JP2022172822A - Wafer manufacturing method - Google Patents

Wafer manufacturing method Download PDF

Info

Publication number
JP2022172822A
JP2022172822A JP2021079071A JP2021079071A JP2022172822A JP 2022172822 A JP2022172822 A JP 2022172822A JP 2021079071 A JP2021079071 A JP 2021079071A JP 2021079071 A JP2021079071 A JP 2021079071A JP 2022172822 A JP2022172822 A JP 2022172822A
Authority
JP
Japan
Prior art keywords
wafer
holding means
resin
main surface
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021079071A
Other languages
Japanese (ja)
Inventor
稜 多賀
Ryo Taga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2021079071A priority Critical patent/JP2022172822A/en
Priority to KR1020237033963A priority patent/KR20240004284A/en
Priority to CN202280027176.9A priority patent/CN117157740A/en
Priority to PCT/JP2022/009025 priority patent/WO2022234714A1/en
Priority to TW111108284A priority patent/TW202243802A/en
Publication of JP2022172822A publication Critical patent/JP2022172822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/061Work supports, e.g. adjustable steadies axially supporting turning workpieces, e.g. magnetically, pneumatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

To provide a wafer manufacturing method capable of manufacturing a wafer with good warp and nano-topography.SOLUTION: A wafer manufacturing method, comprising: bringing a first principal surface of a wafer into contact with a resin by pressing the wafer with holding means; pushing out the resin on the first principal surface of the wafer in a state in which a second principal surface of the wafer held by the holding means is released by injecting air between the holding means and the second principal surface from the holding means while pushing out the resin on the first principal surface of the wafer; separating the wafer and the holding means while injecting air; obtaining a composite including a planarizing resin layer by curing the resin after separating the wafer and the holding means; grinding or polishing a second principal surface of the wafer while sucking and holding the composite with the planarizing resin layer as a reference surface; and grinding or polishing the first principal surface of the wafer while sucking and holding the second principal surface of the wafer.SELECTED DRAWING: Figure 1

Description

本発明は、ウェーハの製造方法に関する。特に、本発明は、反りおよびナノトポグラフィが良好なウェーハを製造する被覆形成方法および平面研削技術に関する。 The present invention relates to a wafer manufacturing method. In particular, the present invention relates to coating formation methods and surface grinding techniques that produce wafers with good warpage and nanotopography.

基板ウェーハには、反りが小さくて良好であり、特にWarpが小さくて良好であり、かつナノトポグラフィ(以下NT)と呼ばれる短い波長のうねりが小さくて良好であることも求められる。後者を達成するための技術として、ウェーハの片面に樹脂を被覆して研削する加工方法(例えば特許文献1~4)がある。 Substrate wafers are also required to have small and favorable warpage, particularly small and favorable warp, and small and favorable short-wavelength undulations called nanotopography (hereinafter referred to as NT). As a technique for achieving the latter, there is a processing method in which one side of a wafer is coated with a resin and ground (for example, Patent Documents 1 to 4).

例えば、特許文献2には、保持手段によって吸引保持されたウェーハの一方の面に液状樹脂を押し広げて液状樹脂の膜を形成した後、保持手段の吸引面から下方にエアーを噴出して、このエアーの噴出圧力でウェーハを吸引面から押し下げ、ウェーハを保持手段から確実に離脱させることが記載されている。 For example, in Patent Document 2, after a liquid resin is spread on one surface of a wafer sucked and held by a holding means to form a liquid resin film, air is jetted downward from the suction surface of the holding means, It is described that the wafer is pushed down from the suction surface by the jet pressure of this air, and the wafer is reliably separated from the holding means.

また、特許文献5には、樹脂の被覆を行う前のセットアップ時に、吸引口から気体を噴出しながら押圧部とステージとの間の距離を変化させた際の圧力変化を記憶することが開示されている。 Further, Patent Document 5 discloses storing the pressure change when changing the distance between the pressing portion and the stage while blowing gas from the suction port during setup before coating with resin. ing.

特開2009-148866号公報JP 2009-148866 A 特開2020-92161号公報Japanese Patent Application Laid-Open No. 2020-92161 特開2007-134371号公報JP 2007-134371 A 特開2010-155298号公報JP 2010-155298 A 特許第5670208号明細書Patent No. 5670208 specification

上記特許文献1に記載された方法では、樹脂押圧時の保持手段(定盤)形状が樹脂厚み分布に転写され、加工後のウェーハ形状(反り)に影響を及ぼすことがあった。従来技術として、特許文献2には、樹脂押圧後(ウェーハを保持手段である上定盤から離反させた後)に音波を供給することで、ウェーハの変形要素を復元させる方法が開示されているが、樹脂押圧中に保持手段形状の転写を抑制する技術はなかった。 In the method described in Patent Literature 1, the shape of the holding means (surface plate) when pressing the resin is transferred to the resin thickness distribution, which may affect the wafer shape (warp) after processing. As a conventional technique, Patent Document 2 discloses a method of restoring the deformation element of a wafer by supplying sound waves after resin pressing (after the wafer is separated from an upper surface plate that is a holding means). However, there has been no technique for suppressing the transfer of the shape of the holding means during pressing of the resin.

本発明は、上記問題を解決するためになされたものであり、Warpが良好でありかつナノトポグラフィが良好なウェーハを製造できるウェーハの製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a wafer manufacturing method capable of manufacturing a wafer having good warp and good nanotopography.

上記課題を解決するために、本発明では、ウェーハの製造方法であって、
第一主面及び前記第一主面とは反対側の第二主面を有するウェーハを準備することと、
前記ウェーハの前記第二主面を保持手段によって保持することと、
前記ウェーハの前記第一主面と向き合うように、可塑状態の樹脂を配置することと、
前記保持手段により前記ウェーハを押圧して、前記ウェーハの前記第一主面を前記樹脂に接触させることと、
前記ウェーハの前記第一主面上に前記樹脂を押し広げながら、前記保持手段から該保持手段と前記第二主面との間にエアー噴射を行うことで、前記ウェーハの前記第二主面の前記保持手段による保持を開放した状態で、前記ウェーハの前記第一主面上に前記樹脂を押し広げることと、
前記エアー噴射を行いながら前記ウェーハと前記保持手段との間に隙間を形成して、前記ウェーハと前記保持手段とを離間させることと、
前記ウェーハと前記保持手段との前記離間後、前記樹脂を硬化させて平坦化樹脂層とし、前記ウェーハと前記ウェーハの前記第一主面に接する前記平坦化樹脂層とを含む複合体を得ることと、
前記平坦化樹脂層を基準面として前記複合体を吸着保持し、その状態で前記ウェーハの前記第二主面を研削または研磨することと、
前記ウェーハから前記平坦化樹脂層を除去することと、
前記ウェーハの前記第二主面を吸着保持し、その状態で前記ウェーハの前記第一主面を研削または研磨することを含むことを特徴とするウェーハの製造方法を提供する。
In order to solve the above problems, the present invention provides a method for manufacturing a wafer, comprising:
providing a wafer having a first major surface and a second major surface opposite the first major surface;
holding the second major surface of the wafer by holding means;
disposing a resin in a plastic state so as to face the first main surface of the wafer;
pressing the wafer by the holding means to bring the first main surface of the wafer into contact with the resin;
While spreading the resin over the first main surface of the wafer, air is jetted from the holding means between the holding means and the second main surface, whereby the second main surface of the wafer is spreading the resin over the first main surface of the wafer in a state in which the holding by the holding means is released;
forming a gap between the wafer and the holding means while performing the air injection to separate the wafer and the holding means;
After the separation between the wafer and the holding means, the resin is cured to form a flattened resin layer to obtain a composite including the wafer and the flattened resin layer in contact with the first main surface of the wafer. When,
sucking and holding the composite with the planarizing resin layer as a reference surface, and grinding or polishing the second main surface of the wafer in that state;
removing the planarizing resin layer from the wafer;
There is provided a method for manufacturing a wafer, comprising holding the second main surface of the wafer by suction, and grinding or polishing the first main surface of the wafer in that state.

本発明のウェーハの製造方法によれば、エアー噴射を行いながらウェーハの第二主面の保持手段による保持を開放した状態でウェーハの第一主面上に樹脂を押し広げ、エアー噴射を行いながらウェーハと保持手段とを離間させ、この離間後に樹脂を硬化させることにより、保持手段の形状がウェーハに転写されることを抑制でき、その結果、Warpが良好でありかつナノトポグラフィが良好なウェーハを製造できる。 According to the wafer manufacturing method of the present invention, the resin is spread over the first main surface of the wafer in a state in which the second main surface of the wafer is released from the holding means while air is being injected, and the resin is spread while air is being injected. By separating the wafer and the holding means and curing the resin after this separation, it is possible to suppress the transfer of the shape of the holding means to the wafer, and as a result, a wafer with good warp and good nanotopography can be obtained. can be manufactured.

前記ウェーハと前記保持手段との前記離間において、前記保持手段の高さを変えず待機することで、前記樹脂の流動によって前記ウェーハと前記保持手段との間に前記隙間を形成し、前記隙間の形成を前記保持手段に加わった荷重値から把握してもよい。 By standing by without changing the height of the holding means at the separation between the wafer and the holding means, the gap is formed between the wafer and the holding means by the flow of the resin, and the gap is closed. Formation may be determined from the load values applied to the retaining means.

例えば、エアー噴射をしながら保持手段の高さを変えずに待機することによって、ウェーハと保持手段との離間を行うことができる。 For example, the wafer can be separated from the holding means by waiting without changing the height of the holding means while blowing air.

或いは、前記ウェーハと前記保持手段との前記離間において、前記保持手段の退避によって前記ウェーハと前記保持手段との間の前記隙間を形成してもよい。 Alternatively, in the separation between the wafer and the holding means, the gap between the wafer and the holding means may be formed by retracting the holding means.

このように、保持手段をウェーハに対して退避させることによって、ウェーハと保持手段との離間を行ってもよい。このようにすることで、比較的短時間で、ウェーハと保持手段との間の隙間を十分に確保することができる。 In this way, the wafer and the holding means may be separated by retracting the holding means with respect to the wafer. By doing so, it is possible to secure a sufficient gap between the wafer and the holding means in a relatively short period of time.

以上のように、本発明のウェーハの製造方法であれば、保持手段の形状がウェーハに転写されることを抑制でき、その結果、Warpが小さくて良好でありかつナノトポグラフィが小さくて良好なウェーハを製造できる。 As described above, according to the wafer manufacturing method of the present invention, it is possible to suppress the transfer of the shape of the holding means to the wafer, and as a result, the warp is small and favorable, and the nanotopography is small and favorable. can be manufactured.

本発明のウェーハの製造方法の一例を示す概略フロー図である。1 is a schematic flow chart showing an example of a method for manufacturing a wafer according to the present invention; FIG. 本発明のウェーハの製造方法の他の一例を示す概略フロー図である。FIG. 3 is a schematic flow chart showing another example of the wafer manufacturing method of the present invention. 従来のウェーハの製造方法一例を示す概略フロー図である。It is a schematic flow diagram showing an example of a conventional wafer manufacturing method.

上述のように、Warpが良好でありかつナノトポグラフィが良好なウェーハを製造できるウェーハの製造方法の開発が求められていた。 As described above, there has been a demand for the development of a wafer manufacturing method capable of manufacturing wafers with good warp and good nanotopography.

本発明者は、上記課題について鋭意検討を重ねた結果、エアー噴射を行いながらウェーハの第二主面の保持手段による保持を開放した状態でウェーハの第一主面上に樹脂を押し広げ、エアー噴射を行いながらウェーハと保持手段とを離間させ、この離間後に樹脂を硬化させることにより、保持手段の形状がウェーハに転写されることを抑制でき、その結果、Warpが良好でありかつナノトポグラフィが良好なウェーハを製造できることを見出し、本発明を完成させた。 As a result of intensive studies on the above problems, the inventors of the present invention spread the resin over the first main surface of the wafer in a state in which the holding means of the second main surface of the wafer is released while injecting air. By separating the wafer and the holding means while spraying, and curing the resin after this separation, it is possible to suppress the shape of the holding means from being transferred to the wafer. The inventors have found that good wafers can be produced, and completed the present invention.

即ち、本発明は、ウェーハの製造方法であって、
第一主面及び前記第一主面とは反対側の第二主面を有するウェーハを準備することと、
前記ウェーハの前記第二主面を保持手段によって保持することと、
前記ウェーハの前記第一主面と向き合うように、可塑状態の樹脂を配置することと、
前記保持手段により前記ウェーハを押圧して、前記ウェーハの前記第一主面を前記樹脂に接触させることと、
前記ウェーハの前記第一主面上に前記樹脂を押し広げながら、前記保持手段から該保持手段と前記第二主面との間にエアー噴射を行うことで、前記ウェーハの前記第二主面の前記保持手段による保持を開放した状態で、前記ウェーハの前記第一主面上に前記樹脂を押し広げることと、
前記エアー噴射を行いながら前記ウェーハと前記保持手段との間に隙間を形成して、前記ウェーハと前記保持手段とを離間させることと、
前記ウェーハと前記保持手段との前記離間後、前記樹脂を硬化させて平坦化樹脂層とし、前記ウェーハと前記ウェーハの前記第一主面に接する前記平坦化樹脂層とを含む複合体を得ることと、
前記平坦化樹脂層を基準面として前記複合体を吸着保持し、その状態で前記ウェーハの前記第二主面を研削または研磨することと、
前記ウェーハから前記平坦化樹脂層を除去することと、
前記ウェーハの前記第二主面を吸着保持し、その状態で前記ウェーハの前記第一主面を研削または研磨することを含むことを特徴とするウェーハの製造方法である。
That is, the present invention is a method for manufacturing a wafer,
providing a wafer having a first major surface and a second major surface opposite the first major surface;
holding the second major surface of the wafer by holding means;
disposing a resin in a plastic state so as to face the first main surface of the wafer;
pressing the wafer by the holding means to bring the first main surface of the wafer into contact with the resin;
While spreading the resin over the first main surface of the wafer, air is jetted from the holding means between the holding means and the second main surface, whereby the second main surface of the wafer is spreading the resin over the first main surface of the wafer in a state in which the holding by the holding means is released;
forming a gap between the wafer and the holding means while performing the air injection to separate the wafer and the holding means;
After the separation between the wafer and the holding means, the resin is cured to form a flattened resin layer to obtain a composite including the wafer and the flattened resin layer in contact with the first main surface of the wafer. When,
sucking and holding the composite with the planarizing resin layer as a reference surface, and grinding or polishing the second main surface of the wafer in that state;
removing the planarizing resin layer from the wafer;
The method of manufacturing a wafer includes holding the second main surface of the wafer by suction, and grinding or polishing the first main surface of the wafer in that state.

一方で、特許文献1~5は、保持手段からエアー噴射を行いながらウェーハ上に樹脂を押し広げ、ウェーハと保持手段とを離間させることは記載も示唆もしていない。 On the other hand, Patent Literatures 1 to 5 neither describe nor suggest that the resin is spread over the wafer while air is jetted from the holding means to separate the wafer and the holding means.

以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。なお、図面においては、説明のために、研削前のウェーハの凹凸や、保持手段の反り等を誇張して示しているが、本発明のウェーハの製造方法において、研削前のウェーハの凹凸や保持手段の反りは、図示したほど大きいものに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the drawings, for the sake of explanation, the unevenness of the wafer before grinding and the warp of the holding means are exaggerated. The warpage of the means is not limited to the magnitude shown.

図1及び2は、それぞれ、本発明のウェーハの製造方法の例を示す概略フロー図である。図2の例は、図2(E)及び図2(F)の工程が図1(E)及び図1(F)と異なる以外、図1の例と同じである。以下では、図1の例を代表として説明し、図2の例については、図2(E)及び図2(F)の工程のみを説明する。 1 and 2 are schematic flow charts showing examples of the wafer manufacturing method of the present invention, respectively. The example of FIG. 2 is the same as the example of FIG. 1 except that the steps of FIGS. 2E and 2F are different from those of FIGS. 1E and 1F. In the following, the example of FIG. 1 will be described as a representative, and only the steps of FIGS. 2(E) and 2(F) will be described for the example of FIG.

まず、図1(A)に示すように、第一主面1A及びこの第一主面1Aとは反対側の第二主面1Bを有するウェーハ1を準備する。準備するウェーハ1は特に限定されない。 First, as shown in FIG. 1A, a wafer 1 having a first principal surface 1A and a second principal surface 1B opposite to the first principal surface 1A is prepared. The wafer 1 to be prepared is not particularly limited.

次に、図1(B)に示すように、ウェーハ1の第二主面1Bを保持手段2によって保持する。この例では、ウェーハ1の第二主面1Bを保持手段としての上定盤2に真空吸着させて、保持する。上定盤2を上下に貫く貫通孔2aを通して真空吸引することにより、上定盤2がウェーハ1を真空吸着することができる。 Next, as shown in FIG. 1B, the second main surface 1B of the wafer 1 is held by the holding means 2. Next, as shown in FIG. In this example, the second main surface 1B of the wafer 1 is vacuum-sucked and held by the upper surface plate 2 as holding means. The upper surface plate 2 can vacuum-suck the wafer 1 by applying vacuum suction through the through holes 2a vertically penetrating the upper surface plate 2. As shown in FIG.

一方で、図1(B)に示すように、ウェーハ1の第一主面1Aと向き合うように、可塑状態の樹脂5を配置する。この例では、平坦な面を有するガラス定盤3(下定盤)の上に光透過性フィルム4を敷き、その上に可塑状態、例えば液状の樹脂5を供給する。樹脂5は、硬化できるものであれば、特に限定されない。 On the other hand, as shown in FIG. 1(B), a resin 5 in a plastic state is arranged so as to face the first main surface 1A of the wafer 1 . In this example, a light-transmitting film 4 is laid on a glass surface plate 3 (lower surface plate) having a flat surface, and a resin 5 in a plastic state, for example a liquid state, is supplied thereon. The resin 5 is not particularly limited as long as it can be cured.

次に、図1(C)に示すように、保持手段2によりウェーハ1を押圧して、ウェーハ1の第一主面1Aを樹脂5に接触させる。この例では、保持手段としての上定盤2を降下させて上定盤2に吸着保持したウェーハ1を樹脂5に上から押し付けていき、ウェーハ1の第一主面1Aを樹脂5に接触させる。 Next, as shown in FIG. 1(C), the wafer 1 is pressed by the holding means 2 to bring the first main surface 1A of the wafer 1 into contact with the resin 5. Next, as shown in FIG. In this example, the upper surface plate 2 as a holding means is lowered, and the wafer 1 adsorbed and held on the upper surface plate 2 is pressed against the resin 5 from above so that the first main surface 1A of the wafer 1 is brought into contact with the resin 5. .

樹脂5とウェーハ1とが接触した後に、エアー噴射を開始する。この例では、図1(D)に示すように、樹脂5とウェーハ1の第1主面1Aとが接触するポイント(上定盤2に加わる荷重が設定荷重(A)を上回った位置)で、上定盤2から上定盤2とウェーハ1の第二主面1Bとの間へのエアー噴射を開始する。エアーの噴射は、例えば、上定盤2の貫通孔2aを通して行うことができる。 After the resin 5 and the wafer 1 are brought into contact with each other, air injection is started. In this example, as shown in FIG. 1(D), at the point where the resin 5 and the first main surface 1A of the wafer 1 contact (the position where the load applied to the upper surface plate 2 exceeds the set load (A)) , air injection from the upper surface plate 2 to the space between the upper surface plate 2 and the second main surface 1B of the wafer 1 is started. The air can be injected through the through holes 2a of the upper surface plate 2, for example.

続いて、エアー噴射を継続させながら、樹脂5が十分に広がるまで上定盤2を降下させる。すなわち、ウェーハ1の第一主面1A上に樹脂5を押し広げながらエアー噴射を行う。それにより、本発明では、ウェーハ1の第二主面1Bの保持手段2による保持を開放した状態で、ウェーハ1の第一主面1上に樹脂5を押し広げる。 Subsequently, the upper surface plate 2 is lowered until the resin 5 spreads sufficiently while continuing the air injection. That is, the air is jetted while spreading the resin 5 over the first main surface 1A of the wafer 1 . Accordingly, in the present invention, the resin 5 is spread over the first main surface 1 of the wafer 1 while the second main surface 1B of the wafer 1 is released from the holding means 2 .

エアー噴射を行っている間、ウェーハ1の第二主面1Bの一部が上定盤2に接触(例えば点接触)しても良いが、ウェーハ1の第二主面1Bの保持手段2による保持が開放された状態を保つ。 Part of the second main surface 1B of the wafer 1 may come into contact with the upper surface plate 2 (for example, point contact) while the air is being sprayed. Keep hold open.

このようにエアー噴射しながら樹脂5を上から押圧することで、上定盤2とウェーハ1の第2主面1Bとの間にエアークッション層が形成され、それにより、上定盤2の形状がウェーハ1に転写されるのを抑制することができる。 By pressing the resin 5 from above while injecting air in this way, an air cushion layer is formed between the upper surface plate 2 and the second main surface 1B of the wafer 1, whereby the shape of the upper surface plate 2 is formed. can be suppressed from being transferred to the wafer 1.

次いで、設定した停止荷重(B)で上定盤2の降下を停止する。この例では、保持手段である上定盤2の高さを変えずに待機する。この間もエアー噴射は継続する。それにより、樹脂5が自然に広がっていき、図1(E)に示すように、ウェーハ1と上定盤2との間に隙間2bが形成される。これにより、ウェーハ1と上定盤2とを離間させる。 Next, the lowering of the upper surface plate 2 is stopped by the set stopping load (B). In this example, it waits without changing the height of the upper platen 2 which is the holding means. During this time, the air injection continues. As a result, the resin 5 spreads naturally, and a gap 2b is formed between the wafer 1 and the upper surface plate 2 as shown in FIG. 1(E). Thereby, the wafer 1 and the upper surface plate 2 are separated.

続いて、図1(E)のように、樹脂5が自然に広がり、上定盤2とウェーハ1との間隔が十分に確保されたタイミングで、エアー噴射を停止する。例えば、上定盤2に加わった荷重値を把握し、設定荷重(C)まで荷重が低下したら、エアー噴射を停止する。 Subsequently, as shown in FIG. 1(E), the injection of air is stopped at the timing when the resin 5 spreads naturally and the space between the upper surface plate 2 and the wafer 1 is sufficiently secured. For example, the load value applied to the upper surface plate 2 is grasped, and when the load is reduced to the set load (C), the air injection is stopped.

または、図2(E)に示すように、設定した停止荷重(B)を検出後、エアー噴射を継続させながら上定盤2を退避させ(上方向に移動させ)、上定盤2とウェーハ1との間隔が十分に確保されたら、エアー噴射を停止することによって、上定盤2とウェーハ1とを離間させ、これらの間に隙間2bを形成してもよい。 Alternatively, as shown in FIG. 2(E), after the set stopping load (B) is detected, the upper surface plate 2 is retracted (moved upward) while continuing the air injection, and the upper surface plate 2 and the wafer 1, the air injection is stopped to separate the upper surface plate 2 and the wafer 1, and a gap 2b may be formed therebetween.

ウェーハ1と上定盤2との隙間を十分に確保した状態でエアー噴射を停止することにより、ウェーハ1や樹脂5の弾性によって再度ウェーハ1と上定盤2とが接触するのを防ぐことができる。この結果、上定盤2の形状がウェーハ1を通して樹脂厚みに転写されてしまうのをより確実に防ぐことができる。 By stopping the air injection while a sufficient gap is secured between the wafer 1 and the upper surface plate 2, it is possible to prevent the wafer 1 and the upper surface plate 2 from contacting each other again due to the elasticity of the wafer 1 and the resin 5. can. As a result, it is possible to more reliably prevent the shape of the upper surface plate 2 from being transferred to the thickness of the resin through the wafer 1 .

次に、ウェーハ1と上定盤2との離間後、図1(F)に示すように、樹脂5を硬化させて平坦化樹脂層6とし、ウェーハ1とウェーハ1の第一主面1Aに接する平坦化樹脂層6とを含む複合体10を得る。 Next, after separating the wafer 1 and the upper surface plate 2, as shown in FIG. A composite 10 including the contacting planarizing resin layer 6 is obtained.

この例では、下定盤3がガラス定盤であるため、下定盤3の下方から紫外線を照射することにより、紫外線が下定盤3及び光透過性フィルム4を透過して、樹脂5に当たり、樹脂5を硬化させることができる。なお、樹脂5の硬化手段は紫外線照射に限らず、樹脂5の種類に応じて適宜変更できる。例えば樹脂5が熱硬化性樹脂である場合には、熱などの外部刺激によって硬化を行うこともできる。 In this example, since the lower surface plate 3 is a glass surface plate, ultraviolet rays are irradiated from below the lower surface plate 3, and the ultraviolet rays pass through the lower surface plate 3 and the light-transmitting film 4, hit the resin 5, and reach the resin 5. can be cured. Incidentally, the means for curing the resin 5 is not limited to ultraviolet irradiation, and can be appropriately changed according to the type of the resin 5 . For example, if the resin 5 is a thermosetting resin, it can be cured by an external stimulus such as heat.

図2に示す例においても、図2(E)のようにウェーハ1と上定盤2との離間後、図2(F)に示す状態で樹脂5を硬化させて平坦化樹脂層6とする。 In the example shown in FIG. 2 as well, after the wafer 1 and the upper surface plate 2 are separated as shown in FIG. 2(E), the resin 5 is cured in the state shown in FIG. .

次に、図1(G)に示すように、平坦化樹脂層6を基準面として複合体10を例えば研削ステージ20に移載して、複合体10を吸着保持する。研削ステージ20は、例えば多孔質セラミック製であり、真空吸着して複合体10を保持することができる。 Next, as shown in FIG. 1G, the composite 10 is transferred to, for example, a grinding stage 20 using the planarizing resin layer 6 as a reference surface, and the composite 10 is held by suction. The grinding stage 20 is made of porous ceramic, for example, and can hold the composite 10 by vacuum adsorption.

次いで、図1(H)に示すように、研削ステージ20により吸着保持した状態でウェーハ1の第二主面1Bを研削または研磨する。この例では、研削ホイール30を用いてウェーハ1の第二主面1Bを研削(第1研削)し、研削した第二主面1Cを得る。例えば、研削後のTTVが1μm以下となるように研削する。 Next, as shown in FIG. 1(H), the second main surface 1B of the wafer 1 is ground or polished while being sucked and held by the grinding stage 20 . In this example, the grinding wheel 30 is used to grind (first grind) the second main surface 1B of the wafer 1 to obtain the ground second main surface 1C. For example, the grinding is performed so that the TTV after grinding is 1 μm or less.

次いで、図1(I)に示すように、ウェーハ1から平坦化樹脂層6を除去する。この例では、光透過性フィルム4も同時に除去される。 Next, as shown in FIG. 1(I), the planarizing resin layer 6 is removed from the wafer 1 . In this example, the light transmissive film 4 is also removed at the same time.

次いで、図1(J)に示すように、ウェーハ1を反転させて、ウェーハ1の研削した第二主面1Cを研削ステージ20により吸着保持し、その状態でウェーハ1の第一主面1Aを研削または研磨する。この例では、研削ホイール30を用いてウェーハ1の第一主面1Aを研削し、研削した第一主面1Dを得る。 Next, as shown in FIG. 1(J), the wafer 1 is turned over, and the ground second main surface 1C of the wafer 1 is held by suction on the grinding stage 20. In this state, the first main surface 1A of the wafer 1 is held. Grind or polish. In this example, the grinding wheel 30 is used to grind the first main surface 1A of the wafer 1 to obtain the ground first main surface 1D.

このようにして得られたウェーハ1は、図1(K)に示すように、研削した第1主面1D及び第2主面1Cを有する。このウェーハ1は、エアー噴射を行いながらウェーハ1の第二主面1Bの保持手段(上定盤)2による保持を開放した状態でウェーハ1の第一主面1A上に樹脂5を押し広げ、エアー噴射を行いながらウェーハ1と保持手段2とを離間させ、この離間後に樹脂5を硬化させることにより、保持手段(上定盤)2の形状がウェーハ1に転写されるのを防ぐことができる。つまり、Warp(反り)が小さくて良好なウェーハを製造することができる。また、平坦化樹脂層6がウェーハ1の第一主面1A上に接して形成されている状態で第二主面1Bを研削し、次いでウェーハ1を反転させ第一主面1Aを研削することにより、ナノトポグラフィを目標値未満にして良好にすることができる。 The wafer 1 thus obtained has a ground first main surface 1D and a ground second main surface 1C, as shown in FIG. 1(K). This wafer 1 spreads the resin 5 over the first main surface 1A of the wafer 1 in a state in which the second main surface 1B of the wafer 1 is released from the holding means (upper surface plate) 2 while air is injected, The shape of the holding means (upper surface plate) 2 can be prevented from being transferred to the wafer 1 by separating the wafer 1 and the holding means 2 while blowing air, and curing the resin 5 after this separation. . That is, it is possible to manufacture good wafers with small warp. Alternatively, the second main surface 1B is ground while the planarizing resin layer 6 is formed in contact with the first main surface 1A of the wafer 1, and then the wafer 1 is turned over to grind the first main surface 1A. , the nanotopography can be well below target.

一方、従来例のウェーハの製造方法では、例えば図3を参照しながら以下に説明するように、Warpが小さくて良好なウェーハを製造することはできない。 On the other hand, in the conventional wafer manufacturing method, it is not possible to manufacture good wafers with a small warp, as will be described below with reference to FIG. 3, for example.

図3に概略フロー図を示す従来例のウェーハの製造方法は、主に、図3(D)が図1(D)及び図2(D)に例として示す本発明のウェーハの製造方法と異なる。すなわち、図3に示す従来の方法では、樹脂5とウェーハ1とが接触した後も、エアー噴射を行わず、保持手段(上定盤)2によるウェーハ1の第二主面1Bの保持を維持した状態で、ウェーハ1の第一主面1A上に樹脂5を押し広げ続ける。その結果、図3(E)に示したように、上定盤2による保持を開放した後、上定盤2の形状が転写されたウェーハ1が得られる。その結果、第二主面1B及び第一主面1Aの研削後に得られるウェーハ1は、図3(K)に示すように、Warpが大きいものとなってしまう。 The conventional wafer manufacturing method shown in a schematic flow diagram in FIG. 3 is mainly different from the wafer manufacturing method of the present invention shown in FIG. 3(D) as an example in FIGS. . That is, in the conventional method shown in FIG. 3, even after the resin 5 and the wafer 1 come into contact with each other, the second main surface 1B of the wafer 1 is held by the holding means (upper surface plate) 2 without air injection. In this state, the resin 5 continues to spread over the first main surface 1A of the wafer 1. As shown in FIG. As a result, as shown in FIG. 3(E), after releasing the holding by the upper surface plate 2, the wafer 1 having the shape of the upper surface plate 2 transferred thereon is obtained. As a result, the wafer 1 obtained after grinding the second main surface 1B and the first main surface 1A has a large warp as shown in FIG. 3(K).

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below using Examples and Comparative Examples, but the present invention is not limited to these.

[実験内容]
(ウェーハ上への平坦化樹脂層の形成)
<実施例1-1~1-4>
実施例1-1~1-4では、図1(A)~図1(F)と同様のフローに従い、以下の条件で、ウェーハとウェーハの第一主面に接する平坦化樹脂層とを含む複合体を作製した。
[Experiment contents]
(Formation of planarizing resin layer on wafer)
<Examples 1-1 to 1-4>
In Examples 1-1 to 1-4, according to the same flow as in FIGS. 1(A) to 1(F), under the following conditions, the wafer and the planarizing resin layer in contact with the first main surface of the wafer are included. A composite was produced.

◇被覆物(平坦化樹脂層)形成条件
・ウェーハとしては、直径300mmのP型Si単結晶ウェーハを用いた。
・樹脂としてUV硬化性樹脂、光透過性フィルムとしてPETフィルムを用いた。
・平坦なガラス定盤(下定盤)にPETフィルムを敷き、そのPETフィルム上にUV硬化性樹脂を10ml滴下した。
・ウェーハの第二主面をセラミック定盤(上定盤)に吸着保持し、上記樹脂に向かって下降していくことで、樹脂を押圧した。
◇Covering (flattening resin layer) forming conditions ・As a wafer, a P-type Si single crystal wafer with a diameter of 300 mm was used.
- A UV curable resin was used as the resin, and a PET film was used as the light transmissive film.
- A flat glass surface plate (lower surface plate) was covered with a PET film, and 10 ml of a UV curable resin was dropped onto the PET film.
- The resin was pressed by holding the second main surface of the wafer by suction on a ceramic surface plate (upper surface plate) and descending toward the resin.

・押圧制御では、上定盤を保持するサーボモータで駆動させ、所定荷重(A)100Nを検出したタイミングで真空吸着を停止し、エアー噴射を開始した。
・エアー噴射を継続しながら上定盤を降下させ、停止荷重(B)2000Nで上定盤の降下を停止させた。これにより、ウェーハの第二主面の上定盤による保持を開放した状態で、ウェーハの第一主面上に樹脂を押し広げた。
・エアー噴射したたま待機することで樹脂が自然に広がり、上定盤に加わる荷重が減少した。これにより、ウェーハと上定盤との間に隙間を形成し、ウェーハと上定盤とを離間させた。
・上定盤に加わる荷重が設定荷重(C)まで減少した後、エアー噴射を停止した。
・紫外線を照射し、樹脂を硬化させて、平坦化樹脂層とした。(紫外線照射時はウェーハと上定盤との間に隙間あり)
・ここで、エアー噴射停止までのウェーハと上定盤間との隙間による転写の影響を考慮して、設定荷重(C)は1500N(実施例1-1)、1000N(実施例1-2)、500N(実施例1-3)、100N(実施例1-4)とした4例を実施した。
・樹脂硬化用の光源としては波長365nmのUV-LEDを用いた。
・In pressure control, the servo motor that holds the upper surface plate is driven, and at the timing when a predetermined load (A) of 100 N is detected, vacuum suction is stopped and air injection is started.
- The upper surface plate was lowered while air injection was continued, and the lowering of the upper surface plate was stopped with a stop load (B) of 2000N. As a result, the resin was spread over the first main surface of the wafer while the second main surface of the wafer was released from being held by the upper surface plate.
・By waiting for air injection, the resin spreads naturally and the load applied to the upper surface plate is reduced. As a result, a gap was formed between the wafer and the upper surface plate to separate the wafer and the upper surface plate.
・After the load applied to the upper surface plate decreased to the set load (C), the air injection was stopped.
- The resin was cured by irradiating ultraviolet rays to form a flattened resin layer. (There is a gap between the wafer and the upper surface plate during UV irradiation.)
・Here, considering the effect of transfer due to the gap between the wafer and the upper surface plate until the air injection is stopped, the set load (C) is 1500 N (Example 1-1) and 1000 N (Example 1-2). , 500N (Example 1-3), and 100N (Example 1-4).
- A UV-LED with a wavelength of 365 nm was used as a light source for curing the resin.

<比較例2>
比較例2では、図3(A)~図3(F)と同様のフローに従い、ウェーハとウェーハの第一主面に接する平坦化樹脂層とを含む複合体を作製した。具体的には、押圧の制御を、実施例1-1から以下の通りに変更した。
<Comparative Example 2>
In Comparative Example 2, a composite including a wafer and a planarizing resin layer in contact with the first main surface of the wafer was produced according to the same flow as in FIGS. 3(A) to 3(F). Specifically, the pressing control was changed from Example 1-1 as follows.

・押圧制御では、上定盤を保持するサーボモータで駆動させ、停止荷重(B)2000Nで上定盤の降下を停止させた。この間はエアー噴射をせず、上定盤でウェーハを保持した状態で、ウェーハの第一主面上に樹脂を押し広げた。
・その後、真空吸着を停止し、エアー噴射を開始した。
・上定盤を上昇させ停止して、さらにエアー噴射を停止させた。これにより、ウェーハと上定盤との間に隙間を形成した。
・紫外線を照射し、樹脂を硬化させ、平坦化樹脂層とした。(紫外線照射時はウェーハと上定盤との間に隙間あり)
・樹脂硬化用の光源としては波長365nmのUV-LEDを用いた。
- In the pressing control, the upper surface plate was driven by the servomotor holding the upper surface plate, and the lowering of the upper surface plate was stopped with a stop load (B) of 2000N. During this time, the resin was spread over the first main surface of the wafer while holding the wafer on the upper surface plate without blowing air.
・After that, vacuum adsorption was stopped and air injection was started.
・The upper surface plate was lifted and stopped, and then the air injection was stopped. Thereby, a gap was formed between the wafer and the upper surface plate.
・The resin was cured by irradiating ultraviolet rays to form a flattened resin layer. (There is a gap between the wafer and the upper surface plate during UV irradiation.)
- A UV-LED with a wavelength of 365 nm was used as a light source for curing the resin.

<実施例2-1~2-3>
実施例2-1~2-3では、図2(A)~図2(F)と同様のフローに従い、ウェーハとウェーハの第一主面に接する平坦化樹脂層とを含む複合体を作製した。具体的には、押圧の制御を、実施例1-1から以下の通りに変更した。
<Examples 2-1 to 2-3>
In Examples 2-1 to 2-3, a composite including a wafer and a planarizing resin layer in contact with the first main surface of the wafer was produced according to the same flow as in FIGS. 2(A) to 2(F). . Specifically, the pressing control was changed from Example 1-1 as follows.

・押圧制御では、上定盤を保持するサーボモータで駆動させ、所定荷重(A)100Nを検出したタイミングで真空吸着を停止し、エアー噴射を開始した。
・エアー噴射を継続しながら上定盤を降下させ、停止荷重(B)2000Nで上定盤の降下を停止させた。これにより、ウェーハの第二主面の上定盤による保持を開放した状態で、ウェーハの第一主面上に樹脂を押し広げた。
・次に、エアー噴射を継続しながら上定盤を所定距離Lだけ上昇させ停止させた後、エアー噴射を停止した。これにより、ウェーハと上定盤との間に隙間が形成された。
・紫外線を照射し、樹脂を硬化させ、平坦化樹脂層とした。(紫外線照射時はウェーハと上定盤との間に隙間あり)
・ここで、ウェーハと上定盤間との隙間による転写の影響を考慮して、上記所定距離Lは2μm(実施例2-1)、5μm(実施例2-2)、10μm(実施例2-3)とした3例を実施した。
・樹脂硬化用の光源としては波長365nmのUV-LEDを用いた。
・In pressure control, the servo motor that holds the upper surface plate is driven, and at the timing when a predetermined load (A) of 100 N is detected, vacuum suction is stopped and air injection is started.
- The upper surface plate was lowered while air injection was continued, and the lowering of the upper surface plate was stopped with a stop load (B) of 2000N. As a result, the resin was spread over the first main surface of the wafer while the second main surface of the wafer was released from being held by the upper surface plate.
- Next, while continuing the air injection, the upper surface plate was lifted by a predetermined distance L and stopped, and then the air injection was stopped. Thereby, a gap was formed between the wafer and the upper surface plate.
・The resin was cured by irradiating ultraviolet rays to form a flattened resin layer. (There is a gap between the wafer and the upper surface plate during UV irradiation.)
・Here, considering the effect of transfer due to the gap between the wafer and the upper surface plate, the predetermined distance L is 2 μm (Example 2-1), 5 μm (Example 2-2), 10 μm (Example 2 -3) was carried out.
- A UV-LED with a wavelength of 365 nm was used as a light source for curing the resin.

(研削加工)
<比較例1>
比較例1では、実施例1-1で用いたのと同様の直径300mmのP型Si単結晶ウェーハを準備し、このウェーハに対し、以下の条件で研削加工を行った。
(grinding)
<Comparative Example 1>
In Comparative Example 1, a P-type Si single crystal wafer with a diameter of 300 mm similar to that used in Example 1-1 was prepared, and this wafer was ground under the following conditions.

<実施例1-1~1-4、比較例2、実施例2-1~2-3>
実施例1-1~1-4、比較例2、実施例2-1~2-3では、先に作製した複合体に対し、以下の条件で研削加工を行った。
<Examples 1-1 to 1-4, Comparative Example 2, Examples 2-1 to 2-3>
In Examples 1-1 to 1-4, Comparative Example 2, and Examples 2-1 to 2-3, the previously prepared composites were ground under the following conditions.

◇研削加工条件
・研削加工には、ディスコ社製のDFG8360を使用した。
・研削ホイールとしてダイヤ砥粒が結合されたものを用いた。
以降の研削加工方法は、<比較例1>とそれ以外(<比較例2>、<実施例1-1~1-4>、<実施例2-1~2-3>)で異なるため個別に記載する。
◇Grinding conditions ・For grinding, DFG8360 manufactured by Disco was used.
・As a grinding wheel, a diamond abrasive grain was used.
Since the subsequent grinding method is different between <Comparative Example 1> and other (<Comparative Example 2>, <Examples 1-1 to 1-4>, <Examples 2-1 to 2-3>), described in

<比較例1>
第一研削加工条件(裏面(第二主面)研削)
・ウェーハの表面(第一主面)側を研削ステージに真空吸着し、裏面(第二主面)の研削加工を行った。(平坦化樹脂層無し)
<Comparative Example 1>
First grinding conditions (back surface (second main surface) grinding)
・The front surface (first main surface) of the wafer was vacuum-adsorbed to the grinding stage, and the back surface (second main surface) was ground. (without flattening resin layer)

第二研削加工条件(表面(第一主面)研削)
・第一研削面(研削した第二主面)を研削ステージに真空吸着し、表面(第一主面)の研削加工を行った。
・チャックテーブルの軸角度を調整することで、ウェーハ厚みばらつきが1μm以下となるように調整を行った。
Second grinding conditions (surface (first main surface) grinding)
- The first ground surface (the ground second main surface) was vacuum-adsorbed to the grinding stage, and the surface (first main surface) was ground.
・By adjusting the axial angle of the chuck table, the wafer thickness variation was adjusted to 1 μm or less.

<比較例2>、<実施例1-1~1-4>、<実施例2-1~2-3>
第一研削加工条件(裏面(第二主面)研削)
・複合体の被覆物(平坦化樹脂層)側を真空吸着し、裏面(第二主面)の研削加工を行った。
・研削後に平坦化樹脂層を剥離した。
<Comparative Example 2>, <Examples 1-1 to 1-4>, <Examples 2-1 to 2-3>
First grinding conditions (back surface (second main surface) grinding)
- The coating (flattening resin layer) side of the composite was vacuum-sucked, and the back surface (second main surface) was ground.
- The flattening resin layer was peeled off after grinding.

第二研削加工条件(表面(第一主面)研削)
・第一研削面(研削した第二主面)を研削ステージに真空吸着し、表面(第一主面)の研削加工を行った。
・チャックテーブルの軸角度を調整することで、ウェーハ厚みばらつきが1μm以下となるように調整を行った。
Second grinding conditions (surface (first main surface) grinding)
- The first ground surface (the ground second main surface) was vacuum-adsorbed to the grinding stage, and the surface (first main surface) was ground.
・By adjusting the axial angle of the chuck table, the wafer thickness variation was adjusted to 1 μm or less.

(鏡面研磨加工)
以上のようにして研削加工を行った各ウェーハの表裏面(研削した第一及び第二主面)に対し、鏡面研磨加工を行った。
(mirror polishing)
The front and back surfaces (ground first and second main surfaces) of each wafer ground as described above were mirror-polished.

[測定結果]
鏡面研磨後の各ウェーハのWarp及びナノトポグラフィ(NT)を以下のように測定した。
[Measurement result]
Warp and nanotopography (NT) of each wafer after mirror polishing were measured as follows.

WarpおよびNTの測定には、光学干渉式の平坦度・NT測定装置(KLA社製:WaferSight2+)を用いた。
NTの指標としては、SQMM 2mm×2mmを使用した。
結果を以下の表1に示す。
Warp and NT were measured using an optical interference type flatness/NT measuring device (KLA: WaferSight2+).
SQMM 2 mm x 2 mm was used as the index for NT.
The results are shown in Table 1 below.

Figure 2022172822000002
Figure 2022172822000002

比較例1では、平坦化樹脂層を形成せずに研削を行ったため、Warp及びNTともに不良となった。 In Comparative Example 1, since the grinding was performed without forming the planarizing resin layer, both Warp and NT were defective.

比較例2では、平坦化樹脂層を形成して研削を行ったことでNTは良好となったが、上定盤による保持を維持したままウェーハの第一主面上に樹脂を押し広げ続けたため、定盤形状の転写が起こり、Warp不良となった。 In Comparative Example 2, NT became good by forming a flattening resin layer and grinding, but because the resin continued to spread over the first main surface of the wafer while maintaining the holding by the upper surface plate. , transfer of the surface plate shape occurred, resulting in warp failure.

一方、実施例1-1、1-2、1-3及び1-4では、エアー噴射を行いながら、上定盤による保持を開放した状態でウェーハの第一主面上に樹脂を押し広げ、上定盤とウェーハとが離間した状態で樹脂を硬化させて平坦化樹脂層を形成したことにより、定盤形状の転写が緩和し、比較例2と比較してWarpが改善した。 On the other hand, in Examples 1-1, 1-2, 1-3 and 1-4, while performing air injection, the resin was spread over the first main surface of the wafer in a state in which the holding by the upper surface plate was released, By forming the flattened resin layer by curing the resin while the upper surface plate and the wafer are separated from each other, transfer of the surface plate shape is alleviated, and the warp is improved as compared with Comparative Example 2.

特に、エアー噴射停止荷重を500N以下とした実施例1-3及び1-4では、エアー噴射停止時のウェーハと上定盤との隙間が十分に確保されたため、Warpがさらに改善している。 In particular, in Examples 1-3 and 1-4 in which the air injection stop load was set to 500 N or less, a sufficient gap was secured between the wafer and the upper surface plate when the air injection was stopped, so the warp was further improved.

また、その一方、実施例2-1、2-2及び2-3でも、エアー噴射を行いながら、上定盤による保持を開放した状態でウェーハの第一主面上に樹脂を押し広げ、上定盤とウェーハとが離間した状態で樹脂を硬化させて平坦化樹脂層を形成したことにより、定盤形状の転写が緩和し、比較例2と比較してWarpが改善した。 On the other hand, in Examples 2-1, 2-2 and 2-3, while performing air injection, the resin was spread over the first main surface of the wafer in a state in which the holding by the upper surface plate was released, and By forming the flattened resin layer by curing the resin while the platen and the wafer are separated from each other, transfer of the platen shape is alleviated, and the warp is improved as compared with Comparative Example 2.

また特に、エアー噴射中に上定盤を退避させる距離を5μm以上とした実施例2-2及び2-3では、エアー噴射停止時のウェーハと上定盤との隙間が十分に確保されたため、Warpがさらに改善している。 In particular, in Examples 2-2 and 2-3 in which the distance for retracting the upper surface plate during air injection was set to 5 μm or more, a sufficient gap was secured between the wafer and the upper surface plate when air injection was stopped. Warp is even better.

以上の結果から、平坦化樹脂層形成時に、エアー噴射を行いながら、上定盤による保持を開放した状態でウェーハの第一主面上に樹脂を押し広げ、上定盤とウェーハとが離間した状態で樹脂を硬化させて平坦化樹脂層を形成したことにより、定盤形状の転写を防ぐことができたことが分かる。 From the above results, when forming the planarizing resin layer, while performing air injection, the resin was spread over the first main surface of the wafer in a state in which the holding by the upper surface plate was released, and the upper surface plate and the wafer were separated. It can be seen that by forming the flattening resin layer by curing the resin in this state, it is possible to prevent the surface plate shape from being transferred.

更に、上定盤を待機することで上定盤とウェーハとの離間を行う場合、より望ましくは、エアー噴射停止時の荷重は500N以下とした方が良いことが分かる。 Furthermore, when the upper surface plate and the wafer are separated by waiting the upper surface plate, it is more desirable to set the load to 500 N or less when the air injection is stopped.

また、加工時間短縮の観点では、エアー噴射中に上定盤を退避させる方が良く、より望ましくは、上定盤を退避させる距離は5μm以上とした方が良いことが分かる。 Also, from the viewpoint of shortening the machining time, it is better to retract the upper surface plate during the air injection, and more preferably, the distance for retracting the upper surface plate is 5 μm or more.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 It should be noted that the present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

1…ウェーハ、 1A…第一主面、 1B…第二主面、 1C…研削した第二主面、 1D…研削した第一主面、 2…保持手段(上定盤)、 2a…貫通孔、 2b…隙間、 3…下定盤、 4…光透過性フィルム、 5…樹脂、 6…平坦化樹脂層、 10…複合体、 20…研削ステージ、 30…研削ホイール。 DESCRIPTION OF SYMBOLS 1... Wafer 1A... First main surface 1B... Second main surface 1C... Grinded second main surface 1D... Grinded first main surface 2... Holding means (upper surface plate) 2a... Through hole 2b... Gap 3... Lower platen 4... Light transmissive film 5... Resin 6... Planarizing resin layer 10... Composite 20... Grinding stage 30... Grinding wheel.

Claims (3)

ウェーハの製造方法であって、
第一主面及び前記第一主面とは反対側の第二主面を有するウェーハを準備することと、
前記ウェーハの前記第二主面を保持手段によって保持することと、
前記ウェーハの前記第一主面と向き合うように、可塑状態の樹脂を配置することと、
前記保持手段により前記ウェーハを押圧して、前記ウェーハの前記第一主面を前記樹脂に接触させることと、
前記ウェーハの前記第一主面上に前記樹脂を押し広げながら、前記保持手段から該保持手段と前記第二主面との間にエアー噴射を行うことで、前記ウェーハの前記第二主面の前記保持手段による保持を開放した状態で、前記ウェーハの前記第一主面上に前記樹脂を押し広げることと、
前記エアー噴射を行いながら前記ウェーハと前記保持手段との間に隙間を形成して、前記ウェーハと前記保持手段とを離間させることと、
前記ウェーハと前記保持手段との前記離間後、前記樹脂を硬化させて平坦化樹脂層とし、前記ウェーハと前記ウェーハの前記第一主面に接する前記平坦化樹脂層とを含む複合体を得ることと、
前記平坦化樹脂層を基準面として前記複合体を吸着保持し、その状態で前記ウェーハの前記第二主面を研削または研磨することと、
前記ウェーハから前記平坦化樹脂層を除去することと、
前記ウェーハの前記第二主面を吸着保持し、その状態で前記ウェーハの前記第一主面を研削または研磨することを含むことを特徴とするウェーハの製造方法。
A wafer manufacturing method comprising:
providing a wafer having a first major surface and a second major surface opposite the first major surface;
holding the second major surface of the wafer by holding means;
disposing a resin in a plastic state so as to face the first main surface of the wafer;
pressing the wafer by the holding means to bring the first main surface of the wafer into contact with the resin;
While spreading the resin over the first main surface of the wafer, air is jetted from the holding means between the holding means and the second main surface, whereby the second main surface of the wafer is spreading the resin over the first main surface of the wafer in a state in which the holding by the holding means is released;
forming a gap between the wafer and the holding means while performing the air injection to separate the wafer and the holding means;
After the separation between the wafer and the holding means, the resin is cured to form a flattened resin layer to obtain a composite including the wafer and the flattened resin layer in contact with the first main surface of the wafer. When,
sucking and holding the composite with the planarizing resin layer as a reference surface, and grinding or polishing the second main surface of the wafer in that state;
removing the planarizing resin layer from the wafer;
A method of manufacturing a wafer, comprising holding the second main surface of the wafer by suction, and grinding or polishing the first main surface of the wafer in that state.
前記ウェーハと前記保持手段との前記離間において、前記保持手段の高さを変えず待機することで、前記樹脂の流動によって前記ウェーハと前記保持手段との間に前記隙間を形成し、前記隙間の形成を前記保持手段に加わった荷重値から把握することを特徴とする請求項1に記載のウェーハの製造方法。 By standing by without changing the height of the holding means at the separation between the wafer and the holding means, the gap is formed between the wafer and the holding means by the flow of the resin, and the gap is closed. 2. The method of manufacturing a wafer according to claim 1, wherein the formation of the wafer is determined from the value of the load applied to the holding means. 前記ウェーハと前記保持手段との前記離間において、前記保持手段の退避によって前記ウェーハと前記保持手段との間の前記隙間を形成することを特徴とする請求項1に記載のウェーハの製造方法。 2. The method of manufacturing a wafer according to claim 1, wherein the space between the wafer and the holding means is formed by retracting the holding means to form the gap between the wafer and the holding means.
JP2021079071A 2021-05-07 2021-05-07 Wafer manufacturing method Pending JP2022172822A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021079071A JP2022172822A (en) 2021-05-07 2021-05-07 Wafer manufacturing method
KR1020237033963A KR20240004284A (en) 2021-05-07 2022-03-03 Wafer manufacturing method
CN202280027176.9A CN117157740A (en) 2021-05-07 2022-03-03 Method for manufacturing wafer
PCT/JP2022/009025 WO2022234714A1 (en) 2021-05-07 2022-03-03 Method for producing wafer
TW111108284A TW202243802A (en) 2021-05-07 2022-03-08 Method for producing wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021079071A JP2022172822A (en) 2021-05-07 2021-05-07 Wafer manufacturing method

Publications (1)

Publication Number Publication Date
JP2022172822A true JP2022172822A (en) 2022-11-17

Family

ID=83932045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021079071A Pending JP2022172822A (en) 2021-05-07 2021-05-07 Wafer manufacturing method

Country Status (5)

Country Link
JP (1) JP2022172822A (en)
KR (1) KR20240004284A (en)
CN (1) CN117157740A (en)
TW (1) TW202243802A (en)
WO (1) WO2022234714A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086352A (en) * 2000-09-13 2002-03-26 Matsushita Electric Ind Co Ltd Adhering device and polishing jig
JP2007134371A (en) 2005-11-08 2007-05-31 Nikka Seiko Kk Method and apparatus for forming reference surface of wafer
JP5089370B2 (en) 2007-12-21 2012-12-05 株式会社ディスコ Resin coating method and apparatus
JP5324212B2 (en) 2008-12-26 2013-10-23 株式会社ディスコ Resin coating method and resin coating apparatus
JP5670208B2 (en) 2011-01-13 2015-02-18 株式会社ディスコ Resin coating device
JP5912657B2 (en) * 2012-02-27 2016-04-27 株式会社ディスコ Resin pasting device
JP2015038919A (en) * 2013-08-19 2015-02-26 株式会社ディスコ Wafer manufacturing method
JP7240154B2 (en) 2018-12-05 2023-03-15 株式会社ディスコ Protective member forming method and protective member forming apparatus

Also Published As

Publication number Publication date
CN117157740A (en) 2023-12-01
KR20240004284A (en) 2024-01-11
WO2022234714A1 (en) 2022-11-10
TW202243802A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
TWI460215B (en) Resin coating method and resin coating device (2)
JP6475519B2 (en) Method for forming protective member
TWI468255B (en) Resin coating method and resin coating apparatus (1)
JP6111893B2 (en) Semiconductor wafer processing process
KR102466056B1 (en) Method of manufacturing semiconductor apparatus, and semiconductor manufacturing apparatus
JP7071782B2 (en) Wafer processing method
JP6418130B2 (en) Semiconductor wafer processing method
JP6001931B2 (en) Wafer processing method
TW201839900A (en) Electrostatic adsorption chuck, manufacturing method thereof, and manufacturing method of semiconductor device
CN111758152A (en) Method for manufacturing wafer
JP5988603B2 (en) Method for dividing optical device wafer
KR20130039308A (en) Method of grinding wafer
WO2021235067A1 (en) Substrate wafer production method and substrate wafer
JP2011103379A (en) Flat processing method of wafer
KR101160266B1 (en) Wafer support member, method for manufacturing the same and wafer polishing unit
WO2018079105A1 (en) Wafer manufacturing method and wafer
WO2022234714A1 (en) Method for producing wafer
TW201740449A (en) Wafer manufacturing method and wafer
US20160288291A1 (en) Method for grinding wafers by shaping resilient chuck covering
JP2020123666A (en) Processing method of workpiece
US20140057531A1 (en) Method for grinding wafers by shaping resilient chuck covering
WO2023228787A1 (en) Method for producing ground wafer and method for producing wafer
JP2012115911A (en) Substrate grinding method and semiconductor element manufactured by using the same
KR101311330B1 (en) Template assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312