JP2004204436A - Construction method for steel plate concrete structure - Google Patents

Construction method for steel plate concrete structure Download PDF

Info

Publication number
JP2004204436A
JP2004204436A JP2002370945A JP2002370945A JP2004204436A JP 2004204436 A JP2004204436 A JP 2004204436A JP 2002370945 A JP2002370945 A JP 2002370945A JP 2002370945 A JP2002370945 A JP 2002370945A JP 2004204436 A JP2004204436 A JP 2004204436A
Authority
JP
Japan
Prior art keywords
concrete
steel plate
recycled
aggregate
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002370945A
Other languages
Japanese (ja)
Other versions
JP3995087B2 (en
Inventor
Osamu Konya
修 紺谷
Akihiro Ishizawa
昭浩 石澤
Fumitoshi Sakuramoto
文敏 桜本
Harumoto Momose
晴基 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002370945A priority Critical patent/JP3995087B2/en
Publication of JP2004204436A publication Critical patent/JP2004204436A/en
Application granted granted Critical
Publication of JP3995087B2 publication Critical patent/JP3995087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a construction method which widens a new usage of recycled aggregate using concrete wastes without deterioration of the durability of concrete even when such a recycled aggregate is used. <P>SOLUTION: A steel structure is assembled by using a steel sheet unit in which a cavity for filling concrete is formed between steel web plates and concrete is charged in the cavity. In the execution method of this steel plate concrete structure, highly-flowable concrete is mixed by using the recycled aggregate having higher than 3.0% water absorption and the highly-flowable concrete is placed into the cavity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,コンクリート廃材から採取される,JASS5を満足しないような再生骨材を用いた鋼板コンクリート構造物の施工法に関する。
【0002】
【従来の技術】
最近,原子力発電所の廃止措置により膨大な量のコンクリート廃棄物(放射化コンクリートとして扱う必要のないもの)が発生する状況にある。これに限らず各所から旧コンクリート構造物の解体処理によるコンクリート廃棄物が恒常的に発生している。
【0003】
コンクリート廃棄物の従来の主な用途は路盤材であったが,今後は,路盤材需要の低迷とコンクリート廃棄物量の増大,更には最終処分場の逼迫等の事情等から,コンクリート廃棄物の再資源化技術の確立が強く望まれている。
【0004】
コンクリート廃棄物を再資源化する最も代表的な利用の仕方は,これを再びコンクリート用骨材(「再生骨材」と呼ばれる)として使用することである。その場合,コンクリート廃棄物を粉砕し,その破砕物を,再生粗骨材と再生細骨材に篩分けしてから,それぞれを新たに練り混ぜるコンクリート用の骨材として配合する。
【0005】
【発明が解決しようとする課題】
再生骨材は,いったんセメントで固められたものであるから,再生粗骨材および再生細骨材とも,硬化したモルタル分が多分に存在している。硬化したモルタル分は天然骨材に比べて多孔質で吸水性を有するから,硬化したモルタル分を有する再生骨材は吸水率が高い点で,天然骨材とは性質が異なる。骨材の吸水率が高いと,一般にはコンクリート内部の水分量が大きくなるので乾燥収縮が大きくなり,結果的にひび割れが卓越し,コンクリートの耐久性を劣化させるという問題が付随する。
【0006】
再生粗骨材については,原粗骨材(元の砂利や砕石など)の表面に付着している硬化したモルタル分を出来るだけ除去する処理,例えば,摩砕機を用いて表面のモルタル分を削り落とす処理を行うと,吸水率を下げることできるが,それでも,JASS5で規定する吸水率3%以下を安定して満足させることは困難である。
【0007】
したがって,本発明は,このような再生骨材の新しい用途の拡大を図ると共にこのような再生骨材を使用しても,コンクリートの耐久性を損なわないような施工法の開発を目的としたものである。
【0008】
【課題を解決するための手段】
本発明者らの経験によると,ジョークラッシャ−で破砕されたコンクリートガラ(粒径5mm以上40mm以下に分級したもの)では,例えば絶乾密度=2.24g/cm3,吸水率=6.55%であったものが,これを摩砕機にかけて,表面の硬化モルタル分を除去したものでは,例えば表乾密度=2.54g/cm3,吸水率=3.66%を示した。このものは,吸水率3%以下というJASS5の粗骨材規格を満足しないが,利用の仕方によっては,すなわち,このような中品質再生骨材を鋼板コンクリート構造物の施工に利用する場合には,コンクリートの乾燥収縮を回避できることがわかった。
【0009】
本発明はこのような知見に基づくものであり,コンクリート充填用空洞を有する鋼板ユニットにコンクリートを打設する鋼板コンクリート構造物の施工において,吸水率が3.0%を超える再生骨材を用いて高流動コンクリートを練り混ぜ,この高流動コンクリートを該空洞に打設することを特徴とする。
【0010】
ここで,該空洞に打設する高流動コンクリートは,水,セメント,吸水率3〜7%の再生粗骨材,吸水率5〜15%の再生細骨材および化学混和剤からなり,スランプ値が21〜25cm,スランプフロー値が40〜70cmのものとし,使用する再生粗骨材としては,コンクリート廃材の破砕物(コンクリートガラ)を摩砕機で表面を摩砕処理したもの(摩砕粗骨材),使用する再生細骨材としては,コンクリート廃材の破砕時に発生する粉状体(摩砕粉)か,またはコンクリート廃材の破砕物(コンクリートガラ)を摩砕機で摩砕するさいに発生する粉状体(摩砕微粉)のいずれか一方または両方を適用する。化学混和剤には高性能AE減水剤が含まれる。
【0011】
【実施の形態】
本発明は,再生骨材を使用した高流動コンクリートを,鋼板ユニットを用いて組み立てた鋼構造物のコンクリート充填用空洞に,打設することを内容とするものである。以下に,本発明で特定する事項,例えば「再生骨材」「高流動コンクリート」「鋼板ユニット」等について個別に説明することにより,本発明に従う「鋼板コンクリート構造物」の特徴を明らかにする。
【0012】
本発明で使用する「再生骨材」は,コンクリート構造物や製品等の解体処分によって発生するコンクリート廃棄物(コンクリート廃材という)を原料とし,そのコンクリート廃材のうち,鉄筋類や夾雑物(金属片,木片,その他の同伴物)が可能な限り除去されたセメント系硬化体の部分をさらに破砕したものである。その破砕品は,通常は粒径が5〜40mmのもの(これを「コンクリートガラ」と呼ぶ)と,粒径が5mm未満のもの(これを「破砕粉」と呼ぶ)として分級され,再生骨材として利用される。
【0013】
破砕されたままのコンクリートガラには,各粒子の表面(元の粗骨材の表面)に硬化したモルタル層が存在しており,このために吸水率が高く,通常は吸水率7%以上を示す。このモルタル層を完全に分離すれば,元の粗骨材(砂利または砕石等の礫類)に復元するが,完全に分離することは実際には困難である。本発明者らは,破砕品から5〜40mmに分級されたコンクリートガラを,一例としてスクリュウ式摩砕装置を用いて摩砕したところ,表面のモルタル層の大部分が除去された再生粗骨材(これを「摩砕粗骨材」と呼ぶ)を得ることができた。
【0014】
使用したスクリュウ式摩砕装置は,太平洋エンジニアリング株式会社により開発されたもので,横置き円筒内でスクリュー羽根が軸回りに回転し,円筒の一方の端部から投入されたコンクリートガラが他方の終端部に向けて移動する間に,粒子同士が狭い空間内で互いに擦り合って摩砕され,排出口から出るときにも,円筒終端部と回転台座との隙間をくぐり抜けるさいの摩擦によって表面が摩砕されるものである。
【0015】
このような摩砕装置にコンクリートガラを繰り返し投入することによって,やがてはガラ表面の硬化モルタル層が殆ど除去され,元の粗骨材の表面に近いものとなるであろうが,そのような品質のよい再生粗骨材を製造すればするだけ,発生する微粉(これを「摩砕微粉」と呼ぶ)も多くなるので,コンクリート廃材の再生利用の点では必ずしも好ましいことではない。
【0016】
本発明の好ましい態様においては,コンクリート廃材からまず「コンクリートガラ」と「破砕粉」を採取し,コンクリートガラを摩砕装置で処理することによって「摩砕粗骨材」と「摩砕微粉」を得ることができる。摩砕粗骨材を得るさいには,摩砕微粉の発生量があまり多くならないように,摩砕装置への繰り返し処理は2〜3回までとする。そのため,摩砕粗骨材の吸水率は3.0%以下にまで高めることは一般には困難であるが,吸水率が5%以下,好ましくは4%以下にまで低減できれば十分である。この「摩砕粗骨材」と,前記の「破砕粉」および/または「摩砕微粉」を高流動コンクリートの骨材として利用する。摩砕粗骨材の粒径は5〜40mmの範囲内にあり,破砕粉は前記のとおり5mmアンダーである。摩砕微粉はさらに微粉である。摩砕微粉はその粒径が1mm以下,好ましくは0.1mm以下,さらに好ましくは100μm以下のものを多く含むので,これを使用することは,高流動コンクリートの流動性の向上に寄与する。
【0017】
本発明に従う高流動コンクリートは,骨材として前記の「摩砕粗骨材」と「破砕粉」および/または「摩砕微粉」を使用する。再生骨材を用いたコンクリートは一般に練り混ぜ後のスランプロスが大きい等のフレッシュコンクリートの性状に課題がある場合が多い。しかし,本発明においては,高流動のものを得ることを目標とするので,この点は問題とはならない。また閉塞空間である鋼板ユニットの空洞にその高流動コンクリートを充填するので,再生骨材の吸水率が3.0%を超えても特に問題はなく,また摩砕微粉の使用は材料分離を起こさない高流動コンクリートの形成にとって有利に作用する。
【0018】
しかし,吸水率が大きい多孔質のコンクリートガラをそのまま高流動コンクリートに使用することは,強度の面からあまり好ましいことではないので,粗骨材としては,コンクリートガラよりも摩砕粗骨材を使用するのが好ましい。また,再生細骨材としては「破砕粉」と「摩砕微粉」とを複合して使用することが好ましく,破砕粉:摩砕微粉の重量比が30:70〜10:30の範囲となるように配合すればよい。
【0019】
高流動コンクリートに使用するセメントとしては,普通ポルトランドセメント,早強ポルトランドセメント,高炉セメント等を使用することができる。水セメント比は40〜60%,好ましくは45〜55%とする。粗骨材としては,前記のように吸水率が3〜7%の再生粗骨材(好ましくは摩砕粗骨材)を使用し,細骨材としては前記のように吸水率が5〜15%の再生細骨材(破砕粉および/または摩砕微粉)を使用し,化学混和剤としては高性能AE減水剤,AE減水剤,AE助剤,消泡剤等を使用して,そのフレッシュコンクリートの性状がスランプ値21〜25cmでスランプフロー値40〜70cm,空気量が3〜6%となる配合とするのがよい。
【0020】
この再生骨材利用の高流動コンクリートを,本発明においては,鋼板コンクリート構造物の施工に用いる。例えば鋼製のウエブプレート間にコンクリート充填用空洞を設けた鋼板ユニットを用いて鋼構造物を組み立てしたあと,それらの空洞に,この再生骨材利用の高流動コンクリートを打設する。
【0021】
図1に鋼板コンクリート構造物の施工の一例を図解的に示した。図示のように,工場または現地製作ヤードで生産された鋼板ユニット1を,現場に搬送して鋼構造物2に組み立てる。鋼板ユニット1は,鋼製のウエブプレート3aと3bととの間にコンクリート充填用空洞4を有しており,鋼板ユニット1が現場で組み立てられたあと,その空洞4に高流動コンクリートが打設される。空洞4にはリブや配筋或いはスタッド用アンカー等の構造材が複雑に入り組んでおり,これらの隙間に隅々までコンクリートが材料分離を起こすことなく充填されるには,高い自己充填性を有する高流動コンクリートであることが必要である。
【0022】
以下に本発明者らが行った試験例を挙げて,本発明をさらに説明する。
【0023】
【実施例】
〔1〕再生粗骨材の製造
材令30年程の鉄道橋脚コンクリート(コアーボーリングにより圧縮強度が平均30N/mm2)を圧破機と静的破砕機で解体し,ジョークラッシャ−により40mm以下に破砕された破砕物を得た。これを,ふるい処理し,粒径が5〜40mmの「コンクリートガラ」と,5mmアンダーの「破砕粉」を得た。
【0024】
得られたコンクリートガラを,本文に記載したスクリュウ式摩砕装置を用いて摩砕処理し,粒径が5mm以上の「摩砕粗骨材」を得た。また,その摩砕処理によって発生した微粉を回収し,5mmアンダーの「摩砕微粉」を得た。
【0025】
破砕粉(サンプリング数はNo.1およびNo.2の2個)の材料試験結果を表1に示した。各破砕粉の絶乾密度は 2.035g/cm3 (No.1)と 2.030g/cm3 (No.2), 単位容積質量は 1.310 t/m3(No.1)と 1.302t/m3 (No.2),実積率は 64.5 %(No.1)と 64.1 % (No.2), および平均粒径は3.13mm (No.1)と3.15mm (No.2)であった。また,破砕粉の粒度分布(ふるい通過分布率)を図2に示した。
【0026】
摩砕微粉の材料試験結果を表2に示した。絶乾密度は 2.208g/cm3 (No.1)と2.214g/cm3 (No.2), 単位容積質量は 1.523 t/m3(No.1)と 1.520t/m3 (No.2),実積率は 69.0 % (No.1)と 68.8 % (No.2), および平均粒径は2.39mm (No.1)と2.40mm (No.2)であった。また,摩砕微粉の粒度分布(ふるい通過分布率)を図2に併記した。
【0027】
破砕粉と摩砕微粉を1:1の重量比で混合した混合粉の材料試験結果を表3に示した。混合粉の絶乾密度は 2.059g/cm3 (No.1)と 2.060g/cm3 (No.2)であった。また,混合粉の粒度分布(ふるい通過分布率)を図2に併記した。
【0028】
摩砕粗骨材の材料試験結果を表4に示した。単位容積質量は 1.636 t/m3(No.1)と 1.634t/m3 (No.2),実積率は 66.8 % (No.1)と 66.7 % (No.2), および平均粒径は 6.67mm(No.1)と6.67mm (No.2)であった。また,摩砕粗骨材の粒度分布(ふるい通過分布率)を図3に示した。
【0029】
【表1】

Figure 2004204436
【0030】
【表2】
Figure 2004204436
【0031】
【表3】
Figure 2004204436
【0032】
【表4】
Figure 2004204436
【0033】
表1〜4の材料試験結果および図2〜3の粒度分布の結果から,吸水率の点を除けば摩砕粗骨材および混合粉はほぼ粗骨材および細骨材としての機能を有していることがわかる。
【0034】
〔2〕再生骨材を用いたコンクリートの製造
使用材料は次のとおりである。
・セメント(記号C):早強ポルトランドセメント(太平洋セメント株式会社製密度 3.14 g/cm3)
・再生粗骨材(記号G):〔1〕で得た摩砕粗骨材(FM=6.67,表乾密度=2.54kg/L, 吸水率=3.66%)
・再生細骨材 (記号SA) :〔1〕で得た摩砕微粉(FM=2.40,表乾密度=2.39kg/L, 吸水率=8.24%)
・再生細骨材 (記号SB) :〔1〕で得た破砕粉(FM=3.14,表乾密度=2.27kg/L, 吸水率=11.77 %)
・化学混和剤 (記号Ad):高性能AE減水剤(ポゾリス物産製の商品名レオビルドSP−8LS),AE減水剤(ポゾリス物産製No.70),AE助剤(ポゾリス物産製No.202),消泡剤(ポゾリス物産製No.404)
【0035】
前記の材料により,最大骨材寸法25mm,スランプ18cm以上,目標空気量4.5±1.5%の調合設計条件で,高性能AE減水剤の使用を原則とし,その添加量はワーカビリティを確認しながら調整して,再生骨材利用のコンクリート(「再生コンクリート」と略称する)を練り混ぜた。表5にそれらの調合例を示した。表5には,各調合の再生コンクリートについて,フレッシュ性状を測定した結果も併記した。
【0036】
【表5】
Figure 2004204436
【0037】
〔対照例〕(普通コンクリートの製造)
比較のために,表6に示す調合の普通コンクリートを練り混ぜた。普通コンクリートの調合設計条件はスランプ=18cm,最大骨材寸法=10mmであり,セメントには早強ポルトランドセメントを使用した。水セメント比=59.5%,細骨材率(s/a)=46.2%である。
【0038】
【表6】
Figure 2004204436
【0039】
〔3〕鋼板ユニットの製造
SM490の2枚の鋼板(いずれも2500mm×800mm,厚み=2.3mm)を230mmの間隔を開けて互いに対向配置してなる鋼板ユニットを製造した。この鋼板ユニットを,長さ2500mm方向を垂直の方向に,800mm方向を水平の方向として立て掛け,その空洞内に上部からコンクリートを充填することによって,鋼板コンクリートの試験体を作成するものとする。そのさい,空洞内に,下縁から高さ250mmのレベルの位置に第一リブ,高さ1050mmの位置に第二リブ,高さ1450mmの位置に第三リブ,高さ2250mmの位置に第四リブを水平に架け渡し,第一リブと第二リブの間の空洞(幅800×高さ800mm×間隙長230mm)を圧壊試験に供する「下部空洞」とし,第三リブと第四リブの間の空洞(幅800×高さ800mm×間隙長230mm)を圧壊試験に供する「上部空洞」とする。下部空洞内および上部空洞内には,スタッド用の棒鋼(φ=5mm)が所定の間隔で水平方向に設置してある。
【0040】
この鋼板ユニットは,鋼板厚比(壁厚Twと鋼板厚twの比)を,SC耐震壁として標準的な値であるTw/tw=100とし,ウエブ鋼板厚はスタッドの施工性を考慮して標準で2.3mmとしたものである。また,中央2点集中加力の単純支持梁型試験体として,加力装置の載荷容量の都合上,梁幅230mmから規定される試験体の壁長さは800mmとし,シア・スパン比を1.0としたものである。
【0041】
〔4〕鋼板ユニットへのコンクリートの充填
前記の鋼板ユニットを長さ2500mmの方向を高さ方向として,垂直に立て掛け,上端の開口から前記表5のNo.2の再生コンクリートおよび対照例の普通コンクリートを打設した。再生コンクリートは,鋼板ユニットの上端開口からサニーホースを通して打設した。普通コンクリートについてはミキサー車からポンプ車にコンクリートを移したあと,ポンプ車のホース(外形100mm)を鋼板ユニットの半分程度まで挿入し,コンクリートを流し込む形で打設した。打設したコンクリートの機械的性質を表7に示した。
【0042】
【表7】
Figure 2004204436
【0043】
〔5〕鋼板コンクリートの載荷試験
前記〔4〕のようにして,鋼板ユニットの内部空洞にコンクリートを打設した鋼板コンクリート試験体(普通コンクリートを打設した普通コンクリート試験体と,再生コンクリートを打設した再生コンクリート試験体)を,5000kNアムスラー型試験機に,長さ2500mm方向を水平方向とし,第一リブと第四リブの位置を支持点として,二点支持で広面側を垂直にして設置した。このように板状の鋼板コンクリート試験体の広面側を垂直にして横長に設置した状態で,その上辺における第二リブの位置と第三リブの位置に上方から荷重を負荷し,はり型試験体の中央二点を集中加力することにより,左右の試験部分,すなわち前記の下部空洞と上部空洞とに相当する部分に,せん断力を導入した。
【0044】
荷重は単調載荷とし,最大耐力後は試験部分のせん断変形角で 0.03radを超えるまで加力を継続した。荷重の計測は, 中央2点の加力点に取付けた 300tfロードセルとアムスラー内臓のロードセルを用いて行った。変形の計測は, 加力点および支持点の鉛直と水平変位, および各試験部分の対角線の変位を電気式変位計で計測した。加力点および支持点の鉛直と水平変位とは反力ベットからの絶対変位として計測した。
【0045】
〔6〕載荷試験結果
普通コンクリート試験体および再生コンクリート試験体のせん断力(Q)とせん断変形角(γ)の関係を図4および図5に示した。各試験体には2つの試験部分(打設時に下側となる下部空洞部分と,上側となる上部空洞部分)があるため,両図とも,各試験部分の名称を併記した。せん断変形各γは,試験部分の対角線にセットした静ひずみ測定器により測定した値を用いた。両図には,実験時のひび割れ発生点,ウエブ鋼板引張降伏点,最大荷重点を表示の記号で示し,さらにSC構造技術指針により計算した降伏耐力と終局耐力を示した。
【0046】
図6に,普通コンクリート試験体と再生コンクリート試験体のせん断応力度(τ)とせん断変形角(γ)の関係を比較して示した。また,参考のために,鋼板ウエブ厚2.3mmの場合のSC構造技術指針により計算した降伏耐力および終局耐力も併記した。
【0047】
これらの試験結果に見られるように,再生コンクリートの方が普通コンクリートより200kN程度大きな最大荷重を示したが,初期せん断剛性を比較すると,強度特性とは逆に普通コンクリート試験体の方が再生コンクリートのものよりも大きくなっている。これは,再生コンクリートの圧縮強度は普通コンクリートより大きいが,弾性係数は逆に普通コンクリートの方が大きいことに起因していると考えられる。
【0048】
表8に,普通コンクリート試験体および再生コンクリート試験体の実験値と計算値とを比較して示した。ここで,せん断ひび割れ荷重実験値は,せん断ひび割れが生じた直後の値であり,降伏荷重実験値は,加力点および支持点に最も近いひずみゲージが両方とも降伏に達した時の値である。計算値については,材料試験結果の値を用い,「SC構造技術指針」における「SC構造耐震壁の復元力特性の評価法」により計算した。表8の結果にみられるように,せん断ひび割れ荷重については実験値/計算値が1を下回っているが,比較的ばらつきが大きい。降伏荷重については,計算値は実験値の下限を与え,実験値/計算値は約1.4となっている。最大荷重については実験値/計算値=1.1〜1.2となり,計算値は実験値を安全側に評価している。このことから,再生コンクリートを用いた鋼板コンクリート構造物は,普通コンクリートを用いた鋼板構造物と同様に「SC構造技術指針」に従って評価できることがわかる。
【0049】
【表8】
Figure 2004204436
【0050】
【発明の効果】
以上説明したように,本発明によると,吸水率がJASS5の規格を満たさない再生骨材であっても,これをコンクリート用骨材として鋼板コンクリート構造物を施工することができる。このため,コンクリート廃材の再利用を図ることができると共に,次世代の構造・工法として注目されている工場生産された大型鋼板パネルを現場で組み立て,パネル内部にコンクリートを打設する鋼板コンクリート構造物の発展に大きく寄与することができる。
【図面の簡単な説明】
【図1】本発明に従う鋼板コンクリート構造物の施工の一例を示す斜視図である。
【図2】再生骨材としての摩砕微粉,破砕粉,およびその混合粉の粒度分布の例を示す図である。
【図3】再生骨材としての摩砕粗骨材の粒度分布の例を示す図である。
【図4】普通コンクリートを用いた鋼板コンクリート試験体のせん断力−せん断変形角の関係を示す図である。
【図5】再生骨材使用コンクリート(再生コンクリート)を用いた鋼板コンクリート試験体のせん断力−せん断変形角の関係を示す図である。
【図6】普通コンクリートと再生コンクリートを用いた鋼板コンクリート試験体のせん断変形角とせん断応力度の関係を対比して示した図である。
【符号の説明】
1 鋼板ユニット
2 鋼構造物
3 鋼製のウエブプレート
4 コンクリート充填用空洞[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of constructing a steel plate concrete structure using recycled aggregate that does not satisfy JASS5, which is collected from waste concrete.
[0002]
[Prior art]
Recently, the decommissioning of nuclear power plants has generated a huge amount of concrete waste (one that does not need to be treated as activated concrete). Not only this, concrete waste is constantly generated from various places due to dismantling of old concrete structures.
[0003]
Conventionally, the main use of concrete waste was roadbed material. However, in the future, due to the sluggish demand for roadbed material, the increase in concrete waste volume, and the tightness of final disposal sites, etc. The establishment of resource recycling technology is strongly desired.
[0004]
The most typical way of recycling concrete waste is to reuse it as concrete aggregate (called "recycled aggregate"). In this case, concrete waste is crushed, and the crushed material is sieved into recycled coarse aggregate and recycled fine aggregate, and then each is newly mixed as a concrete aggregate.
[0005]
[Problems to be solved by the invention]
Since the recycled aggregate is once hardened with cement, hardened mortar content is present in both the recycled coarse aggregate and the recycled fine aggregate. Since the hardened mortar is more porous and water-absorbing than natural aggregate, the recycled aggregate having the hardened mortar differs from natural aggregate in that it has a higher water absorption. When the water absorption of the aggregate is high, the amount of water in the concrete generally increases, so that the drying shrinkage increases. As a result, there is a problem that cracks are predominant and the durability of the concrete is deteriorated.
[0006]
For recycled coarse aggregate, a treatment to remove as much as possible the hardened mortar adhering to the surface of the original coarse aggregate (original gravel, crushed stone, etc.), for example, by grinding the surface mortar using a grinder. Although the water absorption can be lowered by performing the dropping treatment, it is still difficult to stably satisfy the water absorption of 3% or less specified in JASS5.
[0007]
Therefore, the present invention aims at expanding new uses of such recycled aggregate and developing a construction method which does not impair the durability of concrete even if such recycled aggregate is used. It is.
[0008]
[Means for Solving the Problems]
According to the experience of the present inventors, in the case of concrete crushed with a jaw crusher (classified to a particle size of 5 mm or more and 40 mm or less), for example, absolute dry density = 2.24 g / cm 3 and water absorption = 6.55 %, But this was milled to remove the hardened mortar from the surface. For example, surface dry density = 2.54 g / cm 3 and water absorption = 3.66%. Although this does not satisfy the JASS5 coarse aggregate standard of water absorption of 3% or less, depending on the method of use, that is, when such medium-quality recycled aggregate is used for the construction of steel plate concrete structures It was found that drying shrinkage of concrete could be avoided.
[0009]
The present invention is based on such knowledge, and in the construction of a steel plate concrete structure in which concrete is poured into a steel plate unit having a cavity for filling concrete, a recycled aggregate having a water absorption of more than 3.0% is used. The method is characterized in that high-fluidity concrete is mixed and the high-fluidity concrete is poured into the cavity.
[0010]
Here, the high-fluidity concrete poured into the cavity is composed of water, cement, recycled coarse aggregate having a water absorption of 3 to 7%, recycled fine aggregate having a water absorption of 5 to 15%, and a chemical admixture. And the slump flow value is 40-70 cm. The recycled coarse aggregate to be used is a material obtained by grinding the surface of a crushed concrete waste material (concrete waste) with a grinder (crushed coarse bone). Material) and recycled fine aggregate to be used are generated in the form of powder (crushed powder) generated when crushing concrete waste material or crushed material of concrete waste material (concrete waste) when crushed by a crusher. Either one or both of the powders (milled fines) are applied. Chemical admixtures include high performance AE water reducers.
[0011]
Embodiment
The present invention is to cast high-fluidity concrete using recycled aggregate into a concrete filling cavity of a steel structure assembled using a steel plate unit. The characteristics of the “steel plate concrete structure” according to the present invention will be clarified by individually describing items specified in the present invention, for example, “recycled aggregate”, “high-fluidity concrete”, and “steel plate unit”.
[0012]
The “recycled aggregate” used in the present invention uses concrete waste (referred to as concrete waste material) generated by dismantling concrete structures and products as raw materials, and among the concrete waste material, reinforcing bars and contaminants (metal fragments) are used. , Wood chips, and other accompanying materials) were further crushed from the portion of the cement-based hardened material from which as much as possible was removed. The crushed products are usually classified into those having a particle size of 5 to 40 mm (this is called "concrete waste") and those having a particle size of less than 5 mm (this is called "crushed powder"). Used as a material.
[0013]
In the as-crushed concrete galley, there is a hardened mortar layer on the surface of each particle (the surface of the original coarse aggregate), and as a result, the water absorption is high, and usually the water absorption is 7% or more. Show. If this mortar layer is completely separated, it can be restored to the original coarse aggregate (gravels such as gravel or crushed stone), but it is actually difficult to completely separate it. The inventors of the present invention grinded concrete crushed from 5 to 40 mm from the crushed product using a screw-type grinding device as an example, and found that the recycled coarse aggregate from which most of the mortar layer on the surface had been removed was removed. (This is called “milled coarse aggregate”).
[0014]
The screw-type grinding device used was developed by Taiheiyo Engineering Co., Ltd. In the horizontal cylinder, the screw blades rotated around the axis, and the concrete trash injected from one end of the cylinder was used as the other end. While moving toward the part, the particles rub against each other in a narrow space and are crushed. When the particles come out of the discharge port, the surface is rubbed by the friction that passes through the gap between the end of the cylinder and the rotating base. It is crushed.
[0015]
By repeatedly injecting concrete waste into such attritor, the hardened mortar layer on the surface of the waste will eventually be removed, and it will be closer to the surface of the original coarse aggregate. The more finely-produced coarse aggregate is produced, the more fine powder is generated (this is called "milled fine powder"), which is not always preferable in terms of recycling concrete waste.
[0016]
In a preferred embodiment of the present invention, "concrete waste" and "crushed powder" are first collected from waste concrete material, and the "crushed coarse aggregate" and "ground fine powder" are processed by treating the concrete waste with a grinding device. Obtainable. In order to obtain the milled coarse aggregate, the repetition processing to the milling device is performed up to 2 to 3 times so that the generation amount of the milled fine powder is not so large. For this reason, it is generally difficult to increase the water absorption of the milled coarse aggregate to 3.0% or less, but it is sufficient if the water absorption can be reduced to 5% or less, preferably 4% or less. This “milled coarse aggregate” and the above “crushed powder” and / or “milled fine powder” are used as aggregates of high fluidity concrete. The particle size of the milled coarse aggregate is in the range of 5 to 40 mm, and the crushed powder is under 5 mm as described above. Milled fines are further fines. Since the milled fine powder contains a large amount of powder having a particle size of 1 mm or less, preferably 0.1 mm or less, and more preferably 100 μm or less, its use contributes to the improvement of the fluidity of highly fluid concrete.
[0017]
The high fluidity concrete according to the present invention uses the above-mentioned "milled coarse aggregate" and "crushed powder" and / or "milled fine powder" as the aggregate. Concrete using recycled aggregate generally has problems in properties of fresh concrete such as a large slump loss after mixing. However, in the present invention, this point is not a problem since the goal is to obtain a high-fluid one. In addition, since the high fluidity concrete is filled in the cavity of the steel plate unit, which is a closed space, there is no particular problem even if the water absorption of the recycled aggregate exceeds 3.0%, and the use of milled fine powder causes material separation. It works favorably for the formation of high flow concrete.
[0018]
However, it is not very desirable from the point of strength to use porous concrete waste with high water absorption as it is for high-fluidity concrete. Therefore, as coarse aggregate, use coarse ground aggregate rather than concrete waste. Is preferred. In addition, as the regenerated fine aggregate, "crushed powder" and "milled fine powder" are preferably used in combination, and the weight ratio of crushed powder: milled fine powder is in the range of 30:70 to 10:30. What is necessary is just to mix it.
[0019]
As the cement used for the high fluidity concrete, ordinary Portland cement, early-strength Portland cement, blast furnace cement and the like can be used. The water cement ratio is 40-60%, preferably 45-55%. As the coarse aggregate, regenerated coarse aggregate (preferably ground coarse aggregate) having a water absorption of 3 to 7% as described above is used, and fine aggregate having a water absorption of 5 to 15 as described above is used. % Of recycled fine aggregate (crushed powder and / or milled fine powder), and using a high-performance AE water reducing agent, AE water reducing agent, AE auxiliary agent, defoaming agent, etc. It is preferable that the properties of the concrete are such that the slump value is 21 to 25 cm, the slump flow value is 40 to 70 cm, and the amount of air is 3 to 6%.
[0020]
In the present invention, this high-fluidity concrete using recycled aggregate is used for the construction of a steel plate concrete structure. For example, after assembling a steel structure using a steel sheet unit having a concrete filling cavity between steel web plates, high-fluidity concrete using recycled aggregate is poured into the cavity.
[0021]
FIG. 1 schematically shows an example of construction of a steel plate concrete structure. As shown in the figure, a steel plate unit 1 produced in a factory or a local production yard is transported to a site and assembled into a steel structure 2. The steel plate unit 1 has a concrete filling cavity 4 between the steel web plates 3a and 3b. After the steel plate unit 1 is assembled on site, high-fluid concrete is poured into the cavity 4. Is done. Structural materials such as ribs, reinforcing bars or stud anchors are intricately entangled in the cavities 4, and the concrete has high self-filling properties so that concrete can be filled into these gaps without causing material separation. It must be high-fluid concrete.
[0022]
Hereinafter, the present invention will be further described with reference to test examples performed by the present inventors.
[0023]
【Example】
[1] Manufacture of recycled coarse aggregate Railway bridge pier concrete (average compressive strength of 30 N / mm 2 by core boring) about 30 years old is dismantled by a crusher and a static crusher, and is reduced to 40 mm or less by a jaw crusher. A crushed product was obtained. This was sieved to obtain "concrete waste" having a particle size of 5 to 40 mm and "crushed powder" under 5 mm.
[0024]
The obtained concrete gala was ground using the screw-type grinding apparatus described in the text to obtain a "ground coarse aggregate" having a particle size of 5 mm or more. Further, the fine powder generated by the grinding treatment was collected to obtain a "milled fine powder" under 5 mm.
[0025]
Table 1 shows the material test results of the crushed powder (the number of samples was No. 1 and No. 2). The absolute dry density of each crushed powder is 2.035 g / cm 3 (No. 1) and 2.030 g / cm 3 (No. 2), and the unit mass is 1.310 t / m 3 (No. 1) and 1.302 t / m 3 (No. 2), the actual product ratio was 64.5% (No. 1) and 64.1% (No. 2), and the average particle size was 3.13 mm (No. 1) and 3.15 mm (No. 2). FIG. 2 shows the particle size distribution (sieve distribution ratio) of the crushed powder.
[0026]
Table 2 shows the material test results of the milled fine powder. The absolute dry densities are 2.208 g / cm 3 (No.1) and 2.214 g / cm 3 (No.2), and the unit mass is 1.523 t / m 3 (No.1) and 1.520 t / m 3 (No.2 ), The actual product ratio was 69.0% (No.1) and 68.8% (No.2), and the average particle size was 2.39mm (No.1) and 2.40mm (No.2). Fig. 2 also shows the particle size distribution of the milled fine powder (sieve distribution ratio).
[0027]
Table 3 shows the material test results of the mixed powder obtained by mixing the crushed powder and the milled fine powder at a weight ratio of 1: 1. The absolute dry densities of the mixed powder were 2.059 g / cm 3 (No. 1) and 2.060 g / cm 3 (No. 2). FIG. 2 also shows the particle size distribution of the mixed powder (sieve distribution ratio).
[0028]
Table 4 shows the material test results of the milled coarse aggregate. Unit volume mass 1.636 t / m 3 (No.1) and 1.634t / m 3 (No.2), Jitsusekiritsu is 66.8% (No.1) and 66.7% (No.2), and the average particle size Were 6.67 mm (No. 1) and 6.67 mm (No. 2). FIG. 3 shows the particle size distribution (sieve distribution ratio) of the milled coarse aggregate.
[0029]
[Table 1]
Figure 2004204436
[0030]
[Table 2]
Figure 2004204436
[0031]
[Table 3]
Figure 2004204436
[0032]
[Table 4]
Figure 2004204436
[0033]
From the material test results in Tables 1 to 4 and the particle size distribution results in FIGS. 2 to 3, the milled coarse aggregate and the mixed powder have almost the functions of coarse aggregate and fine aggregate except for the water absorption. You can see that it is.
[0034]
[2] Manufacturing of concrete using recycled aggregate The materials used are as follows.
・ Cement (symbol C): Early Portland Cement (Density: 3.14 g / cm 3 manufactured by Taiheiyo Cement Corporation)
• Recycled coarse aggregate (symbol G): ground coarse aggregate obtained in [1] (FM = 6.67, surface dry density = 2.54 kg / L, water absorption = 3.66%)
-Recycled fine aggregate (symbol SA): ground fine powder obtained in [1] (FM = 2.40, surface dry density = 2.39 kg / L, water absorption = 8.24%)
-Recycled fine aggregate (symbol SB): crushed powder obtained in [1] (FM = 3.14, surface dry density = 2.27 kg / L, water absorption = 11.77%)
-Chemical admixture (symbol Ad): high-performance AE water reducing agent (trade name: Rheobuild SP-8LS, manufactured by Pozoris), AE water reducer (No. 70, manufactured by Pozoris), AE auxiliary (No. 202, manufactured by Pozoris) , Antifoaming agent (Pozoris Bussan No.404)
[0035]
With the above-mentioned materials, the use of a high-performance AE water reducing agent is a principle, and the workability is controlled by the use of a high-performance AE water reducing agent under the design conditions of the maximum aggregate size of 25 mm, the slump of 18 cm or more, and the target air volume of 4.5 ± 1.5%. The concrete was adjusted while checking it, and the concrete using recycled aggregate (abbreviated as "recycled concrete") was mixed. Table 5 shows examples of their preparation. Table 5 also shows the results of measuring the fresh properties of the recycled concrete of each formulation.
[0036]
[Table 5]
Figure 2004204436
[0037]
[Control Example] (Manufacture of ordinary concrete)
For comparison, ordinary concrete of the formulation shown in Table 6 was mixed. Mixing design conditions of ordinary concrete were slump = 18 cm, maximum aggregate size = 10 mm, and high strength Portland cement was used as cement. The water cement ratio is 59.5%, and the fine aggregate ratio (s / a) is 46.2%.
[0038]
[Table 6]
Figure 2004204436
[0039]
[3] Production of steel plate unit A steel plate unit was produced by disposing two steel plates of SM490 (both 2500 mm × 800 mm, thickness = 2.3 mm) at an interval of 230 mm and facing each other. The steel plate unit is set up with the length of 2500 mm in the vertical direction and the direction of 800 mm in the horizontal direction, and concrete is filled into the cavity from above to prepare a steel plate concrete specimen. At that time, in the cavity, the first rib is located at a position at a height of 250 mm from the lower edge, the second rib is located at a height of 1050 mm, the third rib is located at a position of 1450 mm, and the fourth rib is located at a position of 2250 mm. The ribs are spanned horizontally, and the cavity between the first rib and the second rib (width 800 x height 800 mm x gap length 230 mm) is defined as the "lower cavity" for the crush test. The cavity (width 800 × height 800 mm × gap length 230 mm) is referred to as an “upper cavity” to be subjected to a crush test. In the lower cavity and the upper cavity, steel bars for studs (φ = 5 mm) are installed horizontally at predetermined intervals.
[0040]
In this steel sheet unit, the steel sheet thickness ratio (the ratio of the wall thickness Tw to the steel sheet thickness tw) is set to Tw / tw = 100, which is a standard value for SC shear walls, and the web steel sheet thickness is considered in consideration of the workability of the stud. The standard value is 2.3 mm. In addition, as a simple supporting beam type test body with a central two-point concentrated load, the wall length of the test body specified from a beam width of 230 mm is 800 mm and the shear-span ratio is 1 due to the loading capacity of the loader. 0.0.
[0041]
[4] Filling the steel plate unit with concrete The above-mentioned steel plate unit was set up vertically with the length of 2500 mm as the height direction, and the recycled concrete of No. 2 in Table 5 above and the ordinary concrete of the control example from the opening at the upper end. Was cast. Recycled concrete was poured through a sunny hose from the top opening of the steel plate unit. For ordinary concrete, concrete was transferred from a mixer truck to a pump truck, and then a hose (outer diameter: 100 mm) of the pump truck was inserted into about half of the steel plate unit and poured into the concrete. Table 7 shows the mechanical properties of the cast concrete.
[0042]
[Table 7]
Figure 2004204436
[0043]
[5] Loading test of steel plate concrete As described in [4] above, a steel plate concrete test sample in which concrete was cast into the internal cavity of the steel plate unit (a normal concrete test sample in which normal concrete was cast, and a recycled concrete test sample was cast) The recycled concrete test specimen) was placed on a 5000 kN Amsler type testing machine with the length in the 2500 mm direction as the horizontal direction, the first rib and the fourth rib as the supporting points, and the wide surface side vertical with the two-point support. . In the state where the wide side of the plate-shaped steel plate concrete specimen is installed vertically and horizontally in this way, a load is applied from above to the position of the second rib and the third rib on the upper side thereof, and the beam-type specimen is tested. The shear force was introduced into the right and left test portions, that is, the portions corresponding to the lower cavity and the upper cavity, by concentrating the two points at the center.
[0044]
The load was monotonic, and after the maximum proof stress, the loading was continued until the shear deformation angle of the test portion exceeded 0.03 rad. The load was measured using a 300tf load cell attached to the two central loading points and a load cell with built-in Amsler. The vertical and horizontal displacements of the load and support points and the diagonal displacement of each test part were measured with an electric displacement meter. The vertical and horizontal displacements of the load and support points were measured as absolute displacements from the reaction force bet.
[0045]
[6] Loading Test Results FIGS. 4 and 5 show the relationship between the shear force (Q) and the shear deformation angle (γ) of the ordinary concrete specimen and the recycled concrete specimen. Since each specimen has two test parts (a lower cavity part that is lower when casting and an upper cavity part that is upper part), the names of the test parts are also shown in both figures. For each γ of shear deformation, a value measured by a static strain meter set on a diagonal line of a test portion was used. In both figures, the crack initiation point, the tensile yield point of the web steel plate, and the maximum load point during the experiment are indicated by symbols, and the yield strength and ultimate strength calculated by the SC Structural Technology Guideline are also shown.
[0046]
FIG. 6 shows a comparison between the relationship between the shear stress (τ) and the shear deformation angle (γ) of the ordinary concrete specimen and the recycled concrete specimen. For reference, the yield strength and ultimate strength calculated based on the SC Structural Technology Guideline when the steel sheet web thickness is 2.3 mm are also shown.
[0047]
As can be seen from these test results, the recycled concrete showed a maximum load of about 200 kN greater than that of ordinary concrete. Is bigger than the one. This is probably because the compressive strength of recycled concrete is higher than that of ordinary concrete, but the elastic modulus of ordinary concrete is conversely higher.
[0048]
Table 8 shows a comparison between the experimental values and the calculated values of the ordinary concrete specimen and the recycled concrete specimen. Here, the experimental value of the shear crack load is the value immediately after the occurrence of the shear crack, and the experimental value of the yield load is the value when both the load gauge and the strain gauge closest to the support point have reached yield. The calculated values were calculated by using the values of the material test results and by the "Evaluation method of the restoring force characteristics of SC structural shear walls" in the "SC structural technical guidelines". As can be seen from the results in Table 8, the experimental / calculated value of the shear crack load is less than 1, but the dispersion is relatively large. As for the yield load, the calculated value gives the lower limit of the experimental value, and the experimental value / calculated value is about 1.4. For the maximum load, the experimental value / calculated value = 1.1 to 1.2, and the calculated value evaluates the experimental value on the safe side. This indicates that a steel plate concrete structure using recycled concrete can be evaluated in accordance with the “SC Structural Technology Guideline” in the same manner as a steel plate structure using ordinary concrete.
[0049]
[Table 8]
Figure 2004204436
[0050]
【The invention's effect】
As described above, according to the present invention, even when the recycled aggregate whose water absorption does not satisfy the JASS5 standard can be used as a concrete aggregate, a steel plate concrete structure can be constructed. As a result, it is possible to reuse concrete waste material, as well as to assemble large-scale steel panels manufactured at the factory, which is attracting attention as a next-generation structure and construction method, and to cast concrete inside the panels. Can greatly contribute to the development of
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of construction of a steel plate concrete structure according to the present invention.
FIG. 2 is a diagram showing an example of a particle size distribution of a milled fine powder, a crushed powder, and a mixed powder thereof as recycled aggregate.
FIG. 3 is a diagram showing an example of a particle size distribution of a milled coarse aggregate as a recycled aggregate.
FIG. 4 is a diagram showing a relationship between a shear force and a shear deformation angle of a steel plate concrete specimen using ordinary concrete.
FIG. 5 is a diagram showing the relationship between the shearing force and the shear deformation angle of a steel plate concrete specimen using recycled aggregate concrete (recycled concrete).
FIG. 6 is a diagram showing a relationship between a shear deformation angle and a shear stress degree of a steel plate concrete specimen using ordinary concrete and recycled concrete.
[Explanation of symbols]
1 steel plate unit 2 steel structure 3 steel web plate 4 cavity for filling concrete

Claims (5)

コンクリート充填用空洞を有する鋼板ユニットにコンクリートを打設する鋼板コンクリート構造物の施工において,吸水率が3.0%を超える再生骨材を用いて高流動コンクリートを練り混ぜ,この高流動コンクリートを前記の空洞に打設することを特徴とする鋼板コンクリート構造物の施工法。In the construction of a steel plate concrete structure in which concrete is poured into a steel plate unit having a concrete filling cavity, high-flowable concrete is mixed and mixed with recycled aggregate having a water absorption of more than 3.0%, and A method of constructing a steel plate concrete structure characterized by being cast into a hollow. 高流動コンクリートは,水,セメント,吸水率3〜7%の再生粗骨材,吸水率5〜15%の再生細骨材,および化学混和剤からなり,スランプ値が21〜25cm,スランプフロー値が40〜70cmのものである請求項1に記載の鋼板コンクリート構造物の施工法。High-fluidity concrete is composed of water, cement, recycled coarse aggregate with a water absorption of 3 to 7%, recycled fine aggregate with a water absorption of 5 to 15%, and a chemical admixture, with a slump value of 21 to 25 cm and a slump flow value. Is 40 to 70 cm. 再生粗骨材は,コンクリート廃材の破砕物(コンクリートガラ)を摩砕機で表面を摩砕処理したもの(摩砕粗骨材)である請求項2に記載の鋼板コンクリート構造物の施工法。3. The method for constructing a steel plate concrete structure according to claim 2, wherein the recycled coarse aggregate is obtained by grinding the surface of a crushed concrete waste material (concrete waste) with a grinder (ground coarse aggregate). 再生細骨材は,コンクリート廃材の破砕時に発生する粉状体(破砕粉)か,またはコンクリート廃材の破砕物(コンクリートガラ)を摩砕機で摩砕するさいに発生する粉状体(摩砕微粉)のいずれか一方または両方である請求項2に記載の鋼板コンクリート構造物の施工法。Recycled fine aggregate is a powdery substance (crushed powder) generated when crushing concrete waste material or a powdery substance (crushed fine powder) generated when crushed concrete waste material (concrete waste) is crushed by a crusher. 3. The method for constructing a steel plate concrete structure according to claim 2, which is one or both of the above. 化学混和剤は,高性能AE減水剤が含まれる請求項2ないし4のいずれかに記載の鋼板コンクリート構造物の施工法。The construction method of a steel plate concrete structure according to any one of claims 2 to 4, wherein the chemical admixture includes a high-performance AE water reducing agent.
JP2002370945A 2002-12-20 2002-12-20 Construction method of steel plate concrete structure Expired - Fee Related JP3995087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370945A JP3995087B2 (en) 2002-12-20 2002-12-20 Construction method of steel plate concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370945A JP3995087B2 (en) 2002-12-20 2002-12-20 Construction method of steel plate concrete structure

Publications (2)

Publication Number Publication Date
JP2004204436A true JP2004204436A (en) 2004-07-22
JP3995087B2 JP3995087B2 (en) 2007-10-24

Family

ID=32809974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370945A Expired - Fee Related JP3995087B2 (en) 2002-12-20 2002-12-20 Construction method of steel plate concrete structure

Country Status (1)

Country Link
JP (1) JP3995087B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053598A (en) * 2008-08-28 2010-03-11 Kajima Corp Method of reusing green cut waste and concrete structure
JP2011042987A (en) * 2009-08-21 2011-03-03 Ihi Corp Steel-concrete composite structure utilizing concrete mass
CN103089013A (en) * 2013-01-31 2013-05-08 厦门大学 Anti-cracking construction method of light heat preservation batten wall body
JP2017186208A (en) * 2016-04-07 2017-10-12 株式会社大林組 Manufacturing method of porous concrete
JP2018138505A (en) * 2017-02-24 2018-09-06 鹿島建設株式会社 Filling mortar and processing method for water absorptive waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053598A (en) * 2008-08-28 2010-03-11 Kajima Corp Method of reusing green cut waste and concrete structure
JP2011042987A (en) * 2009-08-21 2011-03-03 Ihi Corp Steel-concrete composite structure utilizing concrete mass
CN103089013A (en) * 2013-01-31 2013-05-08 厦门大学 Anti-cracking construction method of light heat preservation batten wall body
JP2017186208A (en) * 2016-04-07 2017-10-12 株式会社大林組 Manufacturing method of porous concrete
JP2018138505A (en) * 2017-02-24 2018-09-06 鹿島建設株式会社 Filling mortar and processing method for water absorptive waste

Also Published As

Publication number Publication date
JP3995087B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
Golewski et al. The fracture toughness the KIIIc of concretes with F fly ash (FA) additive
Bazhenov et al. High-strength concretes based on anthropogenic raw materials for earthquake resistant high-rise construction
Shatarat et al. Improving bond strength of recycled coarse aggregate concrete using chopped basalt fibers
dos Santos et al. Mechanical properties of concrete with coarse recycled aggregates
Sultan et al. Review of the flexural strength of lightweight concrete beam using pumice stone as of substitution partial coarse aggregate
Modi et al. Utilization of recycled concrete residues as secondary materials in the development of sustainable concrete composite
Li et al. Mechanical behaviour and acoustic emission characteristics of basalt fibre mortar rubble under uniaxial cyclic compression
JP2004204436A (en) Construction method for steel plate concrete structure
Marewangeng et al. Mechanical characteristics of self compacting concrete using laterite stone as coarse aggregate
Jose et al. Characteristics of concrete containing waste foundry sand and slag sand
JP2001130944A (en) Freshly mixed concrete
Haldar et al. An experimental study on the fatigue properties of Alccofine-based crumb rubber concrete
Gemperline et al. Beneficial use of recycled materials in controlled low strength materials
Mobasher et al. Developing Ultra-High–Performance Concrete Mix Designs for Arizona Bridge Element Connections
Wasiu et al. Influence of chemical polymer additive on the physical and mechanical properties of expanded polystyrene concrete
Al-Salim et al. Enhancement energy absorption in flat slabs using slurry infiltrated fibrous concrete
Benaissa et al. Properties of fibred sand concrete sprayed by wet-mix process
Raihan et al. Evaluating compressive strength of roller compacted concrete (RCC) using steel slag (SS) aggregate
Manikandan et al. Strength study on replacement of coarse aggregate by reused aggregate on concrete
Corinaldesi et al. Concrete and mortar performance by using recycled aggregates
Abdulhaleem et al. Effect of Recycled Aggregate Concrete and Steel Fibers on the Strength of Self-Compacting Concrete
Wu et al. Axial strengths of concrete stub columns filled with demolished concrete segments/lumps
Faizah et al. Flexural properties of concrete using rubber tire crumbs
KR100917929B1 (en) Recycling method of fine aggregate from electric pole waste
Pooja et al. Experimental Behaviour on Shear Study of Slurry Infiltrated Fibrous Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees