区間の分だけ互いに離間することができる。さらに他の隣り合った制御信号xRST<2>、xRST<3>の活性化区間も制御信号xRST<2>、xRST<3>の活性化区間の分だけ互いに離間することができる。さらに他の隣り合った制御信号xRST<4>、xRST<5>の活性化区間も制御信号xRST<4>、xRST<5>の活性化区間の分だけ互いに離間することができる。さらに他の隣り合った制御信号xRST<6>、xRST<7>の活性化区間も制御信号xRST<6>、xRST<7>の活性化区間の分だけ互いに離間することができる。
図9と図12を比較すると、8個の制御信号XRST<0:7>の活性化区間の全体は実質的に同一である。したがって、8個の制御信号XRST<0:7>による複数のページバッファの動作マージンは、実質的に同一であることができ、メモリ装置150のデータ入出力速度を低下させないことができる。ただし、8個の制御信号XRST<0:7>のうち、隣り合った絶縁パッド間に配置された2つのページバッファPB_i、PB_i+1に印加される隣り合った制御信号XRST<0>、XRST<1>の活性化区間は、重ならずに互いに離間することができる。
図13は、本発明の一実施形態に係る第2の動作方法によりページバッファで干渉が防止されることを説明する。図5及び図10に示すように、読み出し/書き込み回路320内の複数のページバッファ(PB)のように1つのページバッファPB_i、PB_i+1に3.5ラインが配置され得る。
図13に示すように、第1及び第2の制御信号XRST<0>、XRST<1>が隣り合ったページバッファPB_i、PB_i+1に印加されれば、コンタクト(Contact)を介して各ページバッファPB_i、PB_i+1内に含まれたラッチのノードQM2、QM3に格納された値をリセットあるいは初期化することができる。ただし、第1の制御信号XRST<0>は、隣り合ったページバッファPB_i+1の他のラッチのノードQM_N3とは電気的に連結されなかったので、当該ラッチQM_N3には影響を与えないことが望ましい。しかし、メモリ装置150の集積度は極めて高く、隣り合った2つのページバッファPB_i、PB_i+1に含まれた隣り合ったラッチあるいは隣り合ったラッチに含まれたノードQM2、QM_N3が互いに影響を及ぼすことができる。すなわち、第1の制御信号XRST<0>により隣り合った2つのページバッファPB_i、PB_i+1に干渉(interference)が発生しうる。
図10において説明した実施形態とは異なり、図13において説明した実施形態では、第1の制御信号XRST<0>が活性化される間、第2の制御信号XRST<1>は活性化されない。第1の制御信号XRST<0>により隣り合ったページバッファPB_i+1に含まれたラッチに干渉による影響があっても、予め設定された時間が経った後、隣り合ったページバッファPB_i+1に印加される第2の制御信号XRST<1>により他のページバッファPB_i+1内に含まれたラッチに含まれたノードQM3が初期化され得る。第1の制御信号XRST<0>によりページバッファPB_i+1内のセンシングノードSO3の電位に干渉による影響があっても、予め設定された時間が経った後、第2の制御信号XRST<1>が活性化されるので、第2の制御信号XRST<1>による隣り合ったページバッファPB_iの初期化が正常になされることができる。
図13では、8個の制御信号XRST<0:7>の活性化区間が実質的に同一に説明されているが、実施形態によって8個の制御信号XRST<0:7>の活性化区間は、互いに異なるか、一部は同一であり、一部は相違することもできる。
図14は、本発明の一実施形態に係る第2の動作方法によって発生した干渉にもデータが歪まない過程を説明する。図13及び図14に示すように、活性化区間が予め設定された時間TG_Cの分だけ互いに離間した第1及び第2の制御信号XRST<0>、XRST<1>が隣り合ったページバッファPB_i、PB_i+1に印加される場合、干渉(interference)が発生してもデータの歪みを防止するためにラッチが正常に初期化される過程を説明する。
第1の制御信号XRST<0>が活性化されれば、ページバッファPB_iに含まれたラッチのノードQM2の電位が論理ローレベル(例、グラウンド)に低くなることができる。ページバッファPB_iに含まれたラッチのノードQM2の電位が低くなりながら、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が論理ローレベル(例、グラウンド)に低くなることができる。隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が低くなりながら、隣り合ったページバッファPB_i+1に含まれたセンシングノードSO3の電位が論理ローレベル(例、グラウンド)に低くなることができる。高集積のため、物理的にラッチが隣接して配置されて発生する干渉(interference)の生成を抑制し難いことがある。
しかし、第1の制御信号XRST<0>が活性化される間、第2の制御信号XRST<1>は活性化されない。図13に示すように、第1の制御信号XRST<0>の活性化区間と第2の制御信号XRST<1>の活性化区間とは、第1の制御信号XRST<0>の活性化区間あるいは第2の制御信号XRST<1>の活性化区間の分だけ互いに離間することができる。
図14に示すように、第1の制御信号XRST<0>が活性化されたときに発生した干渉のため、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位に変化が発生しうるが、予め設定された時間TG_Cが経った後、第2の制御信号XRST<1>が活性化され得る。第2の制御信号XRST<1>が活性化されれば、隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位は、論理ハイレバル(例、電源電圧)に上昇することができる。干渉のため、電位に変化が発生したとしても、第2の制御信号XRST<1>により隣り合ったページバッファPB_i+1に含まれたラッチのノードQM3_Nの電位が上昇することが妨害されないことができる。これにより、隣り合ったページバッファPB_i+1に含まれたラッチは、第2の制御信号XRST<1>に対応して正常に初期化されることができる。
一方、本発明の詳細な説明では、具体的な実施形態に関して説明したが、本発明の範囲から逸脱しない限度内で種々の変形が可能であることはもちろんである。したがって、本発明の範囲は、説明された実施形態に局限して決められてはならず、後述する特許請求の範囲だけでなく、この特許請求の範囲と均等なものなどにより決められなければならない。

Claims (20)

  1. データを格納する不揮発性メモリセルと連結される複数のページバッファが予め設定された方向に隣接して配置されたメモリ構造物と、
    前記複数のページバッファのうち、隣り合った2つのページバッファのリセット区間を少なくとも1回のリセット区間以上の分だけ互いに離間させる制御装置と、
    を含むメモリ装置。
  2. 前記メモリ構造物は、
    前記不揮発性メモリセルと前記ページバッファとを連結するビットラインと、
    前記ビットラインと前記ページバッファとの連結を制御するスイッチング回路と、
    を備える請求項1に記載のメモリ装置。
  3. 前記ページバッファは、
    前記スイッチング回路と連結されたセンシングノードと、
    前記センシングノードに連結された2つのラッチ(latch)と、
    を備える請求項2に記載のメモリ装置。
  4. 前記制御装置は、前記ページバッファ内の2つのラッチのうち、1つをリセットするための制御信号を送信する請求項3に記載のメモリ装置。
  5. 前記制御装置は、
    前記隣り合った2つのページバッファに印加される第1の制御信号及び第2の制御信号を出力して前記リセット区間を離間させ、
    前記第1の制御信号の第1の活性化区間と前記第2の制御信号の第2の活性化区間とは、少なくとも前記第1の活性化区間あるいは前記第2の活性化区間の分だけ互いに離間する請求項1に記載のメモリ装置。
  6. 前記第1の活性化区間及び前記第2の活性化区間の長さは、互いに同じである請求項5に記載のメモリ装置。
  7. 前記隣り合った2つのページバッファは、隣り合った2つの絶縁パッド間にパッチされる請求項5に記載のメモリ装置。
  8. 前記隣り合った2つの絶縁構造物間に位置したページバッファと前記隣り合った2つの絶縁構造物外側に位置したページバッファとの活性化区間は、一部重なる請求項7に記載のメモリ装置。
  9. 前記ページバッファは、平面的に前記メモリ装置を構成する電気回路の線の3.5個あるいは5個に対応する面積を占める請求項1に記載のメモリ装置。
  10. データを一時格納するラッチを備える複数のバッファが予め設定された方向に隣接して配置された構造物と、
    前記複数のバッファのうち、隣り合った2つのバッファのそれぞれの活性化区間を少なくとも1回の活性化区間以上の分だけ互いに離間させる制御装置と、
    を含む半導体装置。
  11. 前記2つのバッファの各々は、
    前記データが入出力されるセンシングノードと、
    前記センシングノードに連結された2つのラッチ(latch)と、
    を備える請求項10に記載の半導体装置。
  12. 前記制御装置は、前記2つのバッファ内の2つのラッチのうち、1つをリセットするための制御信号を送信する請求項11に記載の半導体装置。
  13. 前記制御装置は、
    前記2つのバッファに印加される第1の制御信号及び第2の制御信号を出力して前記活性化区間を離間させ、
    前記第1の制御信号の第1の活性化区間と前記第2の制御信号の第2の活性化区間とは、少なくとも前記第1の活性化区間あるいは前記第2の活性化区間の分だけ互いに離間する請求項10に記載の半導体装置。
  14. 前記第1の活性化区間及び前記第2の活性化区間の長さは、互いに同じである請求項13に記載の半導体装置。
  15. 前記2つのバッファは、隣り合った2つの絶縁構造物間にパッチされる請求項13に記載の半導体装置。
  16. 前記隣り合った2つの絶縁構造物間に位置したバッファと前記隣り合った2つの絶縁構造物外側に位置したバッファとの活性化区間は、一部重なる請求項15に記載の半導体装置。
  17. 前記2つのバッファの各々は、平面的に前記半導体装置を構成する電気回路の線の3.5個あるいは5個に対応する面積を占める請求項10に記載の半導体装置。
  18. 複数のページバッファのうち、互いに隣接して配置された2つのページバッファのうち、第1のページバッファに第1の活性化区間を有する第1の制御信号を提供するステップと、
    前記2つのページバッファのうち、第2のページバッファに第2の活性化区間を有する第2の制御信号を提供するステップと、
    を含み、
    前記第1の活性化区間と前記第2の活性化区間とは、前記第1の活性化区間あるいは前記第2の活性化区間の分だけ互いに離間するメモリ装置の制御方法。
  19. 前記第1のページバッファと前記第2のページバッファとは、隣り合った2つの絶縁構造物間に配置される請求項18に記載のメモリ装置の制御方法。
  20. 前記第1の活性化区間及び前記第2の活性化区間の長さは、互いに同じである請求項18に記載のメモリ装置の制御方法。
JP2022177087A 2021-11-23 2022-11-04 半導体装置内の信号干渉を減らすための装置及び方法 Pending JP2023076806A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210162035A KR20230075645A (ko) 2021-11-23 2021-11-23 반도체 장치 내 신호 간섭을 줄이기 위한 장치 및 방법
KR10-2021-0162035 2021-11-23

Publications (1)

Publication Number Publication Date
JP2023076806A true JP2023076806A (ja) 2023-06-02

Family

ID=86353210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022177087A Pending JP2023076806A (ja) 2021-11-23 2022-11-04 半導体装置内の信号干渉を減らすための装置及び方法

Country Status (4)

Country Link
US (1) US20230162806A1 (ja)
JP (1) JP2023076806A (ja)
KR (1) KR20230075645A (ja)
CN (1) CN116153371A (ja)

Also Published As

Publication number Publication date
KR20230075645A (ko) 2023-05-31
CN116153371A (zh) 2023-05-23
US20230162806A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US10963339B2 (en) Data storage device and operating method thereof
US20180158493A1 (en) Apparatus and method for controlling memory device
US20180068736A1 (en) Memory system and method for operating the memory system
KR102524432B1 (ko) 메모리 시스템 및 메모리 시스템의 동작방법
KR102530500B1 (ko) 메모리 시스템 및 그것의 동작 방법
US11551766B2 (en) Memory device and operating method thereof
CN110942795B (zh) 存储器***、其操作方法以及非易失性存储器装置
CN110197692B (zh) 存储器***及其操作方法
US20230333932A1 (en) Memory system and operating method thereof
JP2023025687A (ja) メモリ装置およびその動作方法
KR20230048753A (ko) 비휘발성 메모리 장치에 데이터를 프로그램하는 장치 및 방법
US11474740B2 (en) Memory system and memory controller
KR102665270B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20190102837A (ko) 메모리 시스템 및 메모리 시스템의 동작방법
US11848054B2 (en) Memory device determining precharge time based on a number of times that a program voltage is applied to word line and operating method of memory device
JP2023001880A (ja) コントローラ及びコントローラの動作方法
KR20240012787A (ko) 비휘발성 메모리 장치에 데이터를 프로그램하는 장치 및 방법
US11474726B2 (en) Memory system, memory controller, and operation method thereof
KR20230000724A (ko) 비휘발성 메모리 장치에 데이터를 프로그램하기 위한 장치 및 방법
US20210064292A1 (en) Memory system, memory controller, and operation method
JP2023076806A (ja) 半導体装置内の信号干渉を減らすための装置及び方法
CN112447234A (zh) 存储器控制器及其操作方法
US11404137B1 (en) Memory system and operating method of memory system
US20230006673A1 (en) Memory system and memory controller
US11275524B2 (en) Memory system, memory controller, and operation method of memory system