JP2022126438A - 線分画像作成方法及び線分画像作成装置 - Google Patents

線分画像作成方法及び線分画像作成装置 Download PDF

Info

Publication number
JP2022126438A
JP2022126438A JP2021024514A JP2021024514A JP2022126438A JP 2022126438 A JP2022126438 A JP 2022126438A JP 2021024514 A JP2021024514 A JP 2021024514A JP 2021024514 A JP2021024514 A JP 2021024514A JP 2022126438 A JP2022126438 A JP 2022126438A
Authority
JP
Japan
Prior art keywords
line segment
image
pixel
gradation value
creating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024514A
Other languages
English (en)
Inventor
広 井上
Hiroshi Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2021024514A priority Critical patent/JP2022126438A/ja
Publication of JP2022126438A publication Critical patent/JP2022126438A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【目的】微細な線分の画像の作成が可能な装置及び方法を提供する。【構成】本発明の一態様の線分画像作成方法は、所望の線分の2次元画像を作成する線分画像作成方法であって、所望の線分を中心にして所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する工程と、作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を設定し、各画素の階調値が設定された画像データを出力する工程と、を備えたことを特徴とする。【選択図】図7

Description

本発明の一態様は、線分画像作成方法及び線分画像作成装置に関する。例えば、階調値が定義される複数の画素により構成される画像として図形の輪郭線を描く場合の画像作成装置および方法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、LSIを構成するパターンは、10ナノメータ以下のオーダーを迎えつつあり、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
欠陥検査手法としては、半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを撮像した測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と、を比較することにより検査を行う方法が知られている。例えば、被検査画像内の図形から輪郭線を抽出する(例えば、特許文献1参照)。そして、抽出された被検査画像の輪郭線と参照輪郭線とを比較することにより検査を行う。
ここで、抽出される輪郭線のデータを画素毎にベクトルデータとして定義する場合、例えば各画素の中心から輪郭線までの距離と輪郭線の法線方向の角度とを定義する。これにより、各画素のデータ量が画像データのデータ量よりも大きくなってしまう。そのため、データ量を低減するためにも、輪郭線のデータを画像データとして定義することが求められる。
一方、輪郭線の画像を作成する場合、輪郭線は各画素の階調値で定義される。例えば、輪郭線が通る画素を1(或いは最大階調値)とし、輪郭線が通らない画素をゼロとした2値で定義される。そのため、格子状に並ぶ複数の画素の配列方向に対して斜めに延びる線分の場合、輪郭線の画像では、線分が直線にはならず、階段状に折れ曲がる線として描かれてしまうといった問題があった。さらに、輪郭線を画像化すると画素単位で階調値が定義されるため画素サイズ未満のサブ画素単位の位置情報が失われてしまう場合がある。そのため、例えば、被検査画像内の図形から高精度に輪郭線の位置を抽出できたとしても、その後に輪郭線を画像化することにより輪郭線の位置がずれてしまうといった問題があった。その結果、正確な輪郭線同士の比較が困難になってしまう。よって、微細な輪郭線画像の作成が求められる。かかる問題は、検査装置に限るものではない。線分の2次元画像を作成する場合に同様に問題となる。
特開2011-48592号公報
本発明の一態様は、微細な線分の画像の作成が可能な装置及び方法を提供する。
本発明の一態様の線分画像作成方法は、
所望の線分の2次元画像を作成する線分画像作成方法であって、
所望の線分を中心にして所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する工程と、
作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を設定し、各画素の階調値が設定された画像データを出力する工程と、
を備えたことを特徴とする。
また、位置関係として、画素毎の対象画素に含まれる前記幅広線分の面積比率を算出する工程をさらに備え、
各画素の階調値は、対象画素における前記面積比率に応じて設定されると好適である。
また、予め設定される最大階調値に対象画素における面積比率を乗じた値を算出する工程をさらに備え、
各画素の階調値は、予め設定される最大階調値に対象画素における面積比率を乗じた値に設定されると好適である。
また、幅広線分の最大幅として、1画素サイズ以上であって、かつ、当該幅広線分と重なる画素に隣接する画素に他の幅広線分が含まれない幅サイズが設定されると好適である。
本発明の一態様の線分画像作成装置は、
所望の線分の2次元画像を作成する線分画像作成装置であって、
所望の線分を中心にして所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する幅広線分作成部と、
作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を設定し、各画素の階調値が設定された画像データを出力する階調値設定部と、
を備えたことを特徴とする。
本発明の一態様によれば、微細な線分の2次元画像が作成できる。
実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。 実施の形態1におけるマルチビームのスキャン動作を説明するための図である。 実施の形態1の比較例1における線分の2次元画像の作成例を示す図である。 実施の形態1の比較例2における線分の2次元画像の作成例を示す図である。 実施の形態1における検査方法の要部工程を示すフローチャート図である。 実施の形態1における比較回路内の構成の一例を示すブロック図である。 実施の形態1における線分の一例を示す図である。 実施の形態1における幅広線分の一例を示す図である。 実施の形態1における隣り合う2つの幅広線分の一例を示す図である。 実施の形態1における幅広線分の面積比率の一例を示す図である。 実施の形態1における線分画像の画像データの一例を示す図である。 実施の形態1における実画輪郭線と参照輪郭線の位置関係の一例を示す図である。 実施の形態1と比較例3とにおけるデータ量の一例を示す図である。
以下、実施の形態では、線分画像作成装置及び/或いはパターン検査装置の一例として、電子ビーム検査装置について説明する。但し、これに限るものではない。例えば、紫外線を被検査基板に照射して、被検査基板を透過或いは反射した光を用いて被検査画像を取得する検査装置であっても構わない。また、実施の形態では、複数の電子ビームによるマルチビームを用いて画像を取得する検査装置について説明するが、これに限るものではない。1本の電子ビームによるシングルビームを用いて画像を取得する検査装置であっても構わない。また、線分画像作成装置は、検査装置に限るものではなく、線分を画像化する装置であれば構わない。例えば、コンピュータを搭載したサーバ装置或いは/及び端末装置等であっても構わない。
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例である。検査装置100は、画像取得機構150(2次電子画像取得機構)、及び制御系回路160を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)及び検査室103を備えている。電子ビームカラム102内には、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、副偏向器209、ビームセパレーター(E×B分離器)214、偏向器218、電磁レンズ224、電磁レンズ226、及びマルチ検出器222が配置されている。図1の例において、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209は、マルチ1次電子ビームを基板101に照射する1次電子光学系を構成する。ビームセパレーター214、偏向器218、電磁レンズ224、及び電磁レンズ226は、マルチ2次電子ビームをマルチ検出器222に照射する2次電子光学系を構成する。
検査室103内には、少なくともXY方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。
制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照輪郭線抽出回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、磁気ディスク装置等の記憶装置109、モニタ117、及びメモリ118に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。
また、検出回路106は、チップパターンメモリ123に接続される。チップパターンメモリ123は、比較回路108に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステッピングモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビームの光軸(電子軌道中心軸)に直交する面に対して、X方向、Y方向、θ方向が設定される。
電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207(対物レンズ)、電磁レンズ224、電磁レンズ226、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介してブランキング制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメント(カソード)と引出電極(アノード)間への高圧電源回路からの加速電圧の印加と共に、別の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは、一方が2以上の整数、他方が1以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図2の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、理想的には共に同じ寸法形状の矩形で形成される。或いは、理想的には同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、m×n本(=N本)のマルチ1次電子ビーム20が形成されることになる。
次に、検査装置100における画像取得機構150の動作について説明する。
電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。
形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームの中間像面位置に配置されたビームセパレーター214を通過して電磁レンズ207(対物レンズ)に進む。そして、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカス(合焦)する。対物レンズ207により基板101(試料)面上に焦点が合わされた(合焦された)マルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチ1次電子ビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置がはずれ、制限アパーチャ基板213によって遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチ1次電子ビーム20は、図1に示すように制限アパーチャ基板213の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板213は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチ1次電子ビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板213を通過したビーム群により、検査用(画像取得用)のマルチ1次電子ビーム20が形成される。
基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
ここで、ビームセパレーター214(E×B分離器)は、コイルを用いた2極以上の複数の磁極と、2極以上の複数の電極とを有する。そして、かかる複数の磁極によって指向性の磁界を発生させる。同様に、複数の電極によって指向性の電界を発生させる。具体的には、ビームセパレーター214は、マルチ1次電子ビーム20の中心ビームが進む方向(軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。そのため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20の軌道上から分離する。
斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子が投影されても良い。マルチ検出器222は、2次元センサを有する。そして、マルチ2次電子ビーム300の各2次電子が2次元センサのそれぞれ対応する領域に衝突して、電子を発生し、2次電子画像データを画素毎に生成する。言い換えれば、マルチ検出器222には、マルチ1次電子ビーム20の1次電子ビーム毎に、検出センサが配置される。そして、各1次電子ビームの照射によって放出された対応する2次電子ビームを検出する。よって、マルチ検出器222の複数の検出センサの各検出センサは、それぞれ担当する1次電子ビームの照射に起因する画像用の2次電子ビームの強度信号を検出することになる。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。
図3は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図3において、基板101が半導体基板(ウェハ)である場合、半導体基板(ウェハ)の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ、スキャナ等)によって例えば1/4に縮小されて転写されている。各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、-x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数の矩形領域33に分割される。対象となる矩形領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
図4は、実施の形態1におけるマルチビームのスキャン動作を説明するための図である。図4の例では、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図3及び図4の例では、照射領域34が矩形領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34が矩形領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20の各ビームは、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。マルチ1次電子ビーム20を構成する各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各ショット時に、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10の照射によってサブ照射領域29毎の2次電子画像が取得される。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、矩形領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。
なお、図4に示すように、各サブ照射領域29が矩形の複数のフレーム領域30に分割され、フレーム領域30単位の2次電子画像(被検査画像)が検査に使用される。図4の例では、1つのサブ照射領域29が、例えば4つのフレーム領域30に分割される場合を示している。但し、分割される数は4つに限るものではない。その他の数に分割されても構わない。
なお、例えばx方向に並ぶ複数のチップ332を同じグループとして、グループ毎に例えばy方向に向かって所定の幅で複数のストライプ領域32に分割されるようにしても好適である。そして、ストライプ領域32間の移動は、チップ332毎に限るものではなく、グループ毎に行っても好適である。
ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。そのため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。或いは偏向器218よりもマルチ検出器222側の2次電子ビーム軌道上に図示しない偏向器を配置して、かかる偏向器により放出位置の変化に追従して各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるようにマルチ2次電子ビーム300を一括偏向しても良い。
図5は、実施の形態1の比較例1における線分の2次元画像の作成例を示す図である。比較例1において、図5(a)に示す直線の線分40を画像化する場合、線分40と画像を構成する複数の画素とを重ねる。図5(a)の例では、例えば、3×3の画素36を示している。そして、図5(b)に示すように、線分が通る画素を1(或いは最大階調値)とし、線分が通らない画素をゼロとした2値で定義される。そのため、格子状に並ぶ複数の画素36の配列方向に対して斜めに延びる線分の場合、線分の画像では、図5(c)に示すように、線分が直線にはならず、階段状に折れ曲がる線として描かれてしまう。
図6は、実施の形態1の比較例2における線分の2次元画像の作成例を示す図である。図6(a)の例では、例えば、3×3の画素36を示している。図6(a)に示すように、比較例2では、例えばx方向に並ぶ3列の画素列のうち中央部の画素列だけを直線の線分40が通る場合を示している。かかる場合、図6(b)に示すように、x方向に並ぶ3列の画素列のうち中央部の画素列の3つの画素36の階調値が1(或いは最大階調値)となり、線分が通らないその他の画素36の階調値はゼロとなる。図6(b)に示す階調値が定義される画像データでは、図6(c)に示すように、中央部の画素列を通る線分であれば、斜め方向に延びる線分40-1だけに限らず、例えば、中央部の画素列の右端部付近をy方向に延びる線分40-2も含まれてしまう。言い換えれば、線分40を画像化すると画素単位で階調値が定義されるため画素サイズ未満のサブ画素単位の位置情報が失われてしまう。そのため、比較例2では、線分40を画像化することにより線分40の位置がずれてしまう。よって、このまま輪郭線検査を行った場合、正確な輪郭線同士の比較が困難になってしまう。よって、微細な線分画像の作成が求められる。
図7は、実施の形態1における検査方法の要部工程を示すフローチャート図である。図7において、実施の形態1における検査方法は、スキャン工程(S102)と、フレーム画像作成工程(S104)と、実画輪郭線抽出工程(S106)と、参照輪郭線抽出工程(S110)と、実画輪郭線画像作成工程(S120)と、参照輪郭線画像作成工程(S130)と、比較工程(S140)と、いう一連の工程を実施する。
実画輪郭線画像作成工程(S120)は、内部工程として、実画線分作成工程(S122)と、実画線分幅拡大工程(実画幅広線分作成工程)(S124)と、実画面積比率算出工程(S126)と、実画階調値算出工程(S127)と、実画階調値設定工程(S128)と、判定工程(S129)と、いう一連の工程を実施する。
参照輪郭線画像作成工程(S130)は、内部工程として、参照線分作成工程(S132)と、参照線分幅拡大工程(参照幅広線分作成工程)(S134)と、参照面積比率算出工程(S136)と、参照階調値算出工程(S137)と、参照階調値設定工程(S138)と、判定工程(S139)と、いう一連の工程を実施する。
実画線分作成工程(S122)と、実画線分幅拡大工程(幅広線分作成工程)(S124)と、実画面積比率算出工程(S126)と、実画階調値算出工程(S127)と、実画階調値設定工程(S128)と、判定工程(S129)の各工程は、線分画像作成方法の要部工程の一例となる。同様に、参照線分作成工程(S132)と、参照線分幅拡大工程(参照幅広線分作成工程)(S134)と、参照面積比率算出工程(S136)と、参照階調値算出工程(S137)と、参照階調値設定工程(S138)と、判定工程(S139)の各工程は、線分画像作成方法の要部工程の他の一例となる。
スキャン工程(S102)として、画像取得機構150は、図形パターンが形成された基板101の画像を取得する。ここでは、複数の図形パターンが形成された基板101にマルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300を検出することにより、基板101の2次電子画像を取得する。上述したように、マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子(マルチ2次電子ビーム300)が投影されても良い。
上述したように、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300は、マルチ検出器222で検出される。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
図8は、実施の形態1における比較回路内の構成の一例を示すブロック図である。図8において、実施の形態1における比較回路108内には、磁気ディスク装置等の記憶装置50,52,56,57、フレーム画像作成部54、実画輪郭線抽出部58、実画輪郭線画像作成部60、参照輪郭線画像作成部70、及び比較処理部84が配置される。実画輪郭線画像作成部60は、線分画像作成装置の一例である。同様に、参照輪郭線画像作成部70は、線分画像作成装置の他の一例である。
実画輪郭線画像作成部60内には、実画線分作成部62、実画幅広線分作成部64、実画面積比率算出部66、実画階調値算出部67、実画階調値設定部68、及び判定部69が配置される。
参照輪郭線画像作成部70内には、参照線分作成部72、参照幅広線分作成部74、参照面積比率算出部76、参照階調値算出部77、参照階調値設定部78、及び判定部79が配置される。
フレーム画像作成部54、実画輪郭線抽出部58、実画輪郭線画像作成部60(実画線分作成部62、実画幅広線分作成部64、実画面積比率算出部66、実画階調値算出部67、実画階調値設定部68、及び判定部69)、参照輪郭線画像作成部70(参照線分作成部72、参照幅広線分作成部74、参照面積比率算出部76、参照階調値算出部77、参照階調値設定部78、及び判定部79)、及び比較処理部84といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。フレーム画像作成部54、実画輪郭線抽出部58、実画輪郭線画像作成部60(実画線分作成部62、実画幅広線分作成部64、実画面積比率算出部66、実画階調値算出部67、実画階調値設定部68、及び判定部69)、参照輪郭線画像作成部70(参照線分作成部72、参照幅広線分作成部74、参照面積比率算出部76、参照階調値算出部77、参照階調値設定部78、及び判定部79)、及び比較処理部84内に必要な入力データ或いは演算された結果はその都度図示しないメモリ、或いはメモリ118に記憶される。
比較回路108内に転送された測定画像データ(スキャン画像)は、記憶装置50に格納される。
フレーム画像作成工程(S104)として、フレーム画像作成部54は、各1次電子ビーム10のスキャン動作によって取得されたサブ照射領域29の画像データをさらに分割した複数のフレーム領域30のフレーム領域30毎のフレーム画像31を作成する。なお、各フレーム領域30は、画像の抜けが無いように、互いにマージン領域が重なり合うように構成されると好適である。作成されたフレーム画像31は、記憶装置56に格納される。
実画輪郭線抽出工程(S106)として、実画輪郭線抽出部58は、フレーム画像31毎に、当該フレーム画像31内の各図形パターンの複数の輪郭位置(実画輪郭位置)を抽出する。輪郭位置の抽出の仕方は、従来の手法で構わない。例えば、ソーベルフィルタ等の微分フィルタを用いてx,y方向に各画素を微分する微分フィルタ処理を行い、x,y方向の1次微分値を基に輪郭を抽出する。この際、1次微分値が一定の値を超えた場合に輪郭と判断し、一次微分値のプロファイルのピーク位置を輪郭線(実画輪郭線)上の輪郭位置としてサブ画素単位で抽出する。これにより、実画輪郭線抽出部58は、実画輪郭線を抽出する。抽出された実画輪郭線の情報(実画輪郭線データ)は、記憶装置57に格納される。実画輪郭線データは、画素毎に、画素中心からの距離dと輪郭線の法線方向の角度θとで定義されると好適である。法線方向の角度θは、例えばx軸に対する右回りの角度で定義される。輪郭線が通らない画素では、距離dと角度θがNULL情報として定義されればよい。
参照輪郭線抽出工程(S110)として、参照輪郭線抽出回路112は、実画輪郭線と比較するための参照輪郭線を抽出する。例えば、まず複数の参照輪郭位置を抽出し、複数の参照輪郭位置から参照輪郭線を抽出する。参照輪郭位置の抽出は、設計データから抽出しても良いし、或いは、まず、設計データから参照画像を作成し、参照画像を用いて測定画像であるフレーム画像31の場合と同様の手法で参照輪郭位置を抽出しても構わない。或いは、その他の従来の手法で複数の参照輪郭位置を抽出するようにしても良い。設計データは、記憶装置109に格納される。設計データには、各図形パターンの基準点の座標(x,y)、サイズ、及び図形種を示す図形コードが定義される。或いは、各図形パターンの各頂点座標が定義されても好適である。
抽出された参照輪郭線の情報(参照輪郭線データ)は、比較回路108に出力される。比較回路108内において、参照輪郭線データは、記憶装置52に格納される。参照輪郭線データは、画素毎に、画素中心からの距離dと輪郭線の法線方向の角度θとで定義されると好適である。法線方向の角度θは、例えばx軸に対する右回りの角度で定義される。輪郭線が通らない画素では、距離dと角度θがNULL情報として定義されればよい。
得られた参照輪郭線データは、比較回路108に出力される。比較回路108では、参照輪郭線データが記憶装置52に格納される。
実画輪郭線画像作成工程(S120)として、実画輪郭線画像作成部60は、実画輪郭線データを用いて、実画輪郭線画像を作成する。具体的には以下のように動作する。
実画線分作成工程(S122)として、実画線分作成部62は、フレーム領域30内の輪郭線毎に、対象となる輪郭線を所定の長さの直線に分割し、直線の始点と終点とを求めることにより、少なくとも1つの線分(実画線分)を作成する。
図9は、実施の形態1における線分の一例を示す図である。図9(a)に示す輪郭線41を、図9(b)に示す複数の線分40a,40bに分割する。直線の長さが、例えば、数画素分の画素サイズの合計の長さになるように輪郭線を分割する。規定の長さに満たない端数の長さの線分が生じても構わない。線分の規定の長さとして、過去の欠陥箇所のサイズ程度に設定すると好適である。
実画線分幅拡大工程(実画幅広線分作成工程)(S124)として、実画幅広線分作成部64は、所望の線分を中心にして所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する。
図10は、実施の形態1における幅広線分の一例を示す図である。実施の形態1において、図10(a)に示す直線の線分40を画像化する場合、線分40と画像を構成する複数の画素36とを重ねる。図10(a)の例では、画像を構成する複数の画素36のうち、例えば、3×3の画素36を示している。線分40それ自体には法線方向の幅が定義されないので線分上の各位置はいずれか1つの画素36内に位置することになる。そのため、線分40が通る画素だけの情報によって線分40が画像化されることになる。言い換えれば、線分を画像化する場合に、線分が通らない隣接画素の影響を受けないことになる。さらに言い換えれば、線分を画像化する場合に、線分が通らない隣接画素による補正が受けられないことになる。そこで、実施の形態1では、図10(b)に示すように、線分の法線方向の幅サイズWを1画素以上のサイズに拡大した幅広線分42を作成する。これにより、線分40が延びる方向の各位置について、法線方向に少なくとも1画素以上の画素との重なりを生じさせることができる。例えば、線分40が延びる方向の各位置について、法線方向に2画素と重なるようにできる。
図11は、実施の形態1における隣り合う2つの幅広線分の一例を示す図である。線分40の法線方向の幅を1画素以上のサイズに拡大する場合に、近くに複数の線分40が存在するケースでは制限が生じる。実施の形態1では、幅広線分42の最大幅として、1画素サイズ以上であって、かつ、当該幅広線分42と重なる画素に隣接する画素に他の幅広線分44が含まれない幅サイズが設定される。言い換えれば、図11の例に示すように、幅広線分42と幅広線分44との間に、いずれの幅広線分も重ならない1画素が残るように最大幅サイズが設定される。言い換えれば、拡大可能な最大幅Wmaxは、隣り合う2つの線分間の距離Dを用いて、Wmax=D-1で定義される。なお、距離Dは、画素サイズを単位サイズとして定義される。例えば、隣り合う2つの線分間の距離Dが3画素分のサイズであれば、最大幅Wmax=3-1=2画素サイズとなる。図11の例では、例えば、隣り合う2つの線分間の距離Dが2.6画素分のサイズの2つの線分(点線)を示している。かかる場合、2つの線分(点線)を拡大する幅広線分42,44の最大幅Wmax=2.6-1=1.6画素サイズ(画素サイズの1.6倍のサイズ)となる。
実画面積比率算出工程(S126)として、実画面積比率算出部66は、画像を構成する複数の画素36の画素毎の対象画素に含まれる幅広線分42の面積比率を算出する。
図12は、実施の形態1における幅広線分の面積比率の一例を示す図である。図12の例では、図10(b)の状態での幅広線分42の面積比率を示している。図12の例では、面積比率として、画素36の面積に対する幅広線分42の重なる部分の面積の割合をパーセンテージ%で示している。図12の例において、x方向の左側の画素列について、下から順に、40%,10%,0%が定義される。x方向の中央の画素列について、下から順に、50%,80%,60%が定義される。x方向の右側の画素列について、下から順に、0%,5%,30%が定義される。図12の例では、面積比率をパーセンテージで示しているが、0~1の間の値の比率で定義しても良いことは言うまでもない。
実画階調値算出工程(S127)として、実画階調値算出部67は、作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を算出する。具体的には、実画階調値算出部67は、予め設定される最大階調値に対象画素における面積比率を乗じた値を当該画素の階調値として算出する。
図13は、実施の形態1における線分画像の画像データの一例を示す図である。図13の例では、0~255の256階調の階調値の画像データを示している。よって、かかる場合の最大階調値Mは255となる。そこで、実画階調値算出部67は、画素毎に、M×面積比率を算出する。面積比率がパーセンテージNで定義される場合には、実画階調値算出部67は、画素毎に、M×N/100を算出する。面積比率が0~1の間の値の比率N′で定義される場合には、実画階調値算出部67は、画素毎に、M×N′を算出する。
実画階調値設定工程(S128)として、実画階調値設定部68は、作成された幅広線分42と所定のサイズの画像を構成する複数の画素36との位置関係に基づいて各画素36の階調値を設定する。ここでは、位置関係として、上述したように、画素毎の対象画素に含まれる幅広線分42の面積比率が用いられる。よって、各画素の階調値は、対象画素における面積比率に応じて設定される。具体的には、各画素の階調値は、予め設定される最大階調値Mに対象画素における面積比率を乗じた値に設定される。よって、実画階調値算出工程(S127)で算出された階調値が当該画素の階調値として設定される。その結果、図13の例において、x方向の左側の画素列について、下から順に、102,26,0の階調値kが定義される。x方向の中央の画素列について、下から順に、128,204,153の階調値が定義される。x方向の右側の画素列について、下から順に、0,13,77の階調値が定義される。
判定工程(S129)として、判定部69は、すべての線分について画像データが作成されたかどうかを判定する。まだ画像データが作成されていない線分が残っている場合には、実画線分幅拡大工程(実画幅広線分作成工程)(S124)に戻り、すべての線分について画像データが作成されるまで実画線分幅拡大工程(実画幅広線分作成工程)(S124)から判定工程(S129)までの各工程を繰り返す。すべての線分について画像データが作成された場合には比較工程(S140)に進む。
なお、線分40同士を繋ぎ合わせる箇所に位置する画素の階調値については、それぞれで求めた階調値を加算した階調値に設定すればよい。なお、繋ぎ合わせ箇所で拡大線分42同士がオーバーラップする場合には、重なる領域部分の一方の面積を除いた(重複加算しない)面積に応じた階調値を算出し、設定すればよい。各画素の階調値が設定された実画輪郭線或いは各線分の画像データは、比較処理部84に出力される。或いは、記憶装置109に出力される。或いはモニタ117に出力され輪郭線が表示されても良い。
以上により、線分40が通る画素の階調値は大きく、線分40が通らない隣接画素の階調値は小さくできる。よって、隣接する1つ以上の画素の階調値に2値より大きい多値の勾配を形成できる。その結果、勾配のピーク位置を線分が通る位置として、サブ画素単位で線分の位置を求めることができる。さらに、勾配のピーク位置を線分が通るので、比較例1のように階段状に折れ曲がった線の画像ではなく、直線の画像を形成できる。なお、画素の中心を通り画素の配列方向に延びる線分については、線分40が通る画素の階調値は100%、線分40が通らない隣接画素の階調値は0%となり2値となるが、かかる場合には、画素の中心を通り画素の配列方向に延びる線分であることが明確になる。
参照輪郭線画像作成工程(S130)として、参照輪郭線画像作成部70は、参照輪郭線データを用いて、輪郭線を画像展開し、参照輪郭線画像を作成する。具体的には以下のように動作する。
参照線分作成工程(S132)として、参照線分作成部72は、フレーム領域30内の輪郭線毎に、対象となる輪郭線を所定の長さの直線に分割し、直線の始点と終点とを求めることにより、少なくとも1つの線分(実画線分)を作成する。参照線分作成工程(S132)の内容は実画線分作成工程(S122)と同様で良い。
参照線分幅拡大工程(参照幅広線分作成工程)(S134)として、参照幅広線分作成工部74は、所望の線分を中心にして所望の線分の法線方向に1画素以上の幅を持った幅広線分を作成する。参照線分幅拡大工程(参照幅広線分作成工程)(S134)の内容は、実画線分幅拡大工程(実画幅広線分作成工程)(S124)と同様で良い。
参照面積比率算出工程(S136)として、参照面積比率算出部76は、画像を構成する複数の画素36の画素毎の対象画素に含まれる幅広線分42の面積比率を算出する。参照面積比率算出工程(S136)の内容は、実画面積比率算出工程(S126)と同様で良い。
参照階調値算出工程(S137)として、参照階調値算出部77は、作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を算出する。具体的には、参照階調値算出部77は、予め設定される最大階調値に対象画素における面積比率を乗じた値を当該画素の階調値として算出する。参照階調値算出工程(S137)の内容は、実画階調値算出工程(S127)と同様で良い。
参照階調値設定工程(S138)として、参照階調値設定部78は、作成された幅広線分42と所定のサイズの画像を構成する複数の画素36との位置関係に基づいて各画素36の階調値を設定する。ここでは、位置関係として、上述したように、画素毎の対象画素に含まれる幅広線分42の面積比率が用いられる。具体的には、参照階調値算出工程(S137)で算出された階調値が当該画素の階調値として設定される。参照階調値設定工程(S138)の内容は、実画階調値設定工程(S128))と同様で良い。
判定工程(S139)として、判定部79は、すべての線分について画像データが作成されたかどうかを判定する。まだ画像データが作成されていない線分が残っている場合には、参照線分幅拡大工程(参照幅広線分作成工程)(S134)に戻り、すべての線分について画像データが作成されるまで参照線分幅拡大工程(参照幅広線分作成工程)(S134)から判定工程(S139)までの各工程を繰り返す。すべての線分について画像データが作成された場合には比較工程(S140)に進む。
以上により、参照線分についても、実画線分と同様の効果を得ることができる。
比較工程(S140)として、比較処理部84(比較部)は、実画輪郭線と参照輪郭線とを比較する。
図14は、実施の形態1における実画輪郭線と参照輪郭線の位置関係の一例を示す図である。具体的には、比較処理部84は、輪郭線が通る画素列の画素毎に、図14に示すように、実画輪郭線と参照輪郭線との間の距離(位置ずれ量)を算出する。そして、距離(位置ずれ量)が判定閾値を超えた場合に欠陥と判定する。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される。
図15は、実施の形態1と比較例3とにおけるデータ量の一例を示す図である。図15(a)において、比較例3では、輪郭線データを、画素毎に、画素中心からの距離dと輪郭線の法線方向の角度θとで定義する。かかる場合、画素の位置データとは別に、距離dと角度θとをそれぞれ例えば8ビット(1バイト)で定義するため、画素毎に2バイトのデータ量が必要となる。輪郭線が通らない画素についても、距離dと角度θとにそれぞれNULLを定義するため2バイトのデータ量が必要となる。これに対して、実施の形態1では、図15(b)に示すように、画素毎に、例えば8ビットの階調値kで定義するため、画素毎に1バイトのデータ量にできる。よって、線分画素のデータ量を低減できる。
以上のように、実施の形態1によれば、微細な線分の2次元画像が作成できる。よって、輪郭線検査を行う場合には、高精度な位置関係での比較ができる。よって、高精度な位置ずれ量を取得できる。
以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、フラッシュメモリ等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、参照輪郭線抽出回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、及び偏向制御回路128は、上述した少なくとも1つの処理回路で構成されても良い。
以上、具体例を参照しながら実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。図1の例では、1つの照射源となる電子銃201から照射された1本のビームから成形アパーチャアレイ基板203によりマルチ1次電子ビーム20を形成する場合を示しているが、これに限るものではない。複数の照射源からそれぞれ1次電子ビームを照射することによってマルチ1次電子ビーム20を形成する態様であっても構わない。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのパターン検査装置及び輪郭線同士のアライメント量取得方法は、本発明の範囲に包含される。
10 1次電子ビーム
20 マルチ1次電子ビーム
22 穴
29 サブ照射領域
30 フレーム領域
31 フレーム画像
32 ストライプ領域
33 矩形領域
34 照射領域
40 線分
42,44 幅広線分
50,52,56,57 記憶装置
54 フレーム画像作成部
58 実画輪郭線抽出部
60 実画輪郭線画像作成部
62 実画線分作成部
64 実画幅広線分作成部
66 実画面積比率算出部
67 実画階調値算出部
68 実画階調値設定部
69 判定部
70 参照輪郭線画像作成部
72 参照線分作成部
74 参照幅広線分作成部
76 参照面積比率算出部
77 参照階調値算出部
78 参照階調値設定部
79 判定部
84 比較処理部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
105 ステージ
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照輪郭線抽出回路
114 ステージ制御回路
117 モニタ
118 メモリ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
142 駆動機構
144,146,148 DACアンプ
150 画像取得機構
160 制御系回路
201 電子銃
202 電磁レンズ
203 成形アパーチャアレイ基板
205,206,207,224,226 電磁レンズ
208 主偏向器
209 副偏向器
212 一括ブランキング偏向器
213 制限アパーチャ基板
214 ビームセパレーター
216 ミラー
218 偏向器
222 マルチ検出器
300 マルチ2次電子ビーム
330 検査領域
332 チップ

Claims (5)

  1. 所望の線分の2次元画像を作成する線分画像作成方法であって、
    所望の線分を中心にして前記所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する工程と、
    作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を設定し、各画素の階調値が設定された画像データを出力する工程と、
    を備えたことを特徴とする線分画像作成方法。
  2. 前記位置関係として、画素毎の対象画素に含まれる前記幅広線分の面積比率を算出する工程をさらに備え、
    各画素の階調値は、対象画素における前記面積比率に応じて設定されることを特徴とする請求項1記載の線分画像作成方法。
  3. 予め設定される最大階調値に対象画素における前記面積比率を乗じた値を算出する工程をさらに備え、
    各画素の階調値は、予め設定される最大階調値に対象画素における前記面積比率を乗じた値に設定されることを特徴とする請求項2記載の線分画像作成方法。
  4. 前記幅広線分の最大幅として、1画素サイズ以上であって、かつ、当該幅広線分と重なる画素に隣接する画素に他の幅広線分が含まれない幅サイズが設定されることを特徴とする請求項2記載の線分画像作成方法。
  5. 所望の線分の2次元画像を作成する線分画像作成装置であって、
    所望の線分を中心にして前記所望の線分の法線方向に1画素サイズ以上の幅を持った幅広線分を作成する幅広線分作成部と、
    作成された幅広線分と所定のサイズの画像を構成する複数の画素との位置関係に基づいて各画素の階調値を設定し、各画素の階調値が設定された画像データを出力する階調値設定部と、
    を備えたことを特徴とする線分画像作成装置。
JP2021024514A 2021-02-18 2021-02-18 線分画像作成方法及び線分画像作成装置 Pending JP2022126438A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021024514A JP2022126438A (ja) 2021-02-18 2021-02-18 線分画像作成方法及び線分画像作成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024514A JP2022126438A (ja) 2021-02-18 2021-02-18 線分画像作成方法及び線分画像作成装置

Publications (1)

Publication Number Publication Date
JP2022126438A true JP2022126438A (ja) 2022-08-30

Family

ID=83059078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024514A Pending JP2022126438A (ja) 2021-02-18 2021-02-18 線分画像作成方法及び線分画像作成装置

Country Status (1)

Country Link
JP (1) JP2022126438A (ja)

Similar Documents

Publication Publication Date Title
JP2018017526A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP7241570B2 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
TWI772803B (zh) 像差修正器以及多電子束照射裝置
KR102371265B1 (ko) 멀티 전자 빔 조사 장치
JP2022103425A (ja) 検査方法
JP7386619B2 (ja) 電子ビーム検査方法及び電子ビーム検査装置
WO2023074082A1 (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2022130838A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
JP2020119682A (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
WO2021250997A1 (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
WO2022024499A1 (ja) パターン検査装置及び輪郭線同士のアライメント量取得方法
JP2022163680A (ja) マルチ電子ビーム画像取得方法、マルチ電子ビーム画像取得装置、及びマルチ電子ビーム検査装置
JP7385493B2 (ja) マルチ荷電粒子ビーム位置合わせ方法及びマルチ荷電粒子ビーム検査装置
JP7344725B2 (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
JP2022174714A (ja) マルチ2次電子ビームの位置合わせ方法、マルチ2次電子ビームの位置合わせ装置、及び電子ビーム検査装置
JP7171378B2 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2021077492A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2022126438A (ja) 線分画像作成方法及び線分画像作成装置
JP7326480B2 (ja) パターン検査装置及びパターン検査方法
TWI818407B (zh) 多射束圖像取得裝置及多射束圖像取得方法
WO2021039419A1 (ja) 電子銃及び電子ビーム照射装置
TWI775448B (zh) 多電子束檢查裝置及其調整方法
WO2021205728A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
WO2024009912A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法