JP2005163283A - Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it - Google Patents

Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it Download PDF

Info

Publication number
JP2005163283A
JP2005163283A JP2003400223A JP2003400223A JP2005163283A JP 2005163283 A JP2005163283 A JP 2005163283A JP 2003400223 A JP2003400223 A JP 2003400223A JP 2003400223 A JP2003400223 A JP 2003400223A JP 2005163283 A JP2005163283 A JP 2005163283A
Authority
JP
Japan
Prior art keywords
slope
csg
shoulder
concrete
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003400223A
Other languages
Japanese (ja)
Inventor
Takenobu Yamashita
武宣 山下
Hironori Ishigaki
弘規 石垣
Tatsuo Koaizawa
辰雄 小合澤
Takashi Yoshino
俊 吉野
Motosuke Kojima
基右 小島
Morisuke Sakumoto
盛扶 佐久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAM GIJUTSU CENTER
OKINAWA GENERAL BUREAU CABINET OFFICE
OSHIROGUMI KK
Maeda Corp
Sumitomo Mitsui Construction Co Ltd
Original Assignee
DAM GIJUTSU CENTER
OKINAWA GENERAL BUREAU CABINET OFFICE
OSHIROGUMI KK
Maeda Corp
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAM GIJUTSU CENTER, OKINAWA GENERAL BUREAU CABINET OFFICE, OSHIROGUMI KK, Maeda Corp, Sumitomo Mitsui Construction Co Ltd filed Critical DAM GIJUTSU CENTER
Priority to JP2003400223A priority Critical patent/JP2005163283A/en
Publication of JP2005163283A publication Critical patent/JP2005163283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for compacting a top of slope, which makes a dam body inexpensively completed in a short construction period, and top-of-slope compacting equipment for use in the construction method. <P>SOLUTION: In this construction method for compacting the top of slope, which serves as a shoulder part of the slope of the dam body 11 formed by heaping up in-situ concrete (CSG), both the top surface and slope of the dam body 11 are pressurized while being concurrently held in such a manner as to surround a predetermined area around the top part of the shoulder part. In the construction method for compacting the top of slope, concrete is placed at the end of the dam body 11 so that a protective and impervious concrete part can be formed, and construction is performed in such a manner that the in-situ concrete and the protective and impervious concrete part are stepwise stacked. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、堤体の法肩を締固め機を使用して地固め作業を行う土木技術に関する。   The present invention relates to a civil engineering technique for performing consolidation work using a compacting machine for a shoulder of a levee body.

各種建設現場において、岩塊や土砂等の現地発生骨材にセメント又はセメント及び水等を加えて混合し、このソイルセメントを投入地に投入することにより骨材等の輸送費や材料費の節減、省人化、工期短縮等を図った、いわゆるCSG(Cemented Sand and Gravel;原位置コンクリート)工法が知られている。このCSG工法は、現地発生骨材として用いることで現地発生骨材を他所に運搬廃棄する量を減らし環境に配慮した工法としてその採用が期待されている。なお、ソイルセメントとは本来、土にセメント又はセメント及び水等を加えて混合しセメントの水硬作用に基づき土粒子間を結合させた改良土を言う。また、「水等」の「等」とは例えば苛性ソーダ、苛性カリウム、水酸化ナトリウム等の硬化促進剤や減水剤や空気連行剤等を指し、必要に応じて添加される添加剤である。   At various construction sites, cement or cement and water are added to and mixed with locally generated aggregates such as rock blocks and earth and sand, and this soil cement is injected into the input site to reduce transportation costs and material costs of aggregates, etc. A so-called CSG (Cemented Sand and Gravel) method is known, which is intended to save labor, shorten the construction period, and the like. This CSG method is expected to be adopted as an environmentally friendly method that reduces the amount of locally generated aggregate transported and discarded to other locations by using it as locally generated aggregate. In addition, soil cement originally means improved soil in which cement or cement and water are added to the soil and mixed, and the soil particles are bonded together based on the hydraulic action of the cement. In addition, “etc.” of “water etc.” refers to, for example, a curing accelerator such as caustic soda, caustic potassium, sodium hydroxide, a water reducing agent, an air entraining agent, and the like, and is an additive added as necessary.

この原位置コンクリート(CSG)工法を経済的上好適に使用できる投入地としては、例えばロックフィルダム(緊密に積み上げられた岩石を主体として建造されるダム)等の大規模建設工事等を掲げることができる。   As an input site where this in-situ concrete (CSG) method can be used economically, for example, large-scale construction work such as a rockfill dam (a dam built mainly with closely stacked rocks) can be mentioned. it can.

そして、原位置コンクリート(CSG)を用いた堤体は、CSGを盛って形成される。すなわち、予め破砕機械によって所定粒度以下に破砕した現地発生骨材はセメント及び水等と共に生コン車内で混合され、混合されたCSGは堤体を形成する投入地において打設される。そして、打設されたCSGを盛って形成される堤体は、投入地において規則的に多層化して形成される。   And the embankment using in-situ concrete (CSG) is formed with CSG. That is, the locally generated aggregate that has been crushed to a predetermined particle size or less by a crushing machine in advance is mixed with cement, water, and the like in a ready-mixed vehicle, and the mixed CSG is placed at an input site that forms a levee body. And the bank body formed by laying the placed CSG is regularly formed in multiple layers at the input site.

ところで、原位置コンクリート(CSG)を盛って形成した堤体の法面の肩部である法肩を形成する場合は、従来、人手で行うことが多く、人力で少しずつ撒きだして締固めており、作業効率が悪かった。   By the way, when forming the shoulder that is the slope of the slope of the levee body that is formed with in-situ concrete (CSG), it has been done manually by hand, and it has been squeezed and compacted by human power little by little. The work efficiency was poor.

そこで、締固め機を使用することが考えられるが、従来の締固め機は、図18及び図19に示すように、アタッチメントとしての平板型の振動工具60をバックホウ40のアーム41に装着したものである。その工法は装着した平板型の振動工具60を法面に押し当てて平板型の振動工具60自身の振動機構により振動動作で押圧するものであった(図18参照)。そのため、上面を締固めると法面が変形し崩れてしまうといった問題があった。   Therefore, it is conceivable to use a compacting machine. As shown in FIGS. 18 and 19, the conventional compacting machine has a plate-type vibration tool 60 as an attachment mounted on the arm 41 of the backhoe 40. It is. In the construction method, the flat plate type vibration tool 60 is pressed against the slope and pressed by the vibration mechanism of the flat plate type vibration tool 60 itself (see FIG. 18). For this reason, there is a problem that when the upper surface is compacted, the slope is deformed and collapses.

なお、平板型の振動工具60は、図19(a)の正面図及び図19(b)の側面図に示すように、ブラケット部60aと起振部60bとから構成される。そして、ブラケット部60aはトップブラケット61とボッタムブラケット62を備えている。また、起振部60bは、ベースプレート(転圧板)63と油圧モータ64とクッションプレート65とロータ66を備えている。   In addition, as shown in the front view of Fig.19 (a) and the side view of FIG.19 (b), the flat type vibration tool 60 is comprised from the bracket part 60a and the vibration part 60b. The bracket portion 60 a includes a top bracket 61 and a bottom bracket 62. The vibration generating unit 60 b includes a base plate (rolling plate) 63, a hydraulic motor 64, a cushion plate 65, and a rotor 66.

本発明は、前記課題に鑑みて創案されたものであり、堤体を短工期で、かつ低コストで完成させることができる法肩締固め工法及びその工法に使用する法肩締固め機を提供することを技術的課題とする。   The present invention has been developed in view of the above problems, and provides a method for compacting shoulders that can complete a dam body in a short construction period and at a low cost, and a method for compacting shoulders used in the method. Doing this is a technical issue.

本発明は法肩締固め工法及びその工法に使用する法肩締固め機であり、前述の技術的課題を解決すべく以下のような構成とされている。
すなわち、本発明の法肩締固め工法は、原位置コンクリート(CSG)を盛って形成した堤体の法面の肩部である法肩を締固める工法であって、
前記堤体の上面と法面の双方を、前記肩部の頂部を中心として所定範囲を取り囲むように、同時に保持しながら、加圧する法肩締固め工法である。
The present invention is a method for shoulder compaction and a method for shoulder compaction used in the method, and has the following configuration in order to solve the above technical problems.
That is, the method of shoulder compaction according to the present invention is a method of compacting the shoulder which is the shoulder of the slope of the levee body formed by laying in-situ concrete (CSG),
In this method, both the upper surface and the slope of the levee body are pressed simultaneously while simultaneously holding so as to surround a predetermined range with the top of the shoulder as a center.

また、本発明の法肩締固め工法は、前記堤体の上面と法面を同時に加圧する、あるいは双方を片方ずつ交互に加圧する法肩締固め工法である。   Further, the method of shoulder compaction according to the present invention is a method of shoulder compaction in which the upper surface and the slope of the levee body are simultaneously pressed, or both are alternately pressed one by one.

更に、本発明の法肩締固め工法は、前記堤体の左右岸方向に2分割し、同時に加圧する法肩締固め工法である。   Further, the method for shoulder compaction according to the present invention is a method for shoulder compaction in which the dam body is divided into two in the left and right bank directions and simultaneously pressurized.

更にまた、本発明の法肩締固め工法において、前記堤体は、原位置コンクリートを盛って形成したダム用の堤体である法肩締固め工法である。   Furthermore, in the shoulder compaction method according to the present invention, the bank body is a shoulder compaction method which is a dam body formed by depositing in-situ concrete.

更にまた、本発明の法肩締固め工法において、前記堤体の端部はコンクリートが打設されて保護遮水コンクリート部が形成され、
前記原位置コンクリートと前記保護遮水コンクリート部が段階的に積み重ねられて施工される法肩締固め工法である。
Furthermore, in the shoulder compaction method of the present invention, the end of the bank body is cast with concrete to form a protective water-impervious concrete part,
This is a shoulder compaction method in which the in-situ concrete and the protective water-impervious concrete portion are stacked and constructed in stages.

更にまた、本発明の法肩締固め工法において、前記コンクリートを打設する端部は、前記保護遮水コンクリート部をプレキャスト構造で施工する法肩締固め工法である。   Furthermore, in the shoulder compaction method of the present invention, the end portion on which the concrete is placed is a shoulder compaction method in which the protective impermeable concrete portion is constructed with a precast structure.

更にまた、本発明の法肩締固め工法において、前記プレキャスト構造には、前記保護遮水コンクリート部を形成するプレキャスト型枠を使用する法肩締固め工法である。   Furthermore, in the legal shoulder compaction method of the present invention, the precast structure is a legal shoulder compaction method using a precast formwork forming the protective water-impervious concrete portion.

更にまた、本発明の法肩締固め機は、バックホウに着脱自在な工具を有し、前記工具を原位置コンクリートを盛って形成した堤体の法面の肩部である法肩に押し当てて前記バックホウの油圧力により締固める法肩締固め機であって、
前記堤体の上面と法面に接地する前記工具側の面形状が、上面と法面の双方を前記法肩の頂部を中心として所定範囲を取り囲むと共に、同時に上面と法面の双方を保持する形状であることを特徴とする法肩締固め機である。
Furthermore, the shoulder compaction machine of the present invention has a tool that can be attached to and detached from the backhoe, and presses the tool against the shoulder that is the shoulder portion of the slope of the levee body that is formed by placing in-situ concrete. A shoulder compaction machine that compacts by hydraulic pressure of the backhoe,
The surface shape on the tool side that contacts the upper surface and the slope of the bank body surrounds a predetermined range centering on the top of the shoulder and both the upper surface and the slope, and simultaneously holds both the upper surface and the slope. A shoulder compaction machine characterized by its shape.

本発明は、新しいダム型式の設計、施工、材料の3つの合理化手法を示したものである。そして、設計の合理化では、ダム形状を台形にすることで、堤体内に発生する最大発生応力、及び応力変動を削減し、CSGに要求される強度を最小限にすることができる。また、基礎地盤に求められる強度や変形に対しても、コンクリートダムに比べて許容範囲を広く取ることができる。   The present invention shows three rationalization methods of design, construction and materials of a new dam type. In the rationalization of the design, by making the dam shape trapezoidal, the maximum generated stress generated in the levee body and the stress fluctuation can be reduced, and the strength required for the CSG can be minimized. Moreover, the tolerance | permissible_range can be taken widely also with respect to the intensity | strength and deformation | transformation calculated | required by the foundation ground compared with a concrete dam.

また、施工の合理化では、CSGの要求性能を低く抑えることにより、CSGの製造方法、施工方法を簡素化する。具体的には、骨材プラントの省略、施工設備の簡素化、汎用機械の使用により、コストの縮減と急速施工を可能にする。   In the rationalization of construction, the CSG manufacturing method and construction method are simplified by keeping the required performance of CSG low. Specifically, cost reduction and rapid construction are enabled by omitting an aggregate plant, simplifying construction facilities, and using general-purpose machines.

更に、材料の合理化では、CSGの要求性能を低く抑えることにより、その母材となる岩石の使用許容範囲が広く確保でき、従来のコンクリートダムでは使用できなかった風化岩や掘削廃棄岩等の有効利用が可能になる。   Furthermore, in rationalization of materials, by keeping the required performance of CSG low, it is possible to secure a wide allowable range of use of the rock as the base material, and it is effective for weathered rocks and excavated waste rocks that could not be used with conventional concrete dams. Can be used.

以下、図面を参照して本発明に係る法肩締固め工法及びその工法に使用する法肩締固め機の好適な実施形態について説明する。
本実施の形態では、台形CSGダムを例に説明する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a method for compacting a shoulder according to the present invention and a method for compacting a shoulder used in the method will be described with reference to the drawings.
In the present embodiment, a trapezoidal CSG dam will be described as an example.

[台形CSGダム]
本実施の形態で説明するダム10は、図1及び図2にて示すように、CSG(Cemented Sand and Gravel;原位置コンクリート)を用いたダムで、かつ堤体11の断面形状が台形であることから、「台形CSGダム」と呼ばれている。
[Trapezoidal CSG dam]
As shown in FIGS. 1 and 2, the dam 10 described in the present embodiment is a dam using CSG (cemented sand and grade), and the cross-sectional shape of the dam body 11 is trapezoidal. Therefore, it is called “trapezoidal CSG dam”.

この台形CSGダム10は、堤体11を短工期で、かつ低コストで完成させる「合理化」を主眼に置き、創案された新しいダム型式である。   This trapezoidal CSG dam 10 is a new dam type that was created with a focus on "rationalization" that completes the dam body 11 in a short construction period and at a low cost.

なお、ここでいう「合理化」の柱となる、設計、施工、材料の3つの合理化手法について以下に説明する。
すなわち、設計の合理化では、ダム形状を台形にすることで、堤体内に発生する最大発生応力、及び応力変動(図1参照)を削減し、CSGに要求される強度を最小限にする設計手法を用いる。
The three rationalization methods of design, construction, and materials, which are the pillars of “rationalization” here, will be described below.
In other words, in the rationalization of design, the dam shape is trapezoidal to reduce the maximum generated stress and stress fluctuation (see Fig. 1) generated in the levee body and minimize the strength required for CSG. Is used.

また、ダム形状を台形にすることで、基礎地盤に求められる強度や変形に対しても、コンクリートダムに比べて許容範囲を広く取ることができる。   In addition, by making the dam shape trapezoidal, it is possible to have a wider allowable range than the concrete dam for strength and deformation required for the foundation ground.

施工の合理化では、CSGの要求性能を低く抑えることにより、CSGの製造方法、施工方法を簡素化する。具体的には、骨材プラントの省略、施工設備の簡素化(CSG混合設備については図7〜図9を用いて後述する)、汎用機械(例えば、バックホウ)の使用により、コストの縮減と急速施工を可能にする。   In rationalization of construction, the CSG manufacturing method and construction method are simplified by keeping the required performance of CSG low. Specifically, cost reduction and rapid use by omitting an aggregate plant, simplifying construction equipment (the CSG mixing equipment will be described later with reference to FIGS. 7 to 9), and using a general-purpose machine (for example, backhoe). Enable construction.

材料の合理化では、CSGの要求性能を低く抑えることにより、その母材となる岩石の使用許容範囲が広く確保でき、従来のコンクリートダムでは使用できなかった風化岩や掘削廃棄岩等の有効利用が可能になる。   In the rationalization of materials, by keeping the required performance of CSG low, it is possible to secure a wide allowable range of use of rock as the base material, and effective use of weathered rocks and excavated waste rocks that could not be used with conventional concrete dams. It becomes possible.

[CSG工法]
次に、本実施の形態にかかるCSG工法を説明する。
例えば、沢処理工での台形CSGダムの規模は、図2及び図3に示すように、堤高が30m、堤頂が110.5m、堤体積が約29,000m3の場合で説明する。
[CSG method]
Next, the CSG method according to the present embodiment will be described.
For example, a scale of trapezoidal CSG dam at Sawa process engineering, as shown in FIGS. 2 and 3, dam height is 30 m, crest is 110.5M, Tsutsumi volume is described in the case of about 29,000M 3.

ところで、図1は、堤体応力図を示す。また、図2は、CSGダムの沢処理工標準断面図を示す。更に、図3は、CSGダムの沢処理工縦断面図を示す。   By the way, FIG. 1 shows a dam body stress diagram. Moreover, FIG. 2 shows a standard cross-sectional view of a CSG dam swamp. Further, FIG. 3 shows a longitudinal section of a CSG dam swamp.

次に、CSGの母材、材料、配合について説明する。なお、母材は、原石山から採取する千枚岩CLとする。このように、CSG材は、原石山から採取した母材(千枚岩CL)を、ダム堤体工で使用するフィルター材製造設備により、80mm以下に粉砕して製造する。ところで、図4は、CSG材粒度分布を示す。   Next, the base material, material, and composition of CSG will be described. In addition, the base material is a phyllite CL collected from Mt. As described above, the CSG material is manufactured by pulverizing the base material (thousand rock CL) collected from the raw stone mountain to 80 mm or less by the filter material manufacturing facility used in the dam body construction. FIG. 4 shows the CSG material particle size distribution.

また、CSG材の表乾密度、絶乾密度、吸収率は、図5に示す通りである。
そして、CSGの配合は、使用箇所に応じて、富配合CSG13(図2参照)と内部配合CSG12の2種類を配合する。なお、その所要強度はそれぞれ1N/mm2,2N/mm2程度である。
Further, the surface dry density, absolute dry density, and absorption rate of the CSG material are as shown in FIG.
And as for the blending of CSG, two kinds of blending CSG13 (see FIG. 2) and internal blending CSG12 are blended according to the use location. Note that the required strength is respectively 1N / mm 2, 2N / mm 2 approximately.

富配合CSG13のCSG示方配合は、粗骨材が80mm以下の場合、図6に示すように、水(100〜125kg/m3)・セメント(100kg/m3)・骨材(2,302〜2,370kg/m3)とする。内部配合CSG12のCSG示方配合は、粗骨材が80mm以下の場合、水(90〜105kg/m3)・セメント(60kg/m3)・骨材(2,394〜2,432kg/m3)とする。 CSG How to Display formulation wealth formulation CSG13, when coarse aggregate is 80mm or less, as shown in FIG. 6, water (100~125kg / m 3) · Cement (100kg / m 3) · Aggregate (2,302~ 2,370 kg / m 3 ). CSG How to Display formulation inside formulation CSG12, when coarse aggregate is 80mm or less, water (90~105kg / m 3) · Cement (60kg / m 3) · Aggregate (2,394~2,432kg / m 3) And

次に、CSG施工設備を図7〜図9に基づき説明する。なお、CSGダム10では、CSG混合設備としてコンクリートの混合でも実績のある混合装置(例えば、前田建設工業株式会社製MY−BOX(登録商標))6を使用する。また、MY−BOX6を使用する理由は、設備の特徴として混練り性能に優れている他に、混合に動力を使用しないことに加え、ベルコン速度を変化させることで、製造量を任意に設定できること、及び大量施工が可能であること等があげられる。   Next, the CSG construction facility will be described with reference to FIGS. Note that the CSG dam 10 uses a mixing device (for example, MY-BOX (registered trademark) manufactured by Maeda Construction Industry Co., Ltd.) 6 that has a proven record in mixing concrete as CSG mixing equipment. The reason for using MY-BOX6 is that it is excellent in kneading performance as a feature of the equipment, and in addition to not using power for mixing, the production amount can be arbitrarily set by changing the Velcon speed And that large-scale construction is possible.

図7は、CSG混合設備概要図を示し、図8は、図7に示すCSG混合設備主要機械の諸元を示す。更に、図9は、CSGダムで使用するCSG混合設備のCSG混合フロー図である。   FIG. 7 shows a schematic diagram of the CSG mixing facility, and FIG. 8 shows the specifications of the main machine of the CSG mixing facility shown in FIG. Furthermore, FIG. 9 is a CSG mixing flow diagram of the CSG mixing facility used in the CSG dam.

CSG混合は、図9のCSG混合フロー図に示すように行われる。すなわち、CSG材料(80mm以下)がCSG材投入ホッパー1に投入され、ベルトフィーダ2と供給コンベア(No.1)4を介してMY−BOX6に搬送される。そして、CSG材料を搬送する途中で、セメントサイロ3からセメントがセメント定量供給設備5を経て供給コンベア(No.1)4に投入され、MY−BOX6に搬送される。MY−BOX6内のCSG材料及びセメントは、MY−BOX6により水槽等供給設備7から供給される水分と共に混合される。混合されたCSGは供給コンベア(No.2)8を介して製品ホッパー9に搬送される。なお、本実施の形態のCSGダムでは、CSGの打設スケジュールから、製造能力を80m3/hに設定している。 CSG mixing is performed as shown in the CSG mixing flow diagram of FIG. That is, CSG material (80 mm or less) is charged into the CSG material charging hopper 1 and conveyed to the MY-BOX 6 via the belt feeder 2 and the supply conveyor (No. 1) 4. In the middle of conveying the CSG material, the cement is supplied from the cement silo 3 to the supply conveyor (No. 1) 4 through the cement quantitative supply facility 5 and is conveyed to the MY-BOX 6. The CSG material and cement in the MY-BOX 6 are mixed together with moisture supplied from the supply facility 7 such as a water tank by the MY-BOX 6. The mixed CSG is conveyed to the product hopper 9 via the supply conveyor (No. 2) 8. In the CSG dam of the present embodiment, the production capacity is set to 80 m 3 / h from the CSG placement schedule.

次に、CSGダムの施工を説明する。
[CSGダムの基本施工サイクル]
本実施の形態のCSGダムにおける1mの基本施工サイクルは、図12に示すように、CSGの一層目設置(S1)、CSGのプレキャスト型枠の設置(S2)、CSGの二層目設置(S3)、保護遮水コンクリートの施工(S4)であり、S1からS4の基本施工サイクルを繰り返すことでCSGを1mずつ施工する。
Next, construction of the CSG dam will be described.
[Basic construction cycle of CSG dam]
As shown in FIG. 12, the basic construction cycle of 1 m in the CSG dam of this embodiment is the first layer installation of CSG (S1), the installation of precast formwork of CSG (S2), the second layer installation of CSG (S3 ), Construction of protective water-impervious concrete (S4), and by repeating the basic construction cycle from S1 to S4, CSG is constructed 1 meter at a time.

各工種間において、施工間隔の制限はないので、CSGの施工数量が日施工能力の半分程度であれば、1日目にCSGの一層目(S1)とプレキャスト型枠(S2)を設置する。次に、翌2日目に2層目のCSG(S3)と保護遮水コンクリート(S4)を施工すれば、1サイクル2日間での施工が可能になる。   Since there is no restriction on the construction interval between each type of work, if the construction quantity of CSG is about half of the daily construction capacity, the first CSG layer (S1) and the precast formwork (S2) are installed on the first day. Next, if the second layer of CSG (S3) and protective water-impervious concrete (S4) are constructed on the second day of the next day, construction in one cycle and two days becomes possible.

また、CSGの施工数量が日施工能力程度の場合でもそれぞれの作業に1日づつ掛かっても計4日で1サイクルを施工することができる。   Moreover, even when the construction quantity of CSG is about the daily construction capacity, even if each work takes one day, one cycle can be constructed in a total of four days.

理想の工程は、堤体を左右岸方向に2分割し、CSGの日平均施工量の2倍程度の能力を有する施工設備を設けることができれば、CSG1層目(S1)とプレキャスト型枠設置(S2)、CSG2層目(S3)と保護遮水コンクリート(S4)の2組の作業を2つのブロックで交互に行えば、理論上最速の施工が可能になる。   The ideal process is to divide the levee body into two in the left and right bank direction, and if construction equipment with a capacity of about twice the daily average construction amount of CSG can be provided, CSG first layer (S1) and precast formwork installation ( If two sets of operations of S2) and CSG second layer (S3) and protective impermeable concrete (S4) are alternately performed in two blocks, the theoretically fastest construction is possible.

次に、CSGダムの施工スケジュールを説明する。
[CSGダムの施工スケジュール]
前述した基本施工サイクル(図12参照)を基本とし、降雨や気象条件等の諸条件、及
び左右岸アバット部フーチングの施工等施工上の諸条件を勘案した場合の本実施の形態のCSGダムの施工スケジュールを図17に示す。
Next, the construction schedule of the CSG dam will be described.
[Construction schedule of CSG dam]
Based on the basic construction cycle (see FIG. 12) described above, the CSG dam of the present embodiment in consideration of various conditions such as rainfall and meteorological conditions, and construction conditions such as construction of left and right abutment footings The construction schedule is shown in FIG.

日平均施工量は、CSGが511.6m3/日、保護遮水コンクリートが70m3/日、プレキャスト型枠設置が11個/日である(図13参照)。 Average daily construction amount, CSG is 511.6M 3 / day, a protective water barrier concrete 70m 3 / day, precast formwork installation is 11 / day (see Figure 13).

現段階においては、着岩部の施工から、天端部の施工まで約10ヶ月程度の後期を見込んでいるがフーチングの施工方法を工夫することで、最速施工(基本施工サイクル準拠)が可能になれば、工期短縮が可能となる。   At the present stage, the construction period from the rock formation to the top end is expected to be about 10 months late, but the fastest construction (based on the basic construction cycle) will be possible by devising the footing construction method. In this case, the construction period can be shortened.

保護遮水コンクリート14のプレキャスト化は、図10及び図11に示す通りである。すなわち、従来考えられていた保護遮水コンクリート14の施工は、スライドフォーム30による方式であるため、アンカーボルト33の引抜強度を確保するための養生が必要となり、1mのCSG21,22,23を施工する場合、一般的に5日サイクルの施工となってしまう。従って、CSG連続施工の利点を十分に発揮できない。   The precasting of the protective impermeable concrete 14 is as shown in FIGS. That is, since the construction of the protective water-impervious concrete 14 that has been considered in the past is based on the slide foam 30, curing is required to ensure the pullout strength of the anchor bolt 33, and 1 m CSGs 21, 22, and 23 are constructed. In general, the construction will be a 5-day cycle. Therefore, the advantages of CSG continuous construction cannot be fully demonstrated.

そこで、本実施の形態のCSGダム10の施工においては、保護遮水コンクリート14の型枠31(図11参照)をプレキャスト構造とすることとした(図12及び図13参照)。これにより、金網型枠設置作業を省略でき、工程の短縮を図ると共に、コストの縮減を図ることができる。   Therefore, in the construction of the CSG dam 10 of the present embodiment, the formwork 31 (see FIG. 11) of the protective impermeable concrete 14 has a precast structure (see FIGS. 12 and 13). As a result, the wire net form installation work can be omitted, the process can be shortened, and the cost can be reduced.

次に、特殊振動プレートを用いた法肩締固め機について説明する。
[法肩締固め機の説明]
従来考えられていたCSG上流面の打ち止めは、金網型枠を用いて行うようになっている。しかし、この方法では、金網設置にかなりの時間を要するばかりではなく、金網付近の転圧も十分に行うことができない。また、階段状の施工となり、保護遮水コンクリートの食い込みも発生する。
Next, a shoulder compaction machine using a special vibration plate will be described.
[Explanation of law shoulder compaction machine]
The conventional CSG upstream face stop is performed using a wire mesh formwork. However, this method not only requires a considerable amount of time for the installation of the wire mesh, but also cannot sufficiently roll the wire mesh. In addition, it becomes a staircase-like construction, and the protective impermeable concrete bites in.

そこで、既往の法面プレート(図19の振動プレート)を図14及び図15に示す特殊振動プレート50の形状に改造し、法肩の転圧が可能となる振動プレートを創案した。
すなわち、法肩締固め機は、バックホウ40(図18参照)のアーム41に着脱自在な工具(アタッチメント)である特殊振動プレート50を有している(図16(a)参照)。特殊振動プレート50は、CSG(原位置コンクリート)を盛って形成した堤体11の法面の肩部である法肩に押し当ててバックホウ40の油圧力により締固める法肩締固め機である。
Therefore, the conventional slope plate (vibration plate in FIG. 19) was modified to the shape of the special vibration plate 50 shown in FIGS. 14 and 15, and a vibration plate capable of rolling the shoulder is created.
That is, the shoulder compaction machine has a special vibration plate 50 that is a tool (attachment) that can be attached to and detached from the arm 41 of the backhoe 40 (see FIG. 18) (see FIG. 16A). The special vibration plate 50 is a method of shoulder compaction that presses against the shoulder of the slope face of the bank 11 formed with CSG (in-situ concrete) and compacts it with the hydraulic pressure of the backhoe 40.

なお、特殊振動プレート50は、図15(a)の正面図及び図15(b)の側面図に示すように、ブラケット部50aと起振部50bとから構成される。そして、ブラケット部50aはトップブラケット51とボッタムブラケット52を備えている。また、起振部50bは、ベースプレート(転圧板)53と油圧モータ54とクッションプレート55とロータ56を備えている。   The special vibration plate 50 includes a bracket portion 50a and a vibration generating portion 50b as shown in the front view of FIG. 15A and the side view of FIG. 15B. The bracket portion 50 a includes a top bracket 51 and a bottom bracket 52. The vibration generating unit 50 b includes a base plate (rolling plate) 53, a hydraulic motor 54, a cushion plate 55, and a rotor 56.

そして、特殊振動プレート50のベースプレート(転圧板)53は、堤体11の上面11aと法面11bに接地する所定角度を有する面形状に形成されている。このベースプレート(転圧板)53の面形状は、上面11aと法面11bの双方を法肩の頂部を中心として所定範囲を取り囲むと共に、同時に上面11aと法面11bの双方を保持する形状に形成されている。   The base plate (rolling plate) 53 of the special vibration plate 50 is formed in a surface shape having a predetermined angle that contacts the upper surface 11a and the slope 11b of the bank body 11. The surface shape of the base plate (rolling plate) 53 is formed so that both the upper surface 11a and the slope 11b surround a predetermined range centering on the top of the shoulder, and at the same time hold both the upper surface 11a and the slope 11b. ing.

本実施の形態の法肩締固め機は、特殊振動プレート50のベースプレート(転圧板)53を法肩の頂部を中心として堤体11の上面11aと法面11bに同時に接地させて、バ
ックホウ40の油圧力により堤体11の上面11aと法面11bを同時に加圧して締固めることができる。従って、堤体11を施工する際、従来上面11aを締固めると発生した法面11bの変形が、法肩締固め機を用いて同時に加圧して締固めることで、生じなくなり、法面11bの崩れを修正する作業をする必要がないので、その分堤体11の施工を短工期で、かつ低コストで完成させることができる。
In the method for compacting the shoulder of the present embodiment, the base plate (rolling plate) 53 of the special vibration plate 50 is grounded at the same time to the upper surface 11a and the slope 11b of the dam body 11 with the top of the shoulder as the center. The upper surface 11a and the slope 11b of the bank body 11 can be simultaneously pressurized and compacted by oil pressure. Accordingly, when the dam body 11 is constructed, the deformation of the slope 11b that occurs when the upper surface 11a is compacted conventionally does not occur by simultaneously pressing and compacting using the shoulder compactor, and the slope 11b Since it is not necessary to correct the collapse, the construction of the branch body 11 can be completed in a short construction period and at a low cost.

なお、前述の実施の形態では堤体の上面と法面を同時に加圧して締固める場合で説明したが、本発明の法肩締固め機を用いた法肩締固め工法では、同時に加圧して締固める場合に限定されるものではなく、堤体の上面と法面双方を片方ずつ交互に加圧して締固めてもよい。   In the above-described embodiment, the case where the upper surface and the slope of the levee body are simultaneously pressurized and compacted has been described. However, in the method of shoulder compaction using the shoulder compactor of the present invention, the pressure is simultaneously pressurized. The present invention is not limited to compaction, and both the upper surface and the slope of the bank body may be alternately pressed and compacted one by one.

また、本発明の法肩締固め工法では、堤体の左右岸方向に2分割し、同時に加圧して締固めてもよい。   Further, in the method for shoulder compaction of the present invention, it may be divided into two in the left and right bank direction of the bank body and simultaneously pressed and compacted.

CSGダムの堤体応力図である。It is a dam body stress figure of a CSG dam. CSGダムの沢処理工標準断面図である。It is a standard cross-sectional view of a CSG dam swamp. CSGダムの沢処理工縦断面図である。It is a vertical cross-sectional view of a CSG dam swamp. CSG材粒度分布図である。It is a CSG material particle size distribution map. CSG材の密度、吸収率図である。It is a density of CSG material, and an absorptance figure. CSG示方配合図である。FIG. CSG混合設備概要図である。It is a CSG mixing equipment schematic diagram. CSG混合設備主要機械の諸元図である。It is a specification figure of a CSG mixing equipment main machine. CSGダムで使用するCSG混合設備のCSG混合フロー図である。It is a CSG mixing flow diagram of the CSG mixing facility used in the CSG dam. スライドフォームを用いた場合の施工図である。It is a construction drawing at the time of using a slide form. プレキャスト型枠を用いた場合の施工図である。It is a construction drawing at the time of using a precast formwork. 本実施の形態におけるCSGダムの施工サイクル図である。It is a construction cycle figure of the CSG dam in this Embodiment. 本実施の形態におけるCSG基本施工サイクル図である。It is a CSG basic construction cycle diagram in the present embodiment. 本実施の形態における特殊振動プレートによるCSG打ち止め工法の説明図である。It is explanatory drawing of the CSG stop construction method by the special vibration plate in this Embodiment. 本実施の形態における特殊振動プレートの詳細図である。It is detail drawing of the special vibration plate in this Embodiment. 特殊振動プレートをバックホウに装着する場合の説明図である。It is explanatory drawing when attaching a special vibration plate to a backhoe. CSG施工スケジュール図である。It is a CSG construction schedule figure. 従来のCSG打ち止め工法の説明図である。It is explanatory drawing of the conventional CSG stop construction method. 従来の振動プレートの詳細図である。It is detail drawing of the conventional vibration plate.

符号の説明Explanation of symbols

1 CSG材投入ホッパー
2 ベルトフィーダ
3 セメントサイロ
4 供給コンベア(No.1)
5 セメント定量供給設備
6 MY−BOX
7 供給設備
8 供給コンベア(No.2)
9 製品ホッパー
10 CSGダム
11 堤体
12 内部配合CSG
13 富配合CSG
14 保護遮水コンクリート
15 止水部コンクリート
21,22,23 CSG
30 スライドフォーム
31 プレキャスト型枠
40 バックホウ
41 アーム
50 特殊振動プレート
60 渋滞の振動プレート
1 CSG material input hopper 2 Belt feeder 3 Cement silo 4 Supply conveyor (No. 1)
5 Cement fixed quantity supply equipment 6 MY-BOX
7 Supply equipment 8 Supply conveyor (No. 2)
9 Product hopper 10 CSG dam 11 Dyke body 12 Internal combination CSG
13 CSG
14 Protective impermeable concrete 15 Water stop concrete 21, 22, 23 CSG
30 Slide Form 31 Precast Form 40 Backhoe 41 Arm 50 Special Vibration Plate 60 Congestion Vibration Plate

Claims (8)

原位置コンクリートを盛って形成した堤体の法面の肩部である法肩を締固める工法であって、
前記堤体の上面と法面の双方を、前記肩部の頂部を中心として所定範囲を取り囲むように、同時に保持しながら、加圧する法肩締固め工法。
A method of compacting the shoulder, which is the shoulder of the slope of the embankment formed with in-situ concrete,
A method of shoulder compaction in which both the upper surface and the slope of the bank body are pressurized while simultaneously holding so as to surround a predetermined range centering on the top of the shoulder.
前記堤体の上面と法面を同時に加圧する、あるいは双方を片方ずつ交互に加圧する請求項1に記載の法肩締固め工法。   2. The method according to claim 1, wherein the upper surface and the slope of the levee body are simultaneously pressed, or both are alternately pressed one by one. 前記堤体の左右岸方向に2分割し、同時に加圧する請求項1又は2に記載の法肩締固め工法。   The method according to claim 1 or 2, wherein the embankment body is divided into two in the left-right bank direction and pressurized simultaneously. 前記堤体は、原位置コンクリートを盛って形成したダム用の堤体である請求項1〜3の何れかに記載の法肩締固め工法。   The method according to any one of claims 1 to 3, wherein the levee body is a dam dam body formed by piling in-situ concrete. 前記堤体の端部はコンクリートが打設されて保護遮水コンクリート部が形成され、
前記原位置コンクリートと前記保護遮水コンクリート部が段階的に積み重ねられて施工される請求項1〜4の何れかに記載の法肩締固め工法。
Concrete is cast at the end of the levee body to form a protective impermeable concrete part,
The method according to any one of claims 1 to 4, wherein the in-situ concrete and the protective water-impervious concrete are stacked and constructed in stages.
前記コンクリートを打設する端部は、前記保護遮水コンクリート部をプレキャスト構造で施工する請求項5に記載の法肩締固め工法。   6. The method according to claim 5, wherein the end portion on which the concrete is placed is constructed by precasting the protective water-impervious concrete portion. 前記プレキャスト構造には、前記保護遮水コンクリート部を形成するプレキャスト型枠を使用する請求項6に記載の法肩締固め工法。   The method according to claim 6, wherein the precast structure uses a precast formwork that forms the protective impermeable concrete part. バックホウに着脱自在な工具を有し、前記工具を原位置コンクリートを盛って形成した堤体の法面の肩部である法肩に押し当てて前記バックホウの油圧力により締固める法肩締固め機であって、
前記堤体の上面と法面に接地する前記工具側の面形状が、上面と法面の双方を前記法肩の頂部を中心として所定範囲を取り囲むと共に、同時に上面と法面の双方を保持する形状であることを特徴とする法肩締固め工法に使用する法肩締固め機。
A shoulder compression machine that has a tool that can be attached to and detached from the backhoe, and presses the tool against the shoulder of the slope of the wall of the embankment formed with in-situ concrete, and compacts it by the hydraulic pressure of the backhoe Because
The surface shape on the tool side that contacts the upper surface and the slope of the bank body surrounds a predetermined range centering on the top of the shoulder and both the upper surface and the slope, and simultaneously holds both the upper surface and the slope. A shoulder compaction machine used for the shoulder compaction method characterized by its shape.
JP2003400223A 2003-11-28 2003-11-28 Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it Pending JP2005163283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400223A JP2005163283A (en) 2003-11-28 2003-11-28 Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400223A JP2005163283A (en) 2003-11-28 2003-11-28 Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it

Publications (1)

Publication Number Publication Date
JP2005163283A true JP2005163283A (en) 2005-06-23

Family

ID=34724555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400223A Pending JP2005163283A (en) 2003-11-28 2003-11-28 Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it

Country Status (1)

Country Link
JP (1) JP2005163283A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051518A (en) * 2005-08-19 2007-03-01 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Construction method for civil engineering structure
JP2007247168A (en) * 2006-03-14 2007-09-27 Ohmoto Gumi Co Ltd End treatment method for concrete structure
JP2008081961A (en) * 2006-09-26 2008-04-10 Dam Gijutsu Center Construction method for concrete dam
JP2008214914A (en) * 2007-03-01 2008-09-18 Dam Gijutsu Center Construction method for trapezoidal csg dam
JP2011021376A (en) * 2009-07-15 2011-02-03 Kyushu Regional Development Bureau Ministry Of Land Infrastructure & Transport Attachment for compacting top-of-slope section, heavy equipment equipped with the same, and method for constructing dam body
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2012158867A (en) * 2011-01-29 2012-08-23 Osumi Saiseki Kyodokumiai Manufacturing method for adjusting material for civil engineering and adjusting material for civil engineering
CN104695455A (en) * 2015-03-06 2015-06-10 华能澜沧江水电股份有限公司 High-flow and high-head antiscour and anti-seepage overflow cofferdam structure and construction method thereof
JP2016022709A (en) * 2014-07-24 2016-02-08 株式会社エコアッシュホールディングス Vibration exciting device and method for solidifying kneaded material
CN106087880A (en) * 2016-07-19 2016-11-09 中国水利水电第十工程局有限公司 Dam that a kind of 300 meter levels are high and construction technology thereof
FR3036411A1 (en) * 2015-05-21 2016-11-25 Charier MARITIME OR RIVER DIGUE AND METHOD FOR PRODUCING THE SAME
CN106759387A (en) * 2017-01-18 2017-05-31 中国电建集团北京勘测设计研究院有限公司 A kind of hydraulic structure large volume backfills structure
CN114108568A (en) * 2021-11-10 2022-03-01 江西铜业股份有限公司 Method for building dam by sectionally shaping tailings dam
JP7035258B1 (en) 2020-11-17 2022-03-14 鹿島建設株式会社 Compaction method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682101A (en) * 1969-04-04 1972-08-08 Plasser Bahnbaumasch Franz Mobile track surfacing machine
JPS6299502A (en) * 1985-10-23 1987-05-09 株式会社水谷組 Multipurpose civil engineering apparatus for removing ballast of road bed of railroad bed, for digging soil, leveling ground containing draft root for ground leveling and for step-cutting of normal plane for housing preparation
JPS6356202A (en) * 1986-08-25 1988-03-10 五十嵐 久夫 Vibration start apparatus in vibration type rice field ridge shaping machine
JPS63142108A (en) * 1986-11-20 1988-06-14 ベク・フレール・エス・エー Compaction bank construction method and machine of hydraulic constructional material
JPH0523802U (en) * 1991-03-04 1993-03-30 ヤンマー農機株式会社 Vibration direction adjusting device for vibrator for shore coater
JPH06322738A (en) * 1993-05-19 1994-11-22 Maeda Corp Application of cast-in-place concrete
JPH0898604A (en) * 1995-05-18 1996-04-16 Isao Minagawa Ridging machine
JPH08177033A (en) * 1994-12-21 1996-07-09 Fujita Corp Constructing method of dam embankment body
JPH10176341A (en) * 1996-12-18 1998-06-30 Matsumoto Seisakusho:Kk Attachment of backhoe
JP2000129919A (en) * 1998-10-26 2000-05-09 Ohbayashi Corp Concrete placement control system
JP2001192254A (en) * 1999-10-19 2001-07-17 Inbakkusu:Kk Concrete, concrete structure, method for execution of concrete structure, debris barrier and method for execution of debris dam
JP2002115244A (en) * 2000-10-10 2002-04-19 Kajima Corp Roller compaction device
JP2003020625A (en) * 2001-07-11 2003-01-24 National Institute For Rural Engineering Method for reinforcing soil structure bank body

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682101A (en) * 1969-04-04 1972-08-08 Plasser Bahnbaumasch Franz Mobile track surfacing machine
JPS6299502A (en) * 1985-10-23 1987-05-09 株式会社水谷組 Multipurpose civil engineering apparatus for removing ballast of road bed of railroad bed, for digging soil, leveling ground containing draft root for ground leveling and for step-cutting of normal plane for housing preparation
JPS6356202A (en) * 1986-08-25 1988-03-10 五十嵐 久夫 Vibration start apparatus in vibration type rice field ridge shaping machine
JPS63142108A (en) * 1986-11-20 1988-06-14 ベク・フレール・エス・エー Compaction bank construction method and machine of hydraulic constructional material
JPH0523802U (en) * 1991-03-04 1993-03-30 ヤンマー農機株式会社 Vibration direction adjusting device for vibrator for shore coater
JPH06322738A (en) * 1993-05-19 1994-11-22 Maeda Corp Application of cast-in-place concrete
JPH08177033A (en) * 1994-12-21 1996-07-09 Fujita Corp Constructing method of dam embankment body
JPH0898604A (en) * 1995-05-18 1996-04-16 Isao Minagawa Ridging machine
JPH10176341A (en) * 1996-12-18 1998-06-30 Matsumoto Seisakusho:Kk Attachment of backhoe
JP2000129919A (en) * 1998-10-26 2000-05-09 Ohbayashi Corp Concrete placement control system
JP2001192254A (en) * 1999-10-19 2001-07-17 Inbakkusu:Kk Concrete, concrete structure, method for execution of concrete structure, debris barrier and method for execution of debris dam
JP2002115244A (en) * 2000-10-10 2002-04-19 Kajima Corp Roller compaction device
JP2003020625A (en) * 2001-07-11 2003-01-24 National Institute For Rural Engineering Method for reinforcing soil structure bank body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051518A (en) * 2005-08-19 2007-03-01 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Construction method for civil engineering structure
JP2007247168A (en) * 2006-03-14 2007-09-27 Ohmoto Gumi Co Ltd End treatment method for concrete structure
JP4502963B2 (en) * 2006-03-14 2010-07-14 株式会社大本組 End treatment method for concrete structures
JP2008081961A (en) * 2006-09-26 2008-04-10 Dam Gijutsu Center Construction method for concrete dam
JP2008214914A (en) * 2007-03-01 2008-09-18 Dam Gijutsu Center Construction method for trapezoidal csg dam
JP2011021376A (en) * 2009-07-15 2011-02-03 Kyushu Regional Development Bureau Ministry Of Land Infrastructure & Transport Attachment for compacting top-of-slope section, heavy equipment equipped with the same, and method for constructing dam body
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2012158867A (en) * 2011-01-29 2012-08-23 Osumi Saiseki Kyodokumiai Manufacturing method for adjusting material for civil engineering and adjusting material for civil engineering
JP2016022709A (en) * 2014-07-24 2016-02-08 株式会社エコアッシュホールディングス Vibration exciting device and method for solidifying kneaded material
CN104695455A (en) * 2015-03-06 2015-06-10 华能澜沧江水电股份有限公司 High-flow and high-head antiscour and anti-seepage overflow cofferdam structure and construction method thereof
FR3036411A1 (en) * 2015-05-21 2016-11-25 Charier MARITIME OR RIVER DIGUE AND METHOD FOR PRODUCING THE SAME
CN106087880A (en) * 2016-07-19 2016-11-09 中国水利水电第十工程局有限公司 Dam that a kind of 300 meter levels are high and construction technology thereof
CN106087880B (en) * 2016-07-19 2018-10-19 中国水利水电第十一工程局有限公司 A kind of dam that 300 meter level is high and its construction technology
CN106759387A (en) * 2017-01-18 2017-05-31 中国电建集团北京勘测设计研究院有限公司 A kind of hydraulic structure large volume backfills structure
JP7035258B1 (en) 2020-11-17 2022-03-14 鹿島建設株式会社 Compaction method
JP2022080265A (en) * 2020-11-17 2022-05-27 鹿島建設株式会社 Compaction method
CN114108568A (en) * 2021-11-10 2022-03-01 江西铜业股份有限公司 Method for building dam by sectionally shaping tailings dam

Similar Documents

Publication Publication Date Title
JP2005163283A (en) Construction method for compacting top of slope, and top-of-slope compacting equipment for use in it
CN106699069A (en) Low-intensity groove concrete produced by using red brick construction wastes and construction technology of low-intensity groove concrete
CN107419630A (en) A kind of the soft soil foundation high-filled embankment and construction method of effectively control settlement after construction
CN211006711U (en) High groundwater level pipeline slot backfilling structure
CN110578290B (en) Bridge abutment back backfill structure and construction method thereof
CN104711976B (en) A kind of construction refuse regenerated aggregate complex carrier stake and preparation method thereof
CN111851505A (en) Construction method and structure of pouring type impervious core earth-rock dam
CN108018830A (en) A kind of gravity type cemented gravel dam and its construction method
CN101008178B (en) Soft base processing construction process using excavating and stirring method
CN102444116A (en) Construction waste regenerated aggregate concrete pile and soil foundation treatment method thereof
CN102409660A (en) Given-force engineering method for multisection expanded head discrete material pile composite foundation
CN102505682A (en) Building waste powder cement pile and foundation treatment method thereof
CN116949940A (en) Construction method for backfilling back of bridge abutment with fluid-state solidified soil
CN110984181A (en) Method for backfilling groove of plastic pipeline
CN111908853A (en) Self-compacting soil, preparation method thereof and construction method for backfilling municipal cavity
JPH06108449A (en) Method of improving ground
CN101200902A (en) Construction method for concrete shaft wall module masonry
CN115142465A (en) Construction method of inclined gravity retaining wall
CN210658434U (en) Retaining wall that reinforcing bar gabion and three-dimensional composite drainage network combine
JP3694495B2 (en) Roadbed material or backfill filler
CN108643132B (en) Rolled concrete structure with composite slurry injected into stone slag material and construction method thereof
CN110526733A (en) A kind of preparation method, the construction method of the light ceramic for backfill technology
JP2764645B2 (en) Effective use of construction surplus soil
CN115717346B (en) Solid waste double-base structure applied to road engineering
JP5274776B2 (en) Construction method of artificial soil material consisting of construction by-products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928