JP2022080265A - Compaction method - Google Patents

Compaction method Download PDF

Info

Publication number
JP2022080265A
JP2022080265A JP2021151006A JP2021151006A JP2022080265A JP 2022080265 A JP2022080265 A JP 2022080265A JP 2021151006 A JP2021151006 A JP 2021151006A JP 2021151006 A JP2021151006 A JP 2021151006A JP 2022080265 A JP2022080265 A JP 2022080265A
Authority
JP
Japan
Prior art keywords
compaction
construction surface
less
civil engineering
engineering structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021151006A
Other languages
Japanese (ja)
Other versions
JP7035258B1 (en
Inventor
健二 林
Kenji Hayashi
信也 松本
Shinya Matsumoto
健二 寺内
Kenji Terauchi
洋 渡邉
Hiroshi Watanabe
剛 取違
Takeshi Torii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020190844A external-priority patent/JP6947898B1/en
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2021151006A priority Critical patent/JP7035258B1/en
Application granted granted Critical
Publication of JP7035258B1 publication Critical patent/JP7035258B1/en
Publication of JP2022080265A publication Critical patent/JP2022080265A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently compact a civil engineering structure.
SOLUTION: A method for compacting a slope of a civil engineering structure using a compaction part coupled to a vibration generation part that vibrates in a predetermined direction. The compaction part comprises a plate member having: a construction surface; a back surface that is positioned on the opposite side to the construction surface and faces the vibration generation part in the predetermined direction; and a plurality of through holes passing through between the construction surface and the back surface. The compaction method vibrates the compaction part by actuating the vibration generation part in a state in which the construction surface of the plate member is pressed against the slope to compact the slope.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、土木構造物を締固める締固め方法に関する。 The present invention relates to a compaction method for compacting a civil engineering structure.

コンクリート材料又はCSG(Cemented Sand and Gravel)材料を盛立ててダム、堤防及び道路等の土木構造物を構築する場合に、未固化の土木構造物を締固める作業が行われる。特許文献1には、土木構造物の締固め作業に用いられる締固めアタッチメント装置が開示されている。 When a concrete material or a CSG (Cemented Sand and Gravel) material is piled up to construct a civil engineering structure such as a dam, an embankment, and a road, the work of compacting the unsolidified civil engineering structure is performed. Patent Document 1 discloses a compaction attachment device used for compaction work of a civil engineering structure.

特許文献1に開示された締固めアタッチメント装置は、建設機械のアームに取付け可能に形成された基体と、基体に支持された振動発生部と、振動発生部に連結された板部材と、を備えている。板部材には、土木構造物に押当てられる施工面が形成されている。板部材の施工面を土木構造物に押当てた状態で振動発生部を作動させて板部材を振動させることにより、土木構造物が締固められる。 The compaction attachment device disclosed in Patent Document 1 includes a substrate formed so as to be attachable to an arm of a construction machine, a vibration generating portion supported by the substrate, and a plate member connected to the vibration generating portion. ing. The board member is formed with a construction surface that is pressed against the civil engineering structure. The civil engineering structure is compacted by operating the vibration generating portion to vibrate the plate member while the construction surface of the plate member is pressed against the civil engineering structure.

特開2009-167124号公報Japanese Unexamined Patent Publication No. 2009-167124

特許文献1に開示されたアタッチメント装置では、板部材の施工面を土木構造物に押当てるときに、板部材の施工面と土木構造物の表面との間に空気が封じ込められることがある。この場合には、板部材の振動が土木構造物に十分に伝わらず、締固めの作業効率が悪くなるおそれがある。 In the attachment device disclosed in Patent Document 1, when the construction surface of the plate member is pressed against the civil engineering structure, air may be trapped between the construction surface of the plate member and the surface of the civil engineering structure. In this case, the vibration of the plate member may not be sufficiently transmitted to the civil engineering structure, and the compaction work efficiency may deteriorate.

本発明は、土木構造物を効率よく締固めることを目的とする。 An object of the present invention is to efficiently compact a civil engineering structure.

本発明は、最大粗骨材寸法が40mmを超えて200mm以下であり単位セメント量が90kg/m以上180kg/m以下であり水セメント比が50%以上120%以下でありスランプ値が3cm未満である超硬練りコンクリート材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、締固め部は、施工面と、施工面とは反対側に位置し振動発生部と所定の方向に対向する背面と、施工面と背面と間を貫通する複数の貫通孔と、を有する板部材と、を備えており、施工面における貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、施工面における貫通孔の分布密度は、30個/m以上100個/m以下であり、施工面の1m当たりの振動発生部の起振力は、50kN/m以上150kN/m以下であり、締固め方法は、板部材の施工面を法面に押当てた状態で振動発生部を作動させて締固め部を振動させ、法面を締固める。 In the present invention, the maximum coarse aggregate size is more than 40 mm and 200 mm or less, the unit cement amount is 90 kg / m 3 or more and 180 kg / m 3 or less, the water cement ratio is 50% or more and 120% or less, and the slump value is 3 cm. It is a compaction method that compacts the slope of a civil engineering structure made of less than super hard-kneaded concrete material using a compaction part connected to a vibration-generating part that vibrates in a predetermined direction. The portion is a plate member having a construction surface, a back surface located on the opposite side of the construction surface and facing a vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. The opening ratio, which is the ratio of the total opening area of each through hole on the construction surface, is 0.5% or more and 4.0% or less, and the distribution density of the through holes on the construction surface is 30 pieces. / M 2 or more and 100 pieces / m 2 or less, the vibrating force of the vibration generating part per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less, and the compaction method is that of the plate member. With the construction surface pressed against the slope, the vibration generating part is operated to vibrate the compacted part, and the slope is compacted.

また、本発明は、最大粗骨材寸法が40mmを超えて90mm以下であり単位セメント量が50kg/m以上120kg/m以下であり水セメント比が50%以上120%以下であるCSG材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、締固め部は、施工面と、施工面とは反対側に位置し振動発生部と所定の方向に対向する背面と、施工面と背面と間を貫通する複数の貫通孔と、を有する板部材と、を備えており、施工面における貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、施工面における貫通孔の分布密度は、30個/m以上100個/m以下であり、施工面の1m当たりの振動発生部の起振力は、50kN/m以上150kN/m以下であり、締固め方法は、板部材の施工面を法面に押当てた状態で振動発生部を作動させて締固め部を振動させ、法面を締固める。 Further, in the present invention, the maximum coarse aggregate size is more than 40 mm and 90 mm or less, the unit cement amount is 50 kg / m 3 or more and 120 kg / m 3 or less, and the water cement ratio is 50% or more and 120% or less. This is a compaction method in which the slope of a civil engineering structure formed in 1 is compacted using a compaction portion connected to a vibration generating portion that vibrates in a predetermined direction. The compaction portion is a construction surface and construction. It is provided with a plate member having a back surface located on the opposite side of the surface and facing a vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. The opening ratio, which is the total ratio of the opening areas of the through holes, is 0.5% or more and 4.0% or less, and the distribution density of the through holes on the construction surface is 30 pieces / m 2 or more and 100 pieces / m. It is 2 or less, and the vibrating force of the vibration generating part per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less, and the compaction method is to press the construction surface of the plate member against the slope. In this state, the vibration generating part is operated to vibrate the compacted part, and the slope is compacted.

本発明によれば、土木構造物を効率よく締固めることができる。 According to the present invention, the civil engineering structure can be efficiently compacted.

本発明の実施形態に係る締固めアタッチメント装置を用いて土木構造物を締固めている状態を示す図である。It is a figure which shows the state which compacted the civil engineering structure by using the compaction attachment device which concerns on embodiment of this invention. (a)は、図1に示す締固めアタッチメント装置の側面図であり、(b)は、図1に示すアタッチメント装置の底面図である。(A) is a side view of the compaction attachment device shown in FIG. 1, and (b) is a bottom view of the attachment device shown in FIG. 1. 締固めアタッチメント装置を用いて土木構造物の法面を締固めている状態を示す拡大図である。It is an enlarged view which shows the state which the slope of a civil engineering structure is compacted by using the compaction attachment device.

以下、本発明の実施形態に係る締固めアタッチメント装置100及び締固め方法について、図面を参照して説明する。 Hereinafter, the compaction attachment device 100 and the compaction method according to the embodiment of the present invention will be described with reference to the drawings.

図1は、土木構造物1を構築している状態を示す図である。図1に示すように、締固めアタッチメント装置100及び締固め方法は、コンクリート材料又はCSG材料で土木構造物1を構築する工事において用いられる。ここでは、土木構造物1がダムにおける堤体の一部である場合について説明するが、土木構造物1は、堤防における堤体であってもよいし道路における盛土であってもよい。 FIG. 1 is a diagram showing a state in which the civil engineering structure 1 is constructed. As shown in FIG. 1, the compaction attachment device 100 and the compaction method are used in the construction of constructing the civil engineering structure 1 from the concrete material or the CSG material. Here, the case where the civil engineering structure 1 is a part of the embankment in the dam will be described, but the civil engineering structure 1 may be the embankment in the embankment or the embankment in the road.

まず、土木構造物1を構築するための材料であるコンクリート材料又はCSG材料について説明する。 First, a concrete material or a CSG material, which is a material for constructing the civil engineering structure 1, will be described.

コンクリート材料は、寸法別に選定された骨材にセメント及び水を混合して製造されるセメント系材料である。スランプ値が3cm未満となるように、スランプ値が3cm以上である有スランプコンクリート材料に比して単位セメント量及び単位水量を少なくした貧配合のコンクリート材料は、超硬練りコンクリート材料とも呼ばれる。超硬練りコンクリート材料の配合は、例えば、最大粗骨材寸法が40mmを超えて200mm以下であり、単位セメント量が90kg/m以上180kg/m以下であり、水セメント比が50%以上120%以下である。 The concrete material is a cement-based material produced by mixing cement and water with aggregates selected according to dimensions. A poorly mixed concrete material having a unit cement amount and a unit water amount smaller than that of a slump concrete material having a slump value of 3 cm or more so that the slump value is less than 3 cm is also called a cemented carbide concrete material. For example, the maximum coarse aggregate size is more than 40 mm and 200 mm or less, the unit cement amount is 90 kg / m 3 or more and 180 kg / m 3 or less, and the water cement ratio is 50% or more. It is 120% or less.

なお、「スランプ値」は、固化前のセメント系材料の軟らかさを示す値であり、スランプ値が大きいほど軟らかいことを意味する。スランプ値は、例えばJIS(日本工業規格)A 1101:2005に規定されているスランプ試験方法により測定される。 The "slump value" is a value indicating the softness of the cement-based material before solidification, and the larger the slump value is, the softer it is. The slump value is measured by, for example, the slump test method specified in JIS (Japanese Industrial Standards) A 1101: 2005.

CSG材料は、建設現場周辺で得られる砂礫や岩塊等の掘削土質材料(現地発生材とも呼ばれる)にセメント及び水を混合して製造されるセメント系材料である。CSG材料の配合は、例えば、最大粗骨材寸法が40mmを超えて90mm以下であり、単位セメント量が50kg/m以上120kg/m以下であり、水セメント比が50%以上120%以下である。CSG材料は、セメントの凝固反応を遅延させる凝固遅延剤を含んでいてもよい。 The CSG material is a cement-based material produced by mixing cement and water with excavated soil materials (also called locally generated materials) such as gravel and rock mass obtained around a construction site. The composition of the CSG material is, for example, that the maximum coarse aggregate size is more than 40 mm and 90 mm or less, the unit cement amount is 50 kg / m 3 or more and 120 kg / m 3 or less, and the water cement ratio is 50% or more and 120% or less. Is. The CSG material may contain a coagulation retarder that delays the coagulation reaction of the cement.

超硬練りコンクリート材料及びCSG材料は、有スランプコンクリート材料に比して単位セメント量が少ないため、原材料費を低減することができる。また、超硬練りコンクリート材料及びCSG材料は、有スランプコンクリート材料に比して単位水量が少なく未固化状態において流動性が低いため、型枠を設けずに所望の形状に打設することができ、土木構造物1の構築期間を短縮することができる。さらに、超硬練りコンクリート材料及びCSG材料は、有スランプコンクリート材料に比して単位セメント量及び単位水量が少ないため、水和熱による温度上昇を抑えることができ、水和熱に起因するひび割れを軽減することができる。 Since the cemented carbide material and the CSG material have a smaller unit cement amount than the slump concrete material with slump, the raw material cost can be reduced. Further, since the cemented carbide concrete material and the CSG material have a smaller unit water amount and lower fluidity in the unsolidified state than the slump concrete material with slump, they can be cast into a desired shape without providing a formwork. , The construction period of the civil engineering structure 1 can be shortened. Furthermore, since the ultra-hardened concrete material and the CSG material have a smaller unit cement amount and unit water amount than the slump concrete material, the temperature rise due to the heat of hydration can be suppressed, and cracks caused by the heat of hydration can be prevented. Can be mitigated.

次に、図1を参照して、土木構造物1を構築する手順の概略を説明する。 Next, with reference to FIG. 1, the outline of the procedure for constructing the civil engineering structure 1 will be described.

まず、地盤上に超硬練りコンクリート材料又はCSG材料を盛立てて断面台形状の土木構造物1を形成する。具体的には、不図示のダンプトラック等を用いて搬送された超硬練りコンクリート材料又はCSG材料を荷卸しして、不図示のブルドーザ等を用いて敷き均し、転圧ローラ、振動ローラ等の大型重機により締固める。超硬練りコンクリート材料又はCSG材料の荷卸し、敷き均し及び締固めを複数回繰り返して複数の層を形成することにより、断面台形状の土木構造物1が形成される。 First, a cemented carbide kneaded concrete material or a CSG material is piled up on the ground to form a civil engineering structure 1 having a trapezoidal cross section. Specifically, the cemented carbide concrete material or CSG material transported using a dump truck (not shown) is unloaded, spread evenly using a bulldozer (not shown), a rolling roller, a vibrating roller, etc. Compact with a large heavy machine. By repeating unloading, laying and compaction of the cemented carbide concrete material or CSG material a plurality of times to form a plurality of layers, a civil engineering structure 1 having a trapezoidal cross section is formed.

超硬練りコンクリート材料又はCSG材料の締固めでは、未固化の超硬練りコンクリート材料又はCSG材料の表面(法面1a及び天面1b)から振動を加えて超硬練りコンクリート材料又はCSG材料から空気を除去して密度を向上させ、併せて未固化の超硬練りコンクリート材料又はCSG材料の表面を平滑に仕上げる必要がある。締固めを行うことにより構造体としての強度が確保できる。 In the compaction of a cemented carbide concrete material or CSG material, air is applied from the surface (slope 1a and top surface 1b) of the uncured carbide concrete material or CSG material to air from the cemented carbide concrete material or CSG material. It is necessary to remove the above to improve the density, and at the same time, to finish the surface of the unsolidified cemented carbide material or CSG material to be smooth. By compacting, the strength of the structure can be secured.

以上により、土木構造物1の構築が完了する。 With the above, the construction of the civil engineering structure 1 is completed.

締固めアタッチメント装置100及び締固め方法は、土木構造物1の締固め作業において用いられる。図1では、締固めアタッチメント装置100を用いて土木構造物1の法面1aを締固めている状態を示している。 The compaction attachment device 100 and the compaction method are used in the compaction work of the civil engineering structure 1. FIG. 1 shows a state in which the slope 1a of the civil engineering structure 1 is compacted by using the compaction attachment device 100.

締固めアタッチメント装置100は、建設機械2におけるアーム2aの先端に揺動自在に装着されて用いられる。建設機械2は、例えばバックホウであり、自走可能である。建設機械2及びアーム2aを移動させて締固めアタッチメント装置100を順次移動させることにより、土木構造物1の全体を締固めることが可能である。 The compaction attachment device 100 is used by being swingably mounted on the tip of the arm 2a in the construction machine 2. The construction machine 2 is, for example, a backhoe and is self-propelled. By moving the construction machine 2 and the arm 2a to sequentially move the compaction attachment device 100, it is possible to compact the entire civil engineering structure 1.

なお、土木構造物1の締固めには、自走可能な不図示の転圧ローラ又は振動ローラを用いることができるが、転圧ローラ又は振動ローラを法面1aで移動させるのは困難である。締固めアタッチメント装置100は、建設機械2の駆動により法面1aで容易に移動可能であるため、法面1aの締固めにより好適である。同様に、締固めアタッチメント装置100は、土木構造物1の狭所での締固め作業にも好適である。 A self-propelled rolling roller or vibrating roller (not shown) can be used for compacting the civil engineering structure 1, but it is difficult to move the rolling roller or vibrating roller on the slope 1a. .. Since the compaction attachment device 100 can be easily moved on the slope 1a by driving the construction machine 2, it is more suitable for compaction of the slope 1a. Similarly, the compaction attachment device 100 is also suitable for compaction work in a narrow space of the civil engineering structure 1.

締固めアタッチメント装置100は、アーム2aに取付け可能に形成された基体10と、基体10に支持された起振機(振動発生部)20と、起振機20に連結された締固め部30と、を備えている。締固め部30は、土木構造物1に押当てられる板部材31を備えている。板部材31を土木構造物1に押当てた状態で起振機20を作動させて締固め部30を振動させると、土木構造物1が締固められる。 The compaction attachment device 100 includes a substrate 10 that can be attached to the arm 2a, a vibration exciter (vibration generation unit) 20 supported by the substrate 10, and a compaction unit 30 connected to the exciter 20. , Is equipped. The compaction portion 30 includes a plate member 31 that is pressed against the civil engineering structure 1. When the vibrator 20 is operated in a state where the plate member 31 is pressed against the civil engineering structure 1 to vibrate the compaction portion 30, the civil engineering structure 1 is compacted.

板部材31を用いた締固めにおいて、板部材31と土木構造物1の表面との間に空気が封じ込められ介在していると、板部材31の振動が土木構造物1に十分に伝わらなくなる。また、振動する板部材31と土木構造物1との間に介在する空気が振動により圧縮され解放されることで、超硬練りコンクリート材料又はCSG材料に混合された骨材が土木構造物1から分離・剥離して表面の平滑性が損なわれる等、締固めが不十分、不良となる。その結果、締固めの作業効率が悪くなるおそれがある。 In compaction using the plate member 31, if air is contained and intervened between the plate member 31 and the surface of the civil engineering structure 1, the vibration of the plate member 31 is not sufficiently transmitted to the civil engineering structure 1. Further, the air interposed between the vibrating plate member 31 and the civil engineering structure 1 is compressed and released by the vibration, so that the aggregate mixed with the super hard kneaded concrete material or the CSG material is released from the civil engineering structure 1. Insufficient compaction and defects such as separation and peeling impairing the smoothness of the surface. As a result, the compaction work efficiency may deteriorate.

そこで、締固めアタッチメント装置100の締固め部30には、図2に示すように、板部材31を貫通する貫通孔31cが複数形成されている。そのため、板部材31と土木構造物1の表面との間に介在する空気は、板部材31を振動させる締固め作業時に貫通孔31cを通じて抜ける。したがって、板部材31と土木構造物1の表面との間に空気が封じ込められ介在することを防止することができ、板部材31の振動を土木構造物1に十分に伝えることができる。これにより、土木構造物1を効率よく締固めることができる。 Therefore, as shown in FIG. 2, a plurality of through holes 31c that penetrate the plate member 31 are formed in the compaction portion 30 of the compaction attachment device 100. Therefore, the air interposed between the plate member 31 and the surface of the civil engineering structure 1 escapes through the through hole 31c during the compaction work in which the plate member 31 is vibrated. Therefore, it is possible to prevent air from being trapped and intervening between the plate member 31 and the surface of the civil engineering structure 1, and the vibration of the plate member 31 can be sufficiently transmitted to the civil engineering structure 1. As a result, the civil engineering structure 1 can be efficiently compacted.

締固めアタッチメント装置100の構造を、図2を参照して詳述する。図2(a)は、締固めアタッチメント装置100の断面図であり、図2(b)は、締固めアタッチメント装置100の底面図(図2(a)における矢印IIBの方向に見た図)である。 The structure of the compaction attachment device 100 will be described in detail with reference to FIG. FIG. 2A is a cross-sectional view of the compaction attachment device 100, and FIG. 2B is a bottom view of the compaction attachment device 100 (viewed in the direction of arrow IIB in FIG. 2A). be.

図2(a)に示すように、基体10は、アーム2a(図1参照)の先端に連結されるブラケット11と、ブラケット11に取付けられたフレーム12と、を備えている。フレーム12は、断面が略コ字状に形成されており、弾性部材13を介して起振機20を挟持している。弾性部材13は、例えば、ゴム板と鋼板とを交互に積層した積層ゴムである。 As shown in FIG. 2A, the substrate 10 includes a bracket 11 connected to the tip of the arm 2a (see FIG. 1) and a frame 12 attached to the bracket 11. The frame 12 has a substantially U-shaped cross section, and holds the oscillator 20 via the elastic member 13. The elastic member 13 is, for example, laminated rubber in which rubber plates and steel plates are alternately laminated.

起振機20は、図2(a)における上下方向に振動可能に形成されている。図2(a)では、起振機20の筐体のみが示されており、起振機20の内部構造の図示が省略されている。起振機20の内部構造を簡単に説明すると、起振機20は、電動モータと、電動モータの駆動により同位相で互いに逆回転する一対の回転軸と、一対の回転軸に偏心してそれぞれ設けられた一対の回転子と、を備えている。一対の回転軸は、図2(a)における紙面垂直方向に延びかつ図2(a)における左右方向に並列して設けられている。そのため、電動モータの駆動により一対の回転子が回転すると、左右方向の遠心力は打ち消され、上下方向の遠心力だけが残る。その結果、上下方向に起振力が生じ、起振機20が上下方向に振動する。以下において、起振機20が振動する方向(図2(a)における上下方向)を「振動方向」とも称する。 The oscillator 20 is formed so as to be vibrable in the vertical direction in FIG. 2A. In FIG. 2A, only the housing of the exciter 20 is shown, and the illustration of the internal structure of the exciter 20 is omitted. Briefly explaining the internal structure of the oscillating machine 20, the oscillating machine 20 is provided with an electric motor, a pair of rotating shafts that rotate in opposite phases in the same phase by driving the electric motor, and a pair of rotating shafts that are eccentric to each other. It is equipped with a pair of rotors and a pair of rotors. The pair of rotation axes extend in the direction perpendicular to the paper surface in FIG. 2A and are provided in parallel in the left-right direction in FIG. 2A. Therefore, when the pair of rotors are rotated by the drive of the electric motor, the centrifugal force in the left-right direction is canceled and only the centrifugal force in the up-down direction remains. As a result, a vibrating force is generated in the vertical direction, and the vibrating machine 20 vibrates in the vertical direction. Hereinafter, the direction in which the oscillator 20 vibrates (the vertical direction in FIG. 2A) is also referred to as a “vibration direction”.

起振機20は振動を伝達するベース部21を有する。ベース部21は例えば、少なくとも一部にプレート(板)形状の部分を含み、プレート形状の板面は、板部材31の板面である背面31bと対向している。起振機20のベース部21は、ボルトナット(不図示)を用いて締固め部30と連結されている。起振機20の振動はベース部21を通じて締固め部30に伝達される。 The vibration exciter 20 has a base portion 21 for transmitting vibration. The base portion 21 includes, for example, at least a part thereof having a plate-shaped portion, and the plate-shaped plate surface faces the back surface 31b, which is the plate surface of the plate member 31. The base portion 21 of the exciter 20 is connected to the compaction portion 30 by using bolts and nuts (not shown). The vibration of the oscillator 20 is transmitted to the compaction portion 30 through the base portion 21.

締固め部30は、板部材31と、板部材31を補強する補強リブ32と、を備えている。そのため、締固め時に板部材31が変形するのを補強リブ32によって防止することができる。したがって、板部材31を軽量化でき効率よく土木構造物1(図1参照)を締固めることができる。補強リブ32は、板部材31の板面である背面31bと交差して延在する部分を有する鋼製の部材であって、板部材31の変形を防止するものである。 The compaction portion 30 includes a plate member 31 and a reinforcing rib 32 for reinforcing the plate member 31. Therefore, the reinforcing rib 32 can prevent the plate member 31 from being deformed during compaction. Therefore, the plate member 31 can be reduced in weight and the civil engineering structure 1 (see FIG. 1) can be compacted efficiently. The reinforcing rib 32 is a steel member having a portion extending so as to intersect the back surface 31b, which is the plate surface of the plate member 31, and prevents the plate member 31 from being deformed.

板部材31は、土木構造物1に押当てられる施工面31aと、施工面31aとは反対側に位置する背面31bと、施工面31aと背面31bとの間を貫通する複数の貫通孔31cと、を有している。図2(a)及び(b)に示すように、補強リブ32は、背面31bに格子状に設けられ、連結されている。 The plate member 31 includes a construction surface 31a pressed against the civil engineering structure 1, a back surface 31b located on the opposite side of the construction surface 31a, and a plurality of through holes 31c penetrating between the construction surface 31a and the back surface 31b. ,have. As shown in FIGS. 2A and 2B, the reinforcing ribs 32 are provided on the back surface 31b in a grid pattern and are connected to each other.

貫通孔31cの断面は、略円形に形成されており、貫通孔31cの内径は、施工面31aと背面31bとの間に渡って略同じである。貫通孔31cの中心軸は、振動方向に沿って延びている。貫通孔31cの断面は、円形に限られず、例えば四角形であってもよい。貫通孔31cの断面積は、施工面31aと背面31bとの間に渡って同じでなくてもよく、例えば施工面31aから背面31bに向かうにつれ拡大していてもよい。また、貫通孔31cの中心軸は、振動方向に沿っていなくてもよく、施工面31aと背面31bとの間を貫通する範囲で振動方向に対して傾いていてもよい。 The cross section of the through hole 31c is formed in a substantially circular shape, and the inner diameter of the through hole 31c is substantially the same across between the construction surface 31a and the back surface 31b. The central axis of the through hole 31c extends along the vibration direction. The cross section of the through hole 31c is not limited to a circle, and may be, for example, a quadrangle. The cross-sectional area of the through hole 31c does not have to be the same between the construction surface 31a and the back surface 31b, and may be expanded, for example, from the construction surface 31a to the back surface 31b. Further, the central axis of the through hole 31c does not have to be along the vibration direction, and may be inclined with respect to the vibration direction within a range of penetrating between the construction surface 31a and the back surface 31b.

板部材31の背面31bは、振動方向に起振機20と対向しており、背面31bの一部は、振動方向に背面31bを見て起振機20に覆われた被覆領域CAとなっている。貫通孔31cの一部は、被覆領域CAに開口している。 The back surface 31b of the plate member 31 faces the oscillator 20 in the vibration direction, and a part of the back surface 31b becomes a covering region CA covered with the oscillator 20 by looking at the back surface 31b in the vibration direction. There is. A part of the through hole 31c is open to the covering region CA.

起振機20の振動を板部材31に伝達するためには、所定の大きさの被覆領域CAが必要となる。仮に、起振機20が板部材31の背面31bに密着しており貫通孔31cの一部を閉塞していると、貫通孔31cの一部から板部材31と土木構造物1の表面との間の空気が抜けなくなる。その結果、板部材31と土木構造物1の表面との間に空気が封じ込められ、締固めの作業効率が悪くなるおそれがある。特に、被覆領域CAは起振機20に対向しており、かつ、板部材31の中心部に位置するため、締固め不良は顕著となる。 In order to transmit the vibration of the oscillator 20 to the plate member 31, a covering region CA having a predetermined size is required. If the exciter 20 is in close contact with the back surface 31b of the plate member 31 and partially closes the through hole 31c, the plate member 31 and the surface of the civil engineering structure 1 are contacted from a part of the through hole 31c. The air in between cannot escape. As a result, air is trapped between the plate member 31 and the surface of the civil engineering structure 1, and the compaction work efficiency may deteriorate. In particular, since the covering region CA faces the oscillator 20 and is located at the center of the plate member 31, compaction failure becomes remarkable.

締固めアタッチメント装置100では、図2(a)及び(b)に示すように、補強リブ32の突出する部分に起振機20が接合されており、補強リブ32は、板部材31の背面31bと起振機20とを離間している。より具体的には、補強リブ32は起振機20のベース部21と板部材31の背面31bとに所定の空間を確保するように離間する。そのため、被覆領域CAに開口する貫通孔31cからも、板部材31の施工面31aと土木構造物1(図1参照)の表面との間の空気が抜ける。したがって、板部材31の施工面31aと土木構造物1の表面との間に空気が封じ込められ、介在していることをより確実に防止することができる。これにより、土木構造物1をより効率的に締固めることができる。 In the compaction attachment device 100, as shown in FIGS. 2A and 2B, a vibration exciter 20 is joined to a protruding portion of the reinforcing rib 32, and the reinforcing rib 32 is the back surface 31b of the plate member 31. And the oscillator 20 are separated from each other. More specifically, the reinforcing rib 32 is separated from the base portion 21 of the exciter 20 and the back surface 31b of the plate member 31 so as to secure a predetermined space. Therefore, air between the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1 (see FIG. 1) also escapes from the through hole 31c that opens in the covering region CA. Therefore, it is possible to more reliably prevent air from being trapped and intervening between the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1. As a result, the civil engineering structure 1 can be compacted more efficiently.

ところで、施工面31aにおける貫通孔31cの開口面積が小さ過ぎたり、施工面31aにおける貫通孔31cの分布密度が小さ過ぎたりする場合には、板部材31の施工面31aと土木構造物1の表面との間の空気が抜けにくくなる。一方、施工面31aにおける貫通孔31cの開口面積が大き過ぎたり、施工面31aにおける貫通孔31cの分布密度が大き過ぎたりする場合には、空気は抜けやすくなるものの、施工面31aと土木構造物1との接触面積が小さくなり、土木構造物1を締固めにくくなる。 By the way, when the opening area of the through hole 31c on the construction surface 31a is too small or the distribution density of the through hole 31c on the construction surface 31a is too small, the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1 It becomes difficult for the air between and to escape. On the other hand, if the opening area of the through hole 31c on the construction surface 31a is too large or the distribution density of the through hole 31c on the construction surface 31a is too large, air can easily escape, but the construction surface 31a and the civil engineering structure The contact area with 1 becomes small, and it becomes difficult to compact the civil engineering structure 1.

そこで、施工面31aにおける貫通孔31cの開口面積及び分布密度を変えて試験を行った。締固め板である板部材31の大きさに関して、法面1aの傾斜方向である縦方向の長さは1.4m又は1.7mであり、水平方向である横方向の寸法は1.3mである。なお、締固め板である板部材31の好適な大きさは、縦方向が0.9m以上、2.0m以下であり、横方向が0.9m以上、1.6m以下である。試験の良否は、土木構造物1の締固め作業時における超硬練りコンクリート材料又はCSG材料の分離・剥離の有無、及び、締固め作業後における土木構造物1の表面の平滑度を目視により判断した。 Therefore, the test was conducted by changing the opening area and the distribution density of the through hole 31c on the construction surface 31a. Regarding the size of the plate member 31 which is a compaction plate, the vertical length of the slope 1a in the inclined direction is 1.4 m or 1.7 m, and the horizontal dimension in the horizontal direction is 1.3 m. be. The suitable size of the plate member 31 which is a compaction plate is 0.9 m or more and 2.0 m or less in the vertical direction, and 0.9 m or more and 1.6 m or less in the horizontal direction. The quality of the test is visually determined by the presence or absence of separation / peeling of the cemented carbide concrete material or CSG material during the compaction work of the civil engineering structure 1 and the smoothness of the surface of the civil engineering structure 1 after the compaction work. did.

その結果、施工面31aにおける貫通孔31cの各々の開口面積の合計の割合、つまり、板部材31の面積に対する開口面積の合計の割合(開口率)を、0.5%(m/m)以上4.0%(m/m)以下とし、施工面31aにおける貫通孔31cの分布密度を30個/m以上100個/m以下とした場合に、土木構造物1を良好に締固めることができた。また、施工面31aにおける貫通孔31cの開口率を0.5%(m/m)以上3.0%(m/m)以下とし、施工面31aにおける貫通孔31cの分布密度を30個/m以上75個/m以下とした場合に、土木構造物1をより良好に締固めることができた。開口率が上記の設定より小さいと、締固め時作業時に、硬練りコンクリート材料又はCSG材料の分離・剥離が多く観察され、開口率が上記の設定より大きいと締固め不足の部分が発生することが観察された。また、分布密度が上記の設定より小さいと締固め不足の部分が発生することが観察され、分布密度が上記の設定より大きいと硬練りコンクリート材料又はCSG材料の分離・剥離が多く観察された。 As a result, the ratio of the total opening area of each through hole 31c on the construction surface 31a, that is, the ratio of the total opening area to the area of the plate member 31 (opening ratio) is 0.5% (m 2 / m 2 ). ) Or more and 4.0% (m 2 / m 2 ) or less, and when the distribution density of the through holes 31c on the construction surface 31a is 30 pieces / m 2 or more and 100 pieces / m 2 or less, the civil engineering structure 1 is good. I was able to compact it. Further, the aperture ratio of the through hole 31c on the construction surface 31a is set to 0.5% (m 2 / m 2 ) or more and 3.0% (m 2 / m 2 ) or less, and the distribution density of the through hole 31c on the construction surface 31a is set. When the number was 30 pieces / m 2 or more and 75 pieces / m 2 or less, the civil engineering structure 1 could be compacted better. If the aperture ratio is smaller than the above setting, separation / peeling of the hardened concrete material or CSG material is often observed during compaction work, and if the opening ratio is larger than the above setting, a part of insufficient compaction occurs. Was observed. Further, when the distribution density was smaller than the above setting, it was observed that a portion of insufficient compaction occurred, and when the distribution density was larger than the above setting, separation / peeling of the hardened concrete material or the CSG material was often observed.

以上のことから、施工面31aにおける貫通孔31cの開口率は、0.5%(m/m)以上4.0%(m/m)以下であり、施工面31aにおける貫通孔31cの分布密度は30個/m以上100個/m以下であることが好ましい。また、施工面31aにおける貫通孔31cの開口率は、0.5%(m/m)以上3.0%(m/m)以下であり、施工面31aにおける貫通孔31cの分布密度が30個/m以上75個/m以下であることがより好ましい。 From the above, the opening ratio of the through hole 31c on the construction surface 31a is 0.5% (m 2 / m 2 ) or more and 4.0% (m 2 / m 2 ) or less, and the through hole on the construction surface 31a. The distribution density of 31c is preferably 30 pieces / m 2 or more and 100 pieces / m 2 or less. The aperture ratio of the through hole 31c on the construction surface 31a is 0.5% (m 2 / m 2 ) or more and 3.0% (m 2 / m 2 ) or less, and the distribution of the through hole 31c on the construction surface 31a. It is more preferable that the density is 30 pieces / m 2 or more and 75 pieces / m 2 or less.

なお、貫通孔31cの内径はφ20mm程度(12mm~30mm)が好ましい。更に好ましくは、12mm~24mmである。 The inner diameter of the through hole 31c is preferably about φ20 mm (12 mm to 30 mm). More preferably, it is 12 mm to 24 mm.

また、起振機20の起振力が小さ過ぎる場合には、土木構造物1に伝達される振動が弱く、土木構造物1を締固めにくくなるおそれがあり、起振機20の起振力が大き過ぎる場合には、土木構造物1の表面が崩れるおそれがある。 Further, if the vibrating force of the exciter 20 is too small, the vibration transmitted to the civil engineering structure 1 may be weak and it may be difficult to compact the civil engineering structure 1, and the vibrating force of the exciter 20 may be difficult to compact. If is too large, the surface of the civil engineering structure 1 may collapse.

そこで、施工面31aの1m当たりの起振機20の起振力を変えて試験を行った。その結果、施工面31aの1m当たりの起振機20の起振力を50kN/m以上150kN/m以下とした場合に、土木構造物1を良好に締固めることができた。また、施工面31aの1m当たりの起振機20の起振力を60kN/m以上120kN/m以下とした場合に、土木構造物1をより良好に締固めることができた。 Therefore, the test was conducted by changing the vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a. As a result, when the vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a was set to 50 kN / m 2 or more and 150 kN / m 2 or less, the civil engineering structure 1 could be satisfactorily compacted. Further, when the vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a was set to 60 kN / m 2 or more and 120 kN / m 2 or less, the civil engineering structure 1 could be compacted more satisfactorily.

以上のことから、施工面31aの1m当たりの起振機20の起振力は、50kN/m以上150kN/m以下であることが好ましい。また、施工面31aの1m当たりの起振機20の起振力は、60kN/m以上120kN/m以下であることがより好ましい。貫通孔31cの開口の合計である開口率と貫通孔31cの分布密度と起振機20の起振力を適切な条件に設定することで、効率的に締固めることができる。 From the above, it is preferable that the vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a is 50 kN / m 2 or more and 150 kN / m 2 or less. Further, it is more preferable that the vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a is 60 kN / m 2 or more and 120 kN / m 2 or less. Efficient compaction can be achieved by setting the aperture ratio, which is the total of the openings of the through holes 31c, the distribution density of the through holes 31c, and the vibration force of the exciter 20 under appropriate conditions.

なお、起振機20の起振力は、起振機20における回転子の偏心モーメント量に比例し、起振機20における回転軸の角振動数の自乗に比例して大きくなり、次式で表される。 The oscillating force of the oscillating machine 20 is proportional to the amount of eccentric moment of the rotor in the oscillating machine 20, and increases in proportion to the square of the angular frequency of the rotating shaft in the oscillating machine 20. expressed.

P=(Kω)×10-3
ただし、P:起振力(kN)
K:回転子の偏心モーメント量(kg・m)
ω:回転軸の角振動数(sec-1
P = (Kω 2 ) × 10 -3
However, P: vibration force (kN)
K: Rotor eccentric moment amount (kg ・ m)
ω: Angular frequency of the axis of rotation (sec -1 )

図2(a)に示すように、板部材31は、端部近傍において背面31b側に折られており、施工面31aに対して斜めに延びる傾斜面31dが板部材31に形成されている。そのため、板部材31を土木構造物1上で傾斜面31d側に容易にスライドさせることができる。 As shown in FIG. 2A, the plate member 31 is folded toward the back surface 31b in the vicinity of the end portion, and an inclined surface 31d extending diagonally with respect to the construction surface 31a is formed on the plate member 31. Therefore, the plate member 31 can be easily slid on the civil engineering structure 1 toward the inclined surface 31d.

図2(b)に示すように、締固めアタッチメント装置100では、振動方向に見て、施工面31aの中心C1は、起振機20の振動中心C2に対してオフセットして設けられている。施工面31aの中心C1は、振動方向に見て、起振機20の振動中心C2と一致していてもよい。 As shown in FIG. 2B, in the compaction attachment device 100, the center C1 of the construction surface 31a is provided so as to be offset from the vibration center C2 of the oscillator 20 when viewed in the vibration direction. The center C1 of the construction surface 31a may coincide with the vibration center C2 of the oscillator 20 when viewed in the vibration direction.

図3は、締固めアタッチメント装置100を用いて土木構造物1の法面1aを締固めている状態を示す拡大図である。図3に示すように、締固めアタッチメント装置100を用いて土木構造物1の法面1aを締固める場合には、施工面31aの中心C1が振動方向に見て起振機20の振動中心C2よりも鉛直下方に位置するように締固めアタッチメント装置100の向きを定めることが好ましい。この場合には、締固めアタッチメント装置100の重量により生じる板部材31の下端周りのモーメントが土木構造物1の法面1aに作用する。したがって、土木構造物1の法面1aをより強い力で押固めることができ、土木構造物1の法面1aをより効率的に締固めることができる。 FIG. 3 is an enlarged view showing a state in which the slope 1a of the civil engineering structure 1 is compacted by using the compaction attachment device 100. As shown in FIG. 3, when the slope 1a of the civil engineering structure 1 is compacted by using the compaction attachment device 100, the center C1 of the construction surface 31a is the vibration center C2 of the oscillator 20 when viewed in the vibration direction. It is preferable to orient the compaction attachment device 100 so that it is located vertically below. In this case, the moment around the lower end of the plate member 31 generated by the weight of the compaction attachment device 100 acts on the slope 1a of the civil engineering structure 1. Therefore, the slope 1a of the civil engineering structure 1 can be compacted with a stronger force, and the slope 1a of the civil engineering structure 1 can be compacted more efficiently.

以上の実施形態によれば、以下に示す作用効果を奏する。 According to the above embodiments, the following actions and effects are exhibited.

締固めアタッチメント装置100及び締固め方法では、板部材31を貫通する貫通孔31cが複数形成されている。そのため、板部材31と土木構造物1の表面との間に介在する空気は、板部材31を振動させる締固め作業時に貫通孔31cを通じて抜ける。したがって、板部材31と土木構造物1の表面との間に空気が封じ込められ介在することを防止することができ、板部材31の振動を土木構造物1に十分に伝えることができる。これにより、土木構造物1を効率よく締固めることができる。 In the compaction attachment device 100 and the compaction method, a plurality of through holes 31c that penetrate the plate member 31 are formed. Therefore, the air interposed between the plate member 31 and the surface of the civil engineering structure 1 escapes through the through hole 31c during the compaction work in which the plate member 31 is vibrated. Therefore, it is possible to prevent air from being trapped and intervening between the plate member 31 and the surface of the civil engineering structure 1, and the vibration of the plate member 31 can be sufficiently transmitted to the civil engineering structure 1. As a result, the civil engineering structure 1 can be efficiently compacted.

また、締固めアタッチメント装置100及び締固め方法では、補強リブ32は、板部材31の背面31bと起振機20のベース部21とを離間している。そのため、被覆領域CAに開口する貫通孔31cからも、板部材31の施工面31aと土木構造物1(図1参照)の表面との間の空気が抜ける。したがって、板部材31の施工面31aと土木構造物1の表面との間に空気が封じ込められるのをより確実に防止することができる。これにより、土木構造物1を効率的に締固めることができる。 Further, in the compaction attachment device 100 and the compaction method, the reinforcing rib 32 separates the back surface 31b of the plate member 31 from the base portion 21 of the oscillator 20. Therefore, air between the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1 (see FIG. 1) also escapes from the through hole 31c that opens in the covering region CA. Therefore, it is possible to more reliably prevent air from being trapped between the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1. As a result, the civil engineering structure 1 can be efficiently compacted.

また、施工面31aにおける貫通孔31cの各々の開口面積の合計の割合、つまり、板部材31の面積に対する開口面積の合計の割合(開口率)は、0.5%(m/m)以上4.0%(m/m)以下であり、施工面31aにおける貫通孔31cの分布密度は30個/m以上100個/m以下である。そのため、板部材31の施工面31aと土木構造物1の表面との間の空気を抜きつつ、施工面31aと土木構造物1との接触面積を確保することができる。したがって、土木構造物1をより効率的に締固めることができる。 Further, the ratio of the total opening area of each through hole 31c on the construction surface 31a, that is, the ratio of the total opening area to the area of the plate member 31 (opening ratio) is 0.5% (m 2 / m 2 ). It is 4.0% (m 2 / m 2 ) or less, and the distribution density of the through holes 31c on the construction surface 31a is 30 / m 2 or more and 100 / m 2 or less. Therefore, it is possible to secure a contact area between the construction surface 31a and the civil engineering structure 1 while removing air between the construction surface 31a of the plate member 31 and the surface of the civil engineering structure 1. Therefore, the civil engineering structure 1 can be compacted more efficiently.

施工面31aの1m当たりの起振機20の起振力は、50kN/m以上150kN/m以下である。そのため、土木構造物1に伝達される振動が弱くなり過ぎるのを防ぎつつ押固めつつ土木構造物1の表面が崩れるのを防ぐことができる。したがって、土木構造物1をより効率的に締固めることができる。 The vibrating force of the exciter 20 per 1 m 2 of the construction surface 31a is 50 kN / m 2 or more and 150 kN / m 2 or less. Therefore, it is possible to prevent the surface of the civil engineering structure 1 from collapsing while being compacted while preventing the vibration transmitted to the civil engineering structure 1 from becoming too weak. Therefore, the civil engineering structure 1 can be compacted more efficiently.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above-described embodiments show only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above-described embodiments. do not have.

上記実施形態では、起振機20は、補強リブ32の突出する部分に接合されているが、補強リブ32の突出する部分に不図示の天板が接合され、天板に起振機20が接合されていてもよい。また、起振機20は、板部材31の背面31bから離間した状態で補強リブ32の側面に接合されていてもよい。つまり、起振機20と板部材31の背面31bとが補強リブ32によって離間させていればよい。 In the above embodiment, the oscillating machine 20 is joined to the protruding portion of the reinforcing rib 32, but a top plate (not shown) is joined to the protruding portion of the reinforcing rib 32, and the oscillating machine 20 is attached to the top plate. It may be joined. Further, the vibration exciter 20 may be joined to the side surface of the reinforcing rib 32 in a state of being separated from the back surface 31b of the plate member 31. That is, the vibrator 20 and the back surface 31b of the plate member 31 may be separated from each other by the reinforcing ribs 32.

上記実施形態では、超硬練りコンクリート材料又はCSG材料で形成された土木構造物1を締固めアタッチメント装置100を用いて締固める場合について説明したが、締固めアタッチメント装置100は、有スランプコンクリート材料で形成された土木構造物1の締固めにも適用可能である。超硬練りコンクリート材料又はCSG材料は、有スランプコンクリート材料と比較して板部材31の押固めによる飛散が生じにくい。このような理由から、締固めアタッチメント装置100は、超硬練りコンクリート材料又はCSG材料で形成された土木構造物1の締固めに好適である。 In the above embodiment, the case where the civil engineering structure 1 made of the super hard kneaded concrete material or the CSG material is compacted by using the compaction attachment device 100 has been described, but the compaction attachment device 100 is made of a slump concrete material. It can also be applied to compaction of the formed civil engineering structure 1. The cemented carbide kneaded concrete material or CSG material is less likely to scatter due to compaction of the plate member 31 as compared with the slump concrete material with slump. For this reason, the compaction attachment device 100 is suitable for compaction of a civil engineering structure 1 made of a cemented carbide kneaded concrete material or a CSG material.

なお、上記実施形態の一部又は全部は、以下のようにも記載されうる。
[請求項1]
コンクリート材料又はCSG材料で形成された土木構造物を締固める締固めアタッチメント装置であって、
建設機械のアームに取付け可能に形成された基体と、
前記基体に支持され、所定の方向に振動する振動発生部と、
前記振動発生部に連結され、前記振動発生部の起振力により振動して前記土木構造物を締固める締固め部と、を備え、
前記締固め部は、
前記土木構造物に押当てられる施工面と、前記施工面とは反対側に位置し前記振動発生部と前記所定の方向に対向する背面と、前記施工面と前記背面との間を貫通する複数の貫通孔と、を有する板部材を備える、
締固めアタッチメント装置。
[請求項2]
前記締固め部は、前記背面に設けられ、前記板部材を補強する補強リブを更に備え、
前記複数の貫通孔の少なくとも一部は、前記所定の方向に前記背面を見て前記振動発生部によって覆われる領域に開口しており、
前記補強リブは、前記背面と前記振動発生部とを離間している、
請求項1に記載の締固めアタッチメント装置。
[請求項3]
前記施工面における前記貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、
前記施工面における前記貫通孔の分布密度は、30個/m以上100個/m以下である、
請求項1又は2に記載の締固めアタッチメント装置。
[請求項4]
前記施工面の1m当たりの前記振動発生部の起振力は、50kN/m以上150kN/m以下である、
請求項1から3のいずれか1項に記載の締固めアタッチメント装置。
[請求項5]
超硬練りコンクリート材料又はCSG材料で形成された土木構造物を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、
前記締固め部は、
施工面と、前記施工面とは反対側に位置し前記振動発生部と前記所定の方向に対向する背面と、前記施工面と前記背面と前の間を貫通する複数の貫通孔と、を有する板部材を備えており、
締固め方法は、前記板部材の前記施工面を前記土木構造物に押当てた状態で前記振動発生部を作動させて前記締固め部を振動させ、前記土木構造物を締固める、
締固め方法。
In addition, a part or all of the said embodiment may also be described as follows.
[Claim 1]
A compaction attachment device for compacting civil engineering structures made of concrete or CSG materials.
A base formed so that it can be attached to the arm of a construction machine,
A vibration generating part that is supported by the substrate and vibrates in a predetermined direction,
It is provided with a compaction portion which is connected to the vibration generating portion and vibrates by the vibrating force of the vibration generating portion to compact the civil engineering structure.
The compaction portion is
A plurality of construction surfaces pressed against the civil engineering structure, a back surface located on the opposite side of the construction surface and facing the vibration generating portion in the predetermined direction, and a plurality of penetrating surfaces between the construction surface and the back surface. With a through hole and a plate member having
Compaction attachment device.
[Claim 2]
The compaction portion is provided on the back surface and further includes a reinforcing rib for reinforcing the plate member.
At least a part of the plurality of through holes opens to a region covered by the vibration generating portion when looking at the back surface in the predetermined direction.
The reinforcing rib separates the back surface from the vibration generating portion.
The compaction attachment device according to claim 1.
[Claim 3]
The aperture ratio, which is the total ratio of the opening areas of the through holes on the construction surface, is 0.5% or more and 4.0% or less.
The distribution density of the through holes on the construction surface is 30 / m 2 or more and 100 / m 2 or less.
The compaction attachment device according to claim 1 or 2.
[Claim 4]
The vibrating force of the vibration generating portion per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less.
The compaction attachment device according to any one of claims 1 to 3.
[Claim 5]
A compaction method for compacting a civil engineering structure made of cemented carbide or CSG material using a compaction portion connected to a vibration generating portion that vibrates in a predetermined direction.
The compaction portion is
It has a construction surface, a back surface located on the opposite side of the construction surface and facing the vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface, the back surface, and the front surface. Equipped with a plate member,
In the compaction method, the vibration generating portion is operated in a state where the construction surface of the plate member is pressed against the civil engineering structure to vibrate the compaction portion, and the civil engineering structure is compacted.
Compaction method.

100・・・アタッチメント装置
1・・・土木構造物
2・・・建設機械
2a・・・アーム
10・・・基体
20・・・起振機(振動発生部)
30・・・締固め部
31・・・板部材
31a・・・施工面
31b・・・背面
31c・・・貫通孔
32・・・補強リブ
CA・・・被覆領域
100 ... Attachment device 1 ... Civil engineering structure 2 ... Construction machine 2a ... Arm 10 ... Base 20 ... Vibration generator (vibration generator)
30 ... Compaction portion 31 ... Plate member 31a ... Construction surface 31b ... Back surface 31c ... Through hole 32 ... Reinforcing rib CA ... Covering area

本発明は、最大粗骨材寸法が40mmを超えて200mm以下であり単位セメント量が90kg/m3以上180kg/m3以下であり水セメント比が50%以上120%以下でありスランプ値が3cm未満である超硬練りコンクリート材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、締固め部は、施工面と、施工面とは反対側に位置し振動発生部と所定の方向に対向する背面と、施工面と背面と間を貫通する複数の貫通孔と、を有する板部材と、を備えており、施工面における貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、施工面における貫通孔の分布密度は、30個/m2以上100個/m2以下であり、施工面の1m2当たりの振動発生部の起振力は、50kN/m2以上150kN/m2以下であり、締固め方法は、板部材の施工面を法面にのみ押当てた状態で振動発生部を作動させて締固め部を振動させ、法面のみを締固める。 In the present invention, the maximum coarse aggregate size is more than 40 mm and 200 mm or less, the unit cement amount is 90 kg / m 3 or more and 180 kg / m 3 or less, the water cement ratio is 50% or more and 120% or less, and the slump value is 3 cm. It is a compaction method that compacts the slope of a civil engineering structure made of less than super hard-kneaded concrete material using a compaction part connected to a vibration-generating part that vibrates in a predetermined direction. The portion is a plate member having a construction surface, a back surface located on the opposite side of the construction surface and facing a vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. The opening ratio, which is the ratio of the total opening area of each through hole on the construction surface, is 0.5% or more and 4.0% or less, and the distribution density of the through holes on the construction surface is 30 pieces. / M 2 or more and 100 pieces / m 2 or less, the vibrating force of the vibration generating part per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less, and the compaction method is that of the plate member. With the construction surface pressed only against the slope, the vibration generating part is operated to vibrate the compacted part, and only the slope is compacted.

また、本発明は、最大粗骨材寸法が40mmを超えて90mm以下であり単位セメント量が50kg/m3以上120kg/m3以下であり水セメント比が50%以上120%以下であるCSG材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、締固め部は、施工面と、施工面とは反対側に位置し振動発生部と所定の方向に対向する背面と、施工面と背面と間を貫通する複数の貫通孔と、を有する板部材と、を備えており、施工面における貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、施工面における貫通孔の分布密度は、30個/m2以上100個/m2以下であり、施工面の1m2当たりの振動発生部の起振力は、50kN/m2以上150kN/m2以下であり、締固め方法は、板部材の施工面を法面にのみ押当てた状態で振動発生部を作動させて締固め部を振動させ、法面のみを締固める。 Further, in the present invention, the CSG material having a maximum coarse aggregate size of more than 40 mm and 90 mm or less, a unit cement amount of 50 kg / m 3 or more and 120 kg / m 3 or less, and a water cement ratio of 50% or more and 120% or less. This is a compaction method in which the slope of a civil engineering structure formed in 1 is compacted using a compaction portion connected to a vibration generating portion that vibrates in a predetermined direction. The compaction portion is a construction surface and construction. It is provided with a plate member having a back surface located on the opposite side of the surface and facing a vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. The opening ratio, which is the total ratio of the opening areas of the through holes, is 0.5% or more and 4.0% or less, and the distribution density of the through holes on the construction surface is 30 pieces / m 2 or more and 100 pieces / m. 2 or less, the vibrating force of the vibration generating part per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less, and the compaction method is to push the construction surface of the plate member only to the slope. The vibration generating part is operated in the contacted state to vibrate the compacted part, and only the slope is compacted.

Claims (2)

最大粗骨材寸法が40mmを超えて200mm以下であり単位セメント量が90kg/m以上180kg/m以下であり水セメント比が50%以上120%以下でありスランプ値が3cm未満である超硬練りコンクリート材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、
前記締固め部は、
施工面と、前記施工面とは反対側に位置し前記振動発生部と前記所定の方向に対向する背面と、前記施工面と前記背面と間を貫通する複数の貫通孔と、を有する板部材を備えており、
前記施工面における前記貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、
前記施工面における前記貫通孔の分布密度は、30個/m以上100個/m以下であり、
前記施工面の1m当たりの前記振動発生部の起振力は、50kN/m以上150kN/m以下であり、
締固め方法は、前記板部材の前記施工面を前記法面に押当てた状態で前記振動発生部を作動させて前記締固め部を振動させ、前記法面を締固める、
締固め方法。
The maximum coarse aggregate size is more than 40 mm and 200 mm or less, the unit cement amount is 90 kg / m 3 or more and 180 kg / m 3 or less, the water cement ratio is 50% or more and 120% or less, and the slump value is less than 3 cm. It is a compaction method in which the slope of a civil engineering structure made of hardened concrete material is compacted using a compaction portion connected to a vibration generating portion that vibrates in a predetermined direction.
The compaction portion is
A plate member having a construction surface, a back surface located on the opposite side of the construction surface and facing the vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. Equipped with
The aperture ratio, which is the total ratio of the opening areas of the through holes on the construction surface, is 0.5% or more and 4.0% or less.
The distribution density of the through holes on the construction surface is 30 / m 2 or more and 100 / m 2 or less.
The vibrating force of the vibration generating portion per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less.
In the compaction method, the vibration generating portion is operated in a state where the construction surface of the plate member is pressed against the slope to vibrate the compaction portion, and the slope is compacted.
Compaction method.
最大粗骨材寸法が40mmを超えて90mm以下であり単位セメント量が50kg/m以上120kg/m以下であり水セメント比が50%以上120%以下であるCSG材料で形成された土木構造物の法面を、所定の方向に振動する振動発生部に連結された締固め部を用いて締固める締固め方法であって、
前記締固め部は、
施工面と、前記施工面とは反対側に位置し前記振動発生部と前記所定の方向に対向する背面と、前記施工面と前記背面と間を貫通する複数の貫通孔と、を有する板部材を備えており、
前記施工面における前記貫通孔の各々の開口面積の合計の割合である開口率は、0.5%以上4.0%以下であり、
前記施工面における前記貫通孔の分布密度は、30個/m以上100個/m以下であり、
前記施工面の1m当たりの前記振動発生部の起振力は、50kN/m以上150kN/m以下であり、
締固め方法は、前記板部材の前記施工面を前記法面に押当てた状態で前記振動発生部を作動させて前記締固め部を振動させ、前記法面を締固める、
締固め方法。
Civil engineering structure formed of CSG material with a maximum coarse aggregate size of more than 40 mm and 90 mm or less, a unit cement amount of 50 kg / m 3 or more and 120 kg / m 3 or less, and a water-cement ratio of 50% or more and 120% or less. A compaction method in which the slope of an object is compacted using a compaction portion connected to a vibration generating portion that vibrates in a predetermined direction.
The compaction portion is
A plate member having a construction surface, a back surface located on the opposite side of the construction surface and facing the vibration generating portion in a predetermined direction, and a plurality of through holes penetrating between the construction surface and the back surface. Equipped with
The aperture ratio, which is the total ratio of the opening areas of the through holes on the construction surface, is 0.5% or more and 4.0% or less.
The distribution density of the through holes on the construction surface is 30 / m 2 or more and 100 / m 2 or less.
The vibrating force of the vibration generating portion per 1 m 2 of the construction surface is 50 kN / m 2 or more and 150 kN / m 2 or less.
In the compaction method, the vibration generating portion is operated in a state where the construction surface of the plate member is pressed against the slope to vibrate the compaction portion, and the slope is compacted.
Compaction method.
JP2021151006A 2020-11-17 2021-09-16 Compaction method Active JP7035258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021151006A JP7035258B1 (en) 2020-11-17 2021-09-16 Compaction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020190844A JP6947898B1 (en) 2020-11-17 2020-11-17 Compaction method
JP2021151006A JP7035258B1 (en) 2020-11-17 2021-09-16 Compaction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020190844A Division JP6947898B1 (en) 2020-11-17 2020-11-17 Compaction method

Publications (2)

Publication Number Publication Date
JP7035258B1 JP7035258B1 (en) 2022-03-14
JP2022080265A true JP2022080265A (en) 2022-05-27

Family

ID=87885378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151006A Active JP7035258B1 (en) 2020-11-17 2021-09-16 Compaction method

Country Status (1)

Country Link
JP (1) JP7035258B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261640A (en) * 1990-03-10 1991-11-21 Tokyu Constr Co Ltd Extreme stiff-consistency concrete
JP2005163283A (en) * 2003-11-28 2005-06-23 Okinawa General Bureau Cabinet Office Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it
JP2007051517A (en) * 2005-08-19 2007-03-01 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Construction method for forming inclined plane reinforced by external protection material
JP2011021376A (en) * 2009-07-15 2011-02-03 Kyushu Regional Development Bureau Ministry Of Land Infrastructure & Transport Attachment for compacting top-of-slope section, heavy equipment equipped with the same, and method for constructing dam body
JP2011168977A (en) * 2010-02-16 2011-09-01 Kajima Corp Dam body construction method
JP2016084635A (en) * 2014-10-27 2016-05-19 鹿島建設株式会社 Attachment device for slope surface formation and compaction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261640A (en) * 1990-03-10 1991-11-21 Tokyu Constr Co Ltd Extreme stiff-consistency concrete
JP2005163283A (en) * 2003-11-28 2005-06-23 Okinawa General Bureau Cabinet Office Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it
JP2007051517A (en) * 2005-08-19 2007-03-01 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Construction method for forming inclined plane reinforced by external protection material
JP2011021376A (en) * 2009-07-15 2011-02-03 Kyushu Regional Development Bureau Ministry Of Land Infrastructure & Transport Attachment for compacting top-of-slope section, heavy equipment equipped with the same, and method for constructing dam body
JP2011168977A (en) * 2010-02-16 2011-09-01 Kajima Corp Dam body construction method
JP2016084635A (en) * 2014-10-27 2016-05-19 鹿島建設株式会社 Attachment device for slope surface formation and compaction

Also Published As

Publication number Publication date
JP7035258B1 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
JP6841964B2 (en) Construction method of combined dam
JP6293037B2 (en) Slope forming and compacting attachment device
JP2007051517A (en) Construction method for forming inclined plane reinforced by external protection material
JP7035258B1 (en) Compaction method
JP6947898B1 (en) Compaction method
WO1997025486A1 (en) Method of disintegrating and mixing soil and apparatus therefor
JP4548686B2 (en) Concrete, concrete structure, concrete structure construction method, sabo dam and sabo dam construction method
JPH07238536A (en) Building foundation and construction method thereof and construction machine
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP7330797B2 (en) Concrete construction method
JP6999253B1 (en) How to build a sabo dam
JP2004225453A (en) Construction method of civil engineering structure
JP2007051518A (en) Construction method for civil engineering structure
JPH0146659B2 (en)
JP2007131805A (en) Improved ground material
JPH10151612A (en) Manufacture of composite type porous block
JP2004204436A (en) Construction method for steel plate concrete structure
JP2641849B2 (en) Method and apparatus for treating excavated soil mixed with mud mortar
JP2500005B2 (en) Concrete foundation and method for forming the base of the structure
JPH05132942A (en) Backfilling material and backfilling method
JP2006124962A (en) Spread foundation method and building using it, and spread foundation structure
CN212128762U (en) Tamping device
JPH06321598A (en) Production of concrete
JP4184113B2 (en) Method for increasing horizontal resistance of piles
JP2024000805A (en) Dam body construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7035258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150