JP2022028088A - Stent and manufacturing method of stent - Google Patents

Stent and manufacturing method of stent Download PDF

Info

Publication number
JP2022028088A
JP2022028088A JP2018232746A JP2018232746A JP2022028088A JP 2022028088 A JP2022028088 A JP 2022028088A JP 2018232746 A JP2018232746 A JP 2018232746A JP 2018232746 A JP2018232746 A JP 2018232746A JP 2022028088 A JP2022028088 A JP 2022028088A
Authority
JP
Japan
Prior art keywords
stent
inner peripheral
linear body
mold material
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018232746A
Other languages
Japanese (ja)
Inventor
圭司 岡田
Keiji Okada
昌宏 仲山
Masahiro Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakayama Kikinzoku Mekki Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Nakayama Kikinzoku Mekki Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakayama Kikinzoku Mekki Co Ltd, Sumitomo Electric Industries Ltd filed Critical Nakayama Kikinzoku Mekki Co Ltd
Priority to JP2018232746A priority Critical patent/JP2022028088A/en
Priority to PCT/JP2019/047957 priority patent/WO2020121980A1/en
Publication of JP2022028088A publication Critical patent/JP2022028088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents

Abstract

To provide a stent less likely to cause blood clot adhesion, and manufacturing method of the stent.SOLUTION: A stent is disposed in a blood vessel and includes a cylindrical body composed of a reticulated member. The reticulated member is comprised of a linear body formed of a metal, and out of the reticulated member, a peripheral edge in a cross section of the linear body constituting a part crossing in the axial direction of the cylindrical body, includes a first side end intersecting with a line segment having a maximum width of the linear body and to be disposed on an upstream side of a blood flow in the blood vessel, a second side end to be disposed on a downstream side of the blood flow, and an inner peripheral end intersecting with the line segment having the maximum thickness of the linear body. The stent is so formed that when defining an angle formed between a line segment formed by connecting the first side end and the inner peripheral end, and the line segment having the maximum width, as a first angle, and defining an angle formed between a line segment formed by connecting the second side end and the inner peripheral end and the line segment having the maximum width, as a second angle, the first angle is an acute angle larger than the second angle.SELECTED DRAWING: Figure 2A

Description

本開示は、ステント、及びステントの製造方法に関する。 The present disclosure relates to stents and methods of manufacturing stents.

血管が狭窄や血栓症等になった場合に、血管の内径を所定の大きさに保持する医用部材として、ステントが利用されている。従来、鋼やニッケルチタンといった金属からなるステント(特許文献1)が汎用されている。 A stent is used as a medical member that keeps the inner diameter of a blood vessel at a predetermined size when the blood vessel becomes stenotic or thrombotic. Conventionally, a stent made of a metal such as steel or nickel titanium (Patent Document 1) has been widely used.

金属製のステントは代表的には以下のように製造される。金属管をレーザーによって切断して、網状の円筒管にする。切断後、網目を構成する線状体の横断面形状は代表的には長方形である(特許文献1の図9)。そのため、切断後、上記線状体の角部を研磨する。特許文献1は、上記線状体の角部を細かく研磨することで、上記線状体の横断面形状をドーム形状とすることを開示する。 Metallic stents are typically manufactured as follows. A metal tube is cut with a laser into a net-like cylindrical tube. After cutting, the cross-sectional shape of the linear body constituting the mesh is typically rectangular (FIG. 9 of Patent Document 1). Therefore, after cutting, the corners of the linear body are polished. Patent Document 1 discloses that the cross-sectional shape of the linear body is made into a dome shape by finely polishing the corners of the linear body.

特表2002-501409号公報Special Table 2002-501409 Publication No.

血栓が付着し難いステントが望まれている。また、血栓が付着し難いステントを生産性よく製造できる方法が望まれている。 A stent to which a thrombus does not easily adhere is desired. In addition, a method capable of producing a stent to which a thrombus does not easily adhere is desired.

特許文献1は、ステントを構成する線状体の横断面形状をドーム形状とすることで、血液の流れの乱れを最小限に抑えるとする。しかし、線状体の横断面形状がドーム形状であるステントは製品化されていない。この理由の一つとして、研磨では、線状体の横断面形状がドーム形状のステントを実質的に量産できないためと考えられる。従って、血液の流通性に優れて、血栓が付着し難い形状のステントが望まれる。また、血栓が付着し難い形状のステントを量産できる製造方法が望まれる。 Patent Document 1 stipulates that the cross-sectional shape of the linear body constituting the stent is a dome shape to minimize the disturbance of blood flow. However, a stent having a dome-shaped cross-sectional shape of a linear body has not been commercialized. One of the reasons for this is considered to be that in polishing, stents having a dome-shaped cross-sectional shape of a striatum cannot be substantially mass-produced. Therefore, a stent having an excellent blood circulation and a shape in which a thrombus does not easily adhere is desired. Further, a manufacturing method capable of mass-producing stents having a shape in which thrombus does not easily adhere is desired.

そこで、本開示は、血栓が付着し難いステントを提供することを目的の一つとする。また、本開示は、血栓が付着し難いステントを生産性よく製造できるステントの製造方法を提供することを別の目的の一つとする。 Therefore, one of the purposes of the present disclosure is to provide a stent to which a thrombus is difficult to adhere. Another object of the present disclosure is to provide a method for producing a stent, which can produce a stent to which a thrombus is difficult to adhere with high productivity.

本開示のステントは、
血管内に配置され、網状部材で構成される筒体を有するステントであって、
前記網状部材は、金属からなる線状体で構成され、
前記網状部材のうち、前記筒体の軸方向に交差する箇所を構成する前記線状体の横断面における周縁は、
前記線状体の最大幅をとる線分と交差し、前記血管内において血流の上流側に配置される第一の側端及び前記血流の下流側に配置される第二の側端と、
前記線状体の最大厚さをとる線分と交差する内周端とを含み、
前記第一の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第一の角度とし、前記第二の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第二の角度とし、前記第一の角度は、前記第二の角度よりも大きい鋭角である。
The stents of the present disclosure are
A stent that is placed inside a blood vessel and has a tubular body composed of reticulated members.
The net-like member is composed of a linear body made of metal.
Among the net-like members, the peripheral edge in the cross section of the linear body constituting the portion intersecting the axial direction of the tubular body is
A first side end located upstream of the blood flow and a second side end located downstream of the blood flow intersecting the line segment having the maximum width of the striatum. ,
Including the line segment having the maximum thickness of the striatum and the inner peripheral end intersecting with the line segment.
The angle formed by the line segment connecting the first side end and the inner peripheral end and the line segment having the maximum width is defined as the first angle, and the line connecting the second side end and the inner peripheral end. The angle formed by the minute and the line segment having the maximum width is defined as the second angle, and the first angle is a sharp angle larger than the second angle.

本開示のステントの製造方法は、
所定の形状の溝が形成された型材を用意する工程と、
前記型材において前記溝を含めた表面に純鉄めっきを施す工程と、
前記型材に形成された純鉄めっき部において、前記溝から突出する箇所を除去する工程と、
前記溝に残存する純鉄めっき部と前記型材とを分離する工程とを備える。
The method for manufacturing the stent of the present disclosure is described.
The process of preparing a mold material with a groove of a predetermined shape and
The process of applying pure iron plating to the surface of the mold material including the groove,
In the step of removing the portion protruding from the groove in the pure iron-plated portion formed on the mold material,
A step of separating the pure iron-plated portion remaining in the groove and the mold material is provided.

本開示のステントは、血栓が付着し難い。 The stent of the present disclosure is resistant to thrombus adhesion.

本開示のステントの製造方法は、血栓が付着し難いステントを生産性よく製造できる。 The method for manufacturing a stent of the present disclosure can productively manufacture a stent to which a thrombus does not easily adhere.

図1Aは、実施形態のステントの一例を示す概略側面図である。FIG. 1A is a schematic side view showing an example of a stent of the embodiment. 図1Bは、図1Aに示す実施形態のステントにおいて、線状体の一部を拡大して示す部分拡大図である。FIG. 1B is a partially enlarged view showing a part of a linear body in an enlarged view of the stent of the embodiment shown in FIG. 1A. 図1Cは、図1Aに示す実施形態のステントにおいて、線状体の別の一部を拡大して示す部分拡大図である。FIG. 1C is a partially enlarged view showing another part of the striatum in the stent of the embodiment shown in FIG. 1A in an enlarged manner. 図1Dは、図1Aに示す実施形態のステントにおいて、線状体の更に別の一部を拡大して示す部分拡大図である。FIG. 1D is a partially enlarged view showing still another part of the striatum in the stent of the embodiment shown in FIG. 1A. 図1Eは、図1Aに示す実施形態のステントにおいて、一つの環状部を構成する線状体の断面形状を説明する図である。FIG. 1E is a diagram illustrating a cross-sectional shape of a linear body constituting one annular portion in the stent of the embodiment shown in FIG. 1A. 図2Aは、実施形態のステントにおいて、線状体の横断面形状の一例を示す説明図である。FIG. 2A is an explanatory view showing an example of the cross-sectional shape of the linear body in the stent of the embodiment. 図2Bは、実施形態のステントにおいて、図2Aに示す線状体の横断面形状を示す断面図である。FIG. 2B is a cross-sectional view showing the cross-sectional shape of the linear body shown in FIG. 2A in the stent of the embodiment. 図2Cは、実施形態のステントにおいて、線状体の横断面形状の別例を示す説明図である。FIG. 2C is an explanatory view showing another example of the cross-sectional shape of the linear body in the stent of the embodiment. 実施形態のステントを血管内に配置した状態を示す説明図である。It is explanatory drawing which shows the state which arranged the stent of an embodiment in a blood vessel.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るステントは、
血管内に配置され、網状部材で構成される筒体を有するステントであって、
前記網状部材は、金属からなる線状体で構成され、
前記網状部材のうち、前記筒体の軸方向に交差する箇所を構成する前記線状体の横断面における周縁は、
前記線状体の最大幅をとる線分と交差し、前記血管内において血流の上流側に配置される第一の側端及び前記血流の下流側に配置される第二の側端と、
前記線状体の最大厚さをとる線分と交差する内周端とを含み、
前記第一の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第一の角度とし、前記第二の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第二の角度とし、前記第一の角度は、前記第二の角度よりも大きい鋭角である。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
(1) The stent according to one aspect of the present disclosure is
A stent that is placed inside a blood vessel and has a tubular body composed of reticulated members.
The net-like member is composed of a linear body made of metal.
Among the net-like members, the peripheral edge in the cross section of the linear body constituting the portion intersecting the axial direction of the tubular body is
A first side end located upstream of the blood flow and a second side end located downstream of the blood flow intersecting the line segment having the maximum width of the striatum. ,
Including the line segment having the maximum thickness of the striatum and the inner peripheral end intersecting with the line segment.
The angle formed by the line segment connecting the first side end and the inner peripheral end and the line segment having the maximum width is defined as the first angle, and the line connecting the second side end and the inner peripheral end. The angle formed by the minute and the line segment having the maximum width is defined as the second angle, and the first angle is a sharp angle larger than the second angle.

本開示のステントは、筒体の軸方向に交差する箇所を構成する線状体の横断面形状を、線状体における幅方向の両端部近くの角部が鋭角となるという特定の形状とする。このような特定の横断面形状を有する線状体を含む本開示のステントは、横断面形状が長方形である線状体で構成されるステントに比較して、血流を阻害し難く血液の流通性に優れて、血栓が付着し難い(詳細は後述する)。血栓の付着を抑制することで、本開示のステントは、血管の再狭窄の防止に寄与すると期待される。なお、ここでの線状体の横断面とは、線状体の厚さ方向に平行な平面であって、線状体の延伸方向に直交する平面で切断した断面である。横断面の詳細は後述する。 The stent of the present disclosure has a specific shape in which the cross-sectional shape of the striatum constituting the axially intersecting part of the striatum is an acute angle at the corners of the striatum near both ends in the width direction. .. The stent of the present disclosure including a linear body having such a specific cross-sectional shape is less likely to obstruct blood flow and blood flow than a stent composed of a linear body having a rectangular cross-sectional shape. It has excellent properties and is difficult for blood clots to adhere (details will be described later). By suppressing the adhesion of thrombi, the stents of the present disclosure are expected to contribute to the prevention of restenosis of blood vessels. The cross section of the linear body here is a cross section cut by a plane parallel to the thickness direction of the linear body and orthogonal to the extending direction of the linear body. The details of the cross section will be described later.

また、本開示のステントは、例えば、後述する本開示のステントの製造方法によって製造できる。本開示のステントの製造方法では、上述の研磨を行う場合に比較して、血栓が付着し難い形状の線状体を高精度に成形できる。また、血栓が付着し難い形状の線状体を含むステントを量産できる。従って、本開示のステントは、生産性にも優れる。 Further, the stent of the present disclosure can be manufactured by, for example, the method of manufacturing the stent of the present disclosure described later. In the method for manufacturing a stent of the present disclosure, a linear body having a shape in which a thrombus is less likely to adhere can be formed with high accuracy as compared with the case of performing the above-mentioned polishing. In addition, it is possible to mass-produce stents containing a linear body having a shape that makes it difficult for thrombi to adhere. Therefore, the stent of the present disclosure is also excellent in productivity.

(2)本開示のステントの一例として、
前記周縁は、
前記第一の側端から前記内周端までの領域、及び前記内周端から前記第二の側端までの領域の少なくとも一方に湾曲部を含む形態が挙げられる。
(2) As an example of the stent of the present disclosure,
The peripheral edge is
Examples thereof include a form in which a curved portion is included in at least one of the region from the first side end to the inner peripheral end and the region from the inner peripheral end to the second side end.

上記形態は、線状体における血流に接する内周面に曲面、即ち周縁が湾曲部で描かれる部分を含む。そのため、上記形態は、血液の流通性により優れて、血栓が付着し難い。 The above-mentioned form includes a curved surface, that is, a portion whose peripheral edge is drawn by a curved portion on the inner peripheral surface in contact with blood flow in the striatum. Therefore, the above-mentioned form is superior in blood circulation and is difficult for thrombus to adhere.

(3)上記(2)のステントの一例として、
前記周縁は、
前記第一の側端から前記内周端までの領域に、前記最大厚さの1倍以上3倍以下である曲げ半径を有する第一の湾曲部を含み、
前記内周端から前記第二の側端までの領域に、前記第一の湾曲部の曲げ半径よりも大きな曲げ半径を有する第二の湾曲部を含む形態が挙げられる。
(3) As an example of the stent of (2) above,
The peripheral edge is
The region from the first side end to the inner peripheral end includes a first bending portion having a bending radius of 1 times or more and 3 times or less of the maximum thickness.
Examples thereof include a form in which the region from the inner peripheral end to the second side end includes a second curved portion having a bending radius larger than the bending radius of the first curved portion.

上記形態は、血流の上流側に配置される第一の湾曲部によって血流を阻害し難い上に、血液が血管の内壁面から立ち上がる(離れる)ように流れ易い。更に、血液は、第一の湾曲部を経て第二の湾曲部に沿って流れ易く、下流側に向い易い。そのため、上記形態は、血液の流通性により優れて、血栓が付着し難い。 In the above-mentioned form, the blood flow is not easily obstructed by the first curved portion arranged on the upstream side of the blood flow, and the blood easily flows so as to rise (separate) from the inner wall surface of the blood vessel. Further, the blood tends to flow through the first curved portion and along the second curved portion, and tends toward the downstream side. Therefore, the above-mentioned form is superior in blood circulation and is difficult for thrombus to adhere.

(4)上記(3)のステントの一例として、
前記周縁は、
前記第一の側端から前記内周端を経て前記第二の側端に連続する湾曲部を含む形態が挙げられる。
(4) As an example of the stent of (3) above,
The peripheral edge is
Examples thereof include a form including a curved portion continuous from the first side end to the second side end via the inner peripheral end.

上記形態では、代表的には、線状体の内周面の実質的に全体が曲面で構成される。このような形態は、第一の湾曲部と第二の湾曲部との間に平面を含む場合に比較して、血液の流通性に更に優れ、血栓が付着し難い。 In the above form, typically, substantially the entire inner peripheral surface of the linear body is composed of a curved surface. Such a morphology is more excellent in blood circulation and less likely to cause thrombus as compared with the case where a plane is included between the first curved portion and the second curved portion.

(5)本開示のステントの一例として、
前記筒体は、
複数の環状部と、
前記筒体の軸方向に隣り合う前記環状部を繋ぐリンク部とを備え、
前記各環状部は、前記筒体の周方向に連続する前記線状体から構成され、
前記リンク部は、前記筒体の軸方向に沿って設けられる直線部を含み、
前記環状部の横断面形状と前記直線部の横断面形状とが異なる形態が挙げられる。
(5) As an example of the stent of the present disclosure,
The cylinder is
With multiple annular parts,
A link portion connecting the annular portions adjacent to each other in the axial direction of the cylinder is provided.
Each annular portion is composed of the linear body continuous in the circumferential direction of the cylinder.
The link portion includes a straight portion provided along the axial direction of the cylinder.
Examples thereof include a form in which the cross-sectional shape of the annular portion and the cross-sectional shape of the straight portion are different.

上記形態のリンク部の直線部は血液の流通方向に沿って配置される。そのため、直線部が上述の特定の横断面形状を有していなくても、直線部による血流の抵抗の増大を招き難い。このような形態は、直線部の形状の自由度が大きい点で製造性に優れる。 The straight portion of the link portion of the above-mentioned form is arranged along the blood flow direction. Therefore, even if the straight portion does not have the above-mentioned specific cross-sectional shape, it is unlikely that the resistance of blood flow due to the straight portion will increase. Such a form is excellent in manufacturability in that the degree of freedom in the shape of the straight portion is large.

(6)上記(5)のステントの一例として、
前記直線部の最大厚さは、前記環状部の最大厚さよりも薄い形態が挙げられる。
(6) As an example of the stent of (5) above,
The maximum thickness of the straight portion may be thinner than the maximum thickness of the annular portion.

上記形態は、直線部による血流の抵抗の増大を低減できる。従って、上記形態は、血液の流通性により優れて、血栓が付着し難い。 The above embodiment can reduce the increase in blood flow resistance due to the straight portion. Therefore, the above-mentioned form is superior in blood circulation and is difficult for thrombus to adhere.

(7)本開示のステントの一例として、
前記金属は、純鉄である形態が挙げられる。
(7) As an example of the stent of the present disclosure,
The metal may be in the form of pure iron.

上記形態は、線状体の構成材料が純鉄であるため、生体分解性にも優れる。 In the above form, since the constituent material of the linear body is pure iron, it is also excellent in biodegradability.

(8)本開示の一態様に係るステントの製造方法は、
所定の形状の溝が形成された型材を用意する工程と、
前記型材において前記溝を含めた表面に純鉄めっきを施す工程と、
前記型材に形成された純鉄めっき部において、前記溝から突出する箇所を除去する工程と、
前記溝に残存する純鉄めっき部と前記型材とを分離する工程とを備える。
(8) The method for manufacturing a stent according to one aspect of the present disclosure is as follows.
The process of preparing a mold material with a groove of a predetermined shape and
The process of applying pure iron plating to the surface of the mold material including the groove,
In the step of removing the portion protruding from the groove in the pure iron-plated portion formed on the mold material,
A step of separating the pure iron-plated portion remaining in the groove and the mold material is provided.

本開示のステントの製造方法は、以下の理由(A),(B)により、網状部材の少なくとも一部に、上述の血栓が付着し難いという特定の横断面形状を有する線状体を含むステントを生産性よく製造できる。また、本開示のステントの製造方法は、純鉄からなるステント、即ち生体分解性に優れるステントを製造できる。 The method for manufacturing a stent of the present disclosure includes a stent having a linear body having a specific cross-sectional shape in which the above-mentioned thrombus is difficult to adhere to at least a part of the reticulated member for the following reasons (A) and (B). Can be manufactured with high productivity. Further, the method for manufacturing a stent of the present disclosure can manufacture a stent made of pure iron, that is, a stent having excellent biodegradability.

(A)ステントの形成にめっき法を利用する。そのため、型材の溝の形状に沿った横断面形状を有する線状体を高精度に、かつ容易に製造できる。例えば、網状部材の一部又は全部に上述の特定の横断面形状を有する線状体を含むステントや、内周面の実質的に全体が湾曲形状である線状体を含むステント等を高精度に、かつ容易に製造できる。 (A) A plating method is used to form a stent. Therefore, a linear body having a cross-sectional shape along the shape of the groove of the mold material can be easily manufactured with high accuracy. For example, a stent containing a linear body having the above-mentioned specific cross-sectional shape in a part or all of the reticulated member, a stent containing a linear body having a substantially entirely curved inner peripheral surface, and the like with high accuracy. And can be easily manufactured.

(B)型材の表面全体にめっきを施すと共に、得られためっき部において、溝からの突出箇所を除去する。そのため、溝のみにめっきを施す場合に比較して、マスキングが不要であり、作業性に優れる。 (B) The entire surface of the mold material is plated, and the protruding portion from the groove is removed from the obtained plated portion. Therefore, masking is not required and the workability is excellent as compared with the case where only the groove is plated.

このような本開示のステントの製造方法は、上述のレーザーを用いる製法と比較して、上述の特定の横断面形状を有する線状体を含むステントを量産できる。 Such a method for manufacturing a stent of the present disclosure can mass-produce a stent containing a linear body having the above-mentioned specific cross-sectional shape as compared with the above-mentioned manufacturing method using a laser.

[本開示の実施形態の詳細]
以下、図面を参照して、本開示の実施形態を具体的に説明する。図において同一符号は同一名称物を意味する。
[Details of Embodiments of the present disclosure]
Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings. In the figure, the same reference numerals mean the same names.

[ステント]
以下、図1~図3を参照して、実施形態のステント1を説明する。
図1Aは、実施形態のステント1の一例を示す概略側面図である。図1Aでは、ステント1を筒体15の軸方向(図1Aでは軸63を通る直線の方向)に平行な平面で切断した半分のみを示す。残り半分は省略している。なお、残り半分を省略しなければ、筒体15を構成する網状部材11の網目から、残り半分を構成する線状体10の一部がみえる。
[Stent]
Hereinafter, the stent 1 of the embodiment will be described with reference to FIGS. 1 to 3.
FIG. 1A is a schematic side view showing an example of the stent 1 of the embodiment. FIG. 1A shows only half of the stent 1 cut in a plane parallel to the axial direction of the tubular body 15 (in FIG. 1A, the direction of a straight line passing through the axis 63). The other half is omitted. If the other half is not omitted, a part of the linear body 10 constituting the other half can be seen from the mesh of the mesh member 11 constituting the tubular body 15.

(概要)
実施形態のステント1は、血管5(図3)に配置されて、血管5の内径を所定の大きさに保持するための医用部材である。ステント1は、図1Aに示すように網状部材11で構成される筒体15を有する。網状部材11は、金属からなる線状体10で構成される。筒体15は、線状体10で構成される網目が広げられることで、筒体15の径方向に拡張可能である。代表的には、ステント1は、筒体15の軸63が血液の流通方向に平行するように血管5内に配置され、筒体15が拡張された状態で利用される。このようなステント1は、バルーン拡張型ステントとして利用される。なお、線状体10は、ストラットと呼ばれることがある。
(Overview)
The stent 1 of the embodiment is a medical member arranged in the blood vessel 5 (FIG. 3) to hold the inner diameter of the blood vessel 5 at a predetermined size. The stent 1 has a tubular body 15 composed of a reticulated member 11 as shown in FIG. 1A. The net-like member 11 is composed of a linear body 10 made of metal. The tubular body 15 can be expanded in the radial direction of the tubular body 15 by expanding the mesh composed of the linear body 10. Typically, the stent 1 is used in a state where the axis 63 of the tubular body 15 is arranged in the blood vessel 5 so as to be parallel to the blood flow direction, and the tubular body 15 is expanded. Such a stent 1 is used as a balloon dilated stent. The linear body 10 may be called a strut.

特に、実施形態のステント1では、網状部材11の少なくとも一部を構成する線状体10の横断面形状が特定の形状である。詳しくは、網状部材11のうち、筒体15の軸方向に交差する箇所(以下、交差箇所と呼ぶ)を構成する線状体10の横断面形状は、図2A,図2Cに例示するように、線状体10における幅方向(図2A,図2Cでは左右方向)の両端部近くの角部が鋭角となるような形状である。また、一端側(図2A,図2Cでは左側)の角部の角度θが他端側(図2A,図2Cでは右側)の角部の角度θよりも大きい(θ<θ<90°)。 In particular, in the stent 1 of the embodiment, the cross-sectional shape of the linear body 10 constituting at least a part of the reticulated member 11 is a specific shape. Specifically, among the net-like members 11, the cross-sectional shapes of the linear bodies 10 constituting the points intersecting in the axial direction of the tubular body 15 (hereinafter referred to as intersections) are illustrated in FIGS. 2A and 2C. , The shape is such that the corners near both ends of the linear body 10 in the width direction (horizontal direction in FIGS. 2A and 2C) are acute angles. Further, the angle θ 1 at the corner on one end side (left side in FIGS. 2A and 2C) is larger than the angle θ 2 at the corner on the other end side (right side in FIGS. 2A and 2C) (θ 21 <. 90 °).

図1B~図1Dの拡大図を参照して、線状体10の横断面を説明する。
図1B~図1Dは、図1Aに示すステント1に対して破線円を付した箇所を拡大して示す。
図1Bは、筒体15の軸方向に沿って配置される箇所(以下、非交差箇所と呼ぶ)を構成する線状体10を示す。
図1Cは、筒体15の軸方向に直交する箇所(交差箇所の一例)を構成する線状体10を示す。
図1Dは、筒体15の軸方向に非直交に交差する箇所(交差箇所の別例)を構成する線状体10を示す。
The cross section of the linear body 10 will be described with reference to the enlarged views of FIGS. 1B to 1D.
1B to 1D show an enlarged portion of the stent 1 shown in FIG. 1A with a broken line circle.
FIG. 1B shows a linear body 10 constituting a portion (hereinafter referred to as a non-intersecting portion) arranged along the axial direction of the tubular body 15.
FIG. 1C shows a linear body 10 constituting a portion (an example of an intersection) orthogonal to the axial direction of the tubular body 15.
FIG. 1D shows a linear body 10 constituting a portion (another example of the intersection) that intersects non-orthogonally in the axial direction of the tubular body 15.

まず、線状体10の幅方向の一端部を通る接線61をとる。線状体10の幅方向の一端部とは、ステント1を筒体15の軸63に直交する方向から平面視した場合(図1A)に、線状体10において最大幅wmaxをとる線分との交点に相当する。図1B~図1Dでは、線状体10の幅方向の一端部に黒丸印を付している。
次に、線状体10の厚さ方向に平行な平面であって、接線61に直交する垂線62を通る平面を切断面とする。線状体10の厚さ方向とは、線状体10の外周面21(図1A~図1Dでは紙面手前側の面)から筒体15の軸63側に向かう方向である。図1B~図1Dでは、線状体10の厚さ方向は紙面垂直方向(奥行き方向)に相当する。筒体15が円筒状であり、筒体15の軸方向に沿って配置される箇所や筒体15の軸方向に直交する箇所では、線状体10の厚さ方向は筒体15の径方向に相当する。
上述の切断面で線状体10を切断した断面を線状体10の横断面とする。
First, a tangent line 61 passing through one end of the linear body 10 in the width direction is taken. One end in the width direction of the linear body 10 is a line segment having a maximum width w max in the linear body 10 when the stent 1 is viewed in a plan view from a direction orthogonal to the axis 63 of the tubular body 15 (FIG. 1A). Corresponds to the intersection with. In FIGS. 1B to 1D, a black circle mark is attached to one end of the linear body 10 in the width direction.
Next, a plane parallel to the thickness direction of the linear body 10 and passing through a perpendicular line 62 orthogonal to the tangent line 61 is defined as a cut surface. The thickness direction of the linear body 10 is a direction from the outer peripheral surface 21 of the linear body 10 (the surface on the front side of the paper surface in FIGS. 1A to 1D) toward the axis 63 side of the tubular body 15. In FIGS. 1B to 1D, the thickness direction of the linear body 10 corresponds to the vertical direction (depth direction) of the paper surface. Where the tubular body 15 is cylindrical and is arranged along the axial direction of the tubular body 15 or orthogonal to the axial direction of the tubular body 15, the thickness direction of the linear body 10 is the radial direction of the tubular body 15. Corresponds to.
The cross section obtained by cutting the linear body 10 on the above-mentioned cut surface is referred to as a cross section of the linear body 10.

以下、ステント1をより詳細に説明する。
(構成材料)
線状体10の構成材料は、金属である。実施形態のステント1の代表例として、金属からなる線状体10で構成される網状部材11のみを備える形態が挙げられる。この形態は、一般に、ベアメタルステント(BMS)と呼ばれる。別例として、上述の網状部材11を基部とし、更に基部に保持される薬剤(図示せず)を備える形態が挙げられる。この形態は、一般に、ドラックエルティングステント(DES)と呼ばれる。
Hereinafter, the stent 1 will be described in more detail.
(Constituent material)
The constituent material of the linear body 10 is metal. As a typical example of the stent 1 of the embodiment, there is a mode in which only the reticulated member 11 made of the linear body 10 made of metal is provided. This form is commonly referred to as a bare metal stent (BMS). As another example, there is a form in which the above-mentioned reticulated member 11 is used as a base, and a drug (not shown) held at the base is provided. This form is commonly referred to as a drug-eluting stent (DES).

〈線状体〉
線状体10を構成する金属は、ステントに利用されている各種の金属を利用できる。特に、上記金属は、純鉄が好ましい。ここでの純鉄とは、Fe(鉄)を99.5質量%以上含み、残部が不可避不純物からなるものとする。不可避不純物の含有量は0.5質量%以下である。Feは鋼やステンレス鋼といった鉄基合金、ニッケルチタン(ニチノール)に比較して、生体分解性に優れる金属である。そのため、Feの含有量(純度)が99.5質量%以上の純鉄からなる線状体10は、生体分解性に優れる。Feの純度(含有量)が高い純鉄から構成されるステント1は、経時的に体内から消滅可能であり、生体吸収性ステント(生体吸収性スキャフォールド(BVS)と呼ばれることがある)として好適に利用できる。
<Striatum>
As the metal constituting the linear body 10, various metals used for the stent can be used. In particular, the metal is preferably pure iron. Here, pure iron contains Fe (iron) in an amount of 99.5% by mass or more, and the balance is composed of unavoidable impurities. The content of unavoidable impurities is 0.5% by mass or less. Fe is a metal having excellent biodegradability as compared with iron-based alloys such as steel and stainless steel and nickel titanium (nitinol). Therefore, the linear body 10 made of pure iron having an Fe content (purity) of 99.5% by mass or more is excellent in biodegradability. The stent 1 composed of pure iron having a high Fe purity (content) can disappear from the body over time, and is suitable as a bioabsorbable stent (sometimes called a bioabsorbable scaffold (BVS)). Can be used for.

Feの含有量が高いほど、即ち純度が高いほど、生体分解性に優れる。また、不純物が少ないことで耐食性にも優れる。生体分解性の向上等を望む場合、Feの含有量を99.6質量%以上、更に99.8質量%以上としてもよい。Feの含有量が99.5質量%以上の純鉄からなる線状体10は、例えば、純鉄めっきを行ったり、高純度の純鉄粉を焼結したりすることで製造できる(後述の製造方法参照)。 The higher the Fe content, that is, the higher the purity, the better the biodegradability. In addition, it has excellent corrosion resistance due to the small amount of impurities. If it is desired to improve biodegradability, the Fe content may be 99.6% by mass or more, and further 99.8% by mass or more. The linear body 10 made of pure iron having a Fe content of 99.5% by mass or more can be produced, for example, by performing pure iron plating or sintering high-purity pure iron powder (described later). See manufacturing method).

〈薬剤〉
薬剤は公知のものを利用できる。薬剤の保持方法は、例えば、網状部材11の少なくとも一部を構成する線状体10の表面に薬剤の塗布層を備えることが挙げられる。網状部材11が焼結体であれば、焼結体自体に含まれる気孔を薬剤の保持部として利用してもよい。線状体10の内部(気孔)に薬剤を保持するため、長期に亘り薬剤を保持できると期待される。網状部材11が焼結体から構成され、薬剤が含浸された気孔と、薬剤の塗布層とを備えるステント1としてもよい。
<Drug>
Known agents can be used. As a method for holding the drug, for example, a coating layer of the drug may be provided on the surface of the linear body 10 constituting at least a part of the reticulated member 11. If the reticulated member 11 is a sintered body, the pores contained in the sintered body itself may be used as a drug holding portion. Since the drug is retained inside the linear body 10 (pores), it is expected that the drug can be retained for a long period of time. The reticulated member 11 may be a stent 1 having a sintered body, pores impregnated with the drug, and a coating layer of the drug.

(筒体)
〈全体形状〉
筒体15の代表的な形状として、円筒が挙げられる。円筒状の筒体15は、血管5の内壁面50(図3)に適合し易い。そのため、円筒状の筒体15は、筒体15自体によって血管5の内壁面50を損傷し難いと考えられる。その他、筒体15の形状は、血管5に損傷を与え難く、血流を阻害し難い範囲で、円筒以外の形状でもよい。例えば、筒体15の端面形状は、楕円状、多角形状等が挙げられる。
(Cylinder)
<Overall shape>
A cylinder is a typical shape of the cylinder 15. The cylindrical cylinder 15 easily fits into the inner wall surface 50 (FIG. 3) of the blood vessel 5. Therefore, it is considered that the cylindrical tubular body 15 is unlikely to damage the inner wall surface 50 of the blood vessel 5 by the tubular body 15 itself. In addition, the shape of the cylinder 15 may be a shape other than a cylinder as long as the blood vessel 5 is not easily damaged and the blood flow is not easily obstructed. For example, the end face shape of the tubular body 15 may be an elliptical shape, a polygonal shape, or the like.

筒体15は、筒体15の軸方向の各端部に開口部を有し、一端から他端に貫通する中空空間を形成する。また、筒体15は、線状体10が網状に配置されてなる網状部材11によって構成される。そのため、筒体15は、筒体15の内外を貫通する複数の開口部を有する。網状部材11を構成する線状体10は、筒体15の周方向に連続すると共に、筒体15の軸方向にも連続するように設けられる。 The tubular body 15 has openings at each end of the tubular body 15 in the axial direction, and forms a hollow space penetrating from one end to the other end. Further, the tubular body 15 is composed of a mesh member 11 in which the linear bodies 10 are arranged in a mesh pattern. Therefore, the tubular body 15 has a plurality of openings penetrating the inside and outside of the tubular body 15. The linear body 10 constituting the net-like member 11 is provided so as to be continuous in the circumferential direction of the tubular body 15 and also continuous in the axial direction of the tubular body 15.

筒体15の一例として、図1Aに示すように、複数の環状部16と、少なくとも一つのリンク部17とを備えるものが挙げられる。各環状部16は、筒体15の周方向に連続する線状体10から構成される。各リンク部17は、筒体15の軸方向に隣り合う環状部16を繋ぐ。詳しくは、各リンク部17は、隣り合う環状部16の周方向の少なくとも一カ所を繋ぐように設けられる。また、一つの環状部16に複数のリンク部17が接続される場合、各リンク部17は、代表的には、環状部16の周方向の異なる位置に離間して配置される。 As an example of the tubular body 15, as shown in FIG. 1A, a cylinder body 15 including a plurality of annular portions 16 and at least one link portion 17 can be mentioned. Each annular portion 16 is composed of a linear body 10 continuous in the circumferential direction of the tubular body 15. Each link portion 17 connects an annular portion 16 adjacent to each other in the axial direction of the tubular body 15. Specifically, each link portion 17 is provided so as to connect at least one of adjacent annular portions 16 in the circumferential direction. Further, when a plurality of link portions 17 are connected to one annular portion 16, each link portion 17 is typically arranged at different positions in the circumferential direction of the annular portion 16.

図1Aでは、各環状部16を構成する線状体10は、筒体15の軸方向に進退するように蛇行しながら、筒体15の周方向に連続する場合を例示する。また、図1Aでは、各リンク部17を構成する線状体10が筒体15の軸方向に沿って直線状に設けられる場合を例示する。更に、図1Aでは、一つの環状部16に対して、複数のリンク部17が接続される場合を例示する。各環状部16は、筒体15の一端(図1Aでは左端)及び筒体15の他端(図1Aでは右端)の少なくとも一方にリンク部17との接続箇所を有する。図1Aは例示であり、環状部16及びリンク部17の形状、大きさ、個数、接続箇所等は適宜変更できる。 FIG. 1A illustrates a case where the linear body 10 constituting each annular portion 16 is continuous in the circumferential direction of the tubular body 15 while meandering so as to advance and retreat in the axial direction of the tubular body 15. Further, FIG. 1A illustrates a case where the linear body 10 constituting each link portion 17 is provided linearly along the axial direction of the tubular body 15. Further, FIG. 1A illustrates a case where a plurality of link portions 17 are connected to one annular portion 16. Each annular portion 16 has a connection point with the link portion 17 at at least one end of the tubular body 15 (left end in FIG. 1A) and the other end of the tubular body 15 (right end in FIG. 1A). FIG. 1A is an example, and the shape, size, number, connection points, and the like of the annular portion 16 and the link portion 17 can be appropriately changed.

〈環状部〉
図1Aでは、全ての環状部16の形状及び大きさが実質的に等しい場合を例示する。本例の各環状部16は、曲線の波(例、正弦波)状に配置される線状体10から構成される。このような各環状部16は、主として、筒体15の軸方向に交差するように配置される線状体10で構成される。つまり、この線状体10は、筒体15の交差箇所を構成する。また、本例では、波状に配置される線状体10の振幅が環状部16の全周に亘って実質的に等しい。更に、本例では、各環状部16を構成する線状体10の最大幅wmax及び最大厚さtmaxが線状体10の全長に亘って実質的に等しい。
<Ring road>
FIG. 1A illustrates a case where the shapes and sizes of all the annular portions 16 are substantially the same. Each annular portion 16 of this example is composed of a linear body 10 arranged in a curved wave (eg, sine wave). Each such annular portion 16 is mainly composed of a linear body 10 arranged so as to intersect the axial direction of the tubular body 15. That is, the linear body 10 constitutes an intersection of the tubular body 15. Further, in this example, the amplitudes of the linear bodies 10 arranged in a wavy shape are substantially equal over the entire circumference of the annular portion 16. Further, in this example, the maximum width w max and the maximum thickness t max of the linear body 10 constituting each annular portion 16 are substantially equal over the entire length of the linear body 10.

その他、例えば、環状部16の蛇行形状を三角波状(ジグザグ形状)、矩形波状、鋸波状(直角三角波状)等としてもよい。又は、環状部16を構成する線状体10を図1Aに示す直線状に代えて屈曲形状としてもよい。又は、例えば、一つの環状部16の振幅を周方向に異ならせてもよい。一例として、環状部16の周方向に連続的に振幅を大きくしてもよい。又は、隣り合う環状部16の形状や大きさを異ならせてもよい。このような複雑な形状を有していても、後述する実施形態のステントの製造方法を利用すれば、ステント1を容易に製造できる。 In addition, for example, the meandering shape of the annular portion 16 may be triangular wave shape (zigzag shape), rectangular wave shape, saw wave shape (right angle triangular wave shape), or the like. Alternatively, the linear body 10 constituting the annular portion 16 may be formed into a bent shape instead of the linear shape shown in FIG. 1A. Alternatively, for example, the amplitude of one annular portion 16 may be different in the circumferential direction. As an example, the amplitude may be continuously increased in the circumferential direction of the annular portion 16. Alternatively, the shapes and sizes of the adjacent annular portions 16 may be different. Even if it has such a complicated shape, the stent 1 can be easily manufactured by using the method for manufacturing a stent according to the embodiment described later.

〈リンク部〉
図1Aでは、全てのリンク部17の形状及び大きさが実質的に等しい場合を例示する。本例の各リンク部17は、筒体15の軸方向に沿って直線状に設けられる線状体10を含む。この直線状の線状体10を直線部170と呼ぶ。直線部170を構成する線状体10は、線状体10の延伸方向が筒体15の軸方向に沿っている。つまり、この線状体10は、筒体15の非交差箇所を構成する。本例では、リンク部17の実質的に全体が直線部170である。また、本例では、リンク部17の最大幅及び最大厚さがリンク部17の全長に亘って実質的に等しい。
<Link part>
FIG. 1A illustrates a case where the shapes and sizes of all the link portions 17 are substantially the same. Each link portion 17 of this example includes a linear body 10 provided linearly along the axial direction of the tubular body 15. This linear linear body 10 is called a linear portion 170. In the linear body 10 constituting the linear portion 170, the stretching direction of the linear body 10 is along the axial direction of the tubular body 15. That is, the linear body 10 constitutes a non-intersecting portion of the tubular body 15. In this example, substantially the entire link portion 17 is a straight portion 170. Further, in this example, the maximum width and the maximum thickness of the link portion 17 are substantially equal over the entire length of the link portion 17.

その他、例えば、リンク部17の一部のみを直線部170としてもよい。この場合、リンク部17の残部は、筒体15の軸方向に交差するように配置される線状体10を含むことが挙げられる。又は、例えば、リンク部17は直線部170を含まなくてもよい。一例として、リンク部17の全体が、筒体15の軸方向に交差するように配置される線状体10で構成されることが挙げられる。別例として、各環状部16が上述の波状等の凹凸形状であり、リンク部17は、隣り合う環状部16の凸部の頂点同士が接続したような形状であることが挙げられる。 In addition, for example, only a part of the link portion 17 may be a straight line portion 170. In this case, the remaining portion of the link portion 17 may include a linear body 10 arranged so as to intersect the tubular body 15 in the axial direction. Alternatively, for example, the link portion 17 may not include the straight portion 170. As an example, the entire link portion 17 may be composed of linear bodies 10 arranged so as to intersect in the axial direction of the tubular body 15. As another example, each annular portion 16 has a concave-convex shape such as the above-mentioned wavy shape, and the link portion 17 has a shape in which the vertices of the convex portions of the adjacent annular portions 16 are connected to each other.

〈筒体の大きさ〉
筒体15の拡張前の外径は、用途(人体への配置箇所)にもよるが、例えば1.0mm以上20mm以下が挙げられる。筒体15の拡張前の長さは、用途にもよるが、例えば5mm以上400mm以下が挙げられる。冠動脈用途、頭蓋内用途のステント1では、拡張前の筒体15の外径は、例えば1.0mm以上4.5mm以下が挙げられる。筒体15の長さは例えば5mm以上30mm以下が挙げられる。なお、筒体15の外径とは、筒体15を軸方向に平面視した輪郭に対する外接円をとり、この外接円の直径とする。
<Size of cylinder>
The outer diameter of the tubular body 15 before expansion depends on the application (location on the human body), but may be, for example, 1.0 mm or more and 20 mm or less. The length of the tubular body 15 before expansion depends on the application, but may be, for example, 5 mm or more and 400 mm or less. In the stent 1 for coronary artery use and intracranial use, the outer diameter of the tubular body 15 before expansion is, for example, 1.0 mm or more and 4.5 mm or less. The length of the tubular body 15 is, for example, 5 mm or more and 30 mm or less. The outer diameter of the cylinder 15 is the diameter of the circumscribed circle with respect to the contour of the cylinder 15 viewed in a plan view in the axial direction.

(線状体)
〈横断面形状〉
主に図2A~図2Cを参照して、線状体10の横断面形状を説明する。
図2A~図2Cは、上述の切断面で切断した線状体10の横断面図である。図2A,図2Cではハッチングを省略している。
図2Aは、横断面形状の一例として涙型を半分に切断したような形状を示す。
図2Cは、横断面形状の別例として台形状を示す。
(Striatum)
<Cross section shape>
The cross-sectional shape of the linear body 10 will be described mainly with reference to FIGS. 2A to 2C.
2A to 2C are cross-sectional views of the linear body 10 cut at the above-mentioned cut surface. Hatching is omitted in FIGS. 2A and 2C.
FIG. 2A shows a shape as if the teardrop shape was cut in half as an example of the cross-sectional shape.
FIG. 2C shows a trapezoidal shape as another example of the cross-sectional shape.

筒体15を構成する線状体10の横断面において、線状体10の周縁2は、筒体15の内周側に配置される内周面20と、筒体15の外周側に配置される外周面21とを備える。図3に示すように、ステント1が血管5に配置された状態において、線状体10の外周面21は、血管5の内壁面50に接して配置される。内周面20は、血管5の内壁面50から突出するように配置され、内壁面50に接することなく、血流に接する面である。 In the cross section of the linear body 10 constituting the tubular body 15, the peripheral edge 2 of the linear body 10 is arranged on the inner peripheral surface 20 arranged on the inner peripheral side of the tubular body 15 and the outer peripheral side of the tubular body 15. The outer peripheral surface 21 is provided. As shown in FIG. 3, in a state where the stent 1 is arranged in the blood vessel 5, the outer peripheral surface 21 of the linear body 10 is arranged in contact with the inner wall surface 50 of the blood vessel 5. The inner peripheral surface 20 is a surface that is arranged so as to protrude from the inner wall surface 50 of the blood vessel 5 and is in contact with the blood flow without touching the inner wall surface 50.

線状体10の横断面において周縁2が曲線で描かれる箇所は、曲面で構成される。周縁2が直線で描かれる箇所は、実質的に平面で構成される。なお、図2A~図2C,図3では、説明の便宜上、外周面21を直線で描く。しかし、筒体15が例えば円筒体であれば、外周面21は大きな曲げ半径を有する円弧(緩やかな湾曲線)で描かれ、曲面で構成される。 In the cross section of the linear body 10, the portion where the peripheral edge 2 is drawn by a curve is composed of a curved surface. The portion where the peripheral edge 2 is drawn by a straight line is substantially composed of a plane. In FIGS. 2A to 2C and 3, for convenience of explanation, the outer peripheral surface 21 is drawn as a straight line. However, if the tubular body 15 is, for example, a cylindrical body, the outer peripheral surface 21 is drawn by an arc (gentle curved line) having a large bending radius, and is composed of a curved surface.

筒体15の交差箇所は、以下の横断面形状を有する線状体10を含む。線状体10の横断面における周縁2は、内周側に、以下の一対の側端31,32と、内周端30と、内周縁部25,26とを含むと共に、以下の角度θ,θが以下の条件を満たす(図2A,図2C)。 The intersection of the cylinders 15 includes a linear body 10 having the following cross-sectional shape. The peripheral edge 2 in the cross section of the linear body 10 includes the following pair of side ends 31, 32, the inner peripheral end 30, and the inner peripheral edges 25, 26 on the inner peripheral side, and has the following angle θ 1 . , Θ 2 satisfy the following conditions (FIGS. 2A and 2C).

側端31,32は、周縁2において、線状体10の最大幅wmaxをとる線分35と交差する箇所である。第一の側端31は、血管5内において血流の上流側に配置される。第二の側端32は、血管5内において血流の下流側に配置される。内周端30は、周縁2において、線状体10の最大厚さtmaxをとる線分36と交差する箇所である。内周端30は、線状体10の幅方向の中心位置よりも、上流側の第一の側端31寄りに位置する。内周縁部25は、周縁2において、第一の側端31から内周端30までの領域である。この領域を上流側の内周縁部25と呼ぶ。内周縁部26は、周縁2において、第二の側端32から内周端30(図2Cでは後述する下流側の内周端34)までの領域である。この領域を下流側の内周縁部26と呼ぶ。なお、図2A~図2Cでは、紙面左側を上流側と呼び、紙面右側を下流側と呼ぶ。また、図2A~図2Cでは、側端31,32、内周端30,34に黒丸印を付して示す。 The side ends 31 and 32 are locations on the peripheral edge 2 that intersect the line segment 35 having the maximum width w max of the linear body 10. The first side end 31 is located in the blood vessel 5 on the upstream side of the blood flow. The second side end 32 is located in the blood vessel 5 on the downstream side of the blood flow. The inner peripheral end 30 is a portion of the peripheral edge 2 that intersects the line segment 36 having the maximum thickness t max of the linear body 10. The inner peripheral end 30 is located closer to the first side end 31 on the upstream side than the center position in the width direction of the linear body 10. The inner peripheral edge portion 25 is a region from the first side end 31 to the inner peripheral edge 30 on the peripheral edge 2. This region is referred to as an inner peripheral edge portion 25 on the upstream side. The inner peripheral edge portion 26 is a region of the peripheral edge 2 from the second side end 32 to the inner peripheral edge 30 (in FIG. 2C, the downstream inner peripheral edge 34 described later). This region is referred to as an inner peripheral edge portion 26 on the downstream side. In FIGS. 2A to 2C, the left side of the paper surface is referred to as the upstream side, and the right side of the paper surface is referred to as the downstream side. Further, in FIGS. 2A to 2C, the side ends 31, 32 and the inner peripheral ends 30, 34 are marked with black circles.

第一の側端31と内周端30とを結ぶ線分37と最大幅wmaxをとる線分35とがつくる角度を第一の角度θとする。第二の側端32と内周端30(図2Cでは内周端34)とを結ぶ線分38と最大幅wmaxをとる線分35とがつくる角度を第二の角度θとする。第一の角度θは第二の角度θよりも大きい鋭角である。そのため、第二の角度θも鋭角である。このような横断面形状は、筒体15の外周側(図2A~図2Cでは上側)から筒体15の内周側(図2A~図2Cでは下側)に向かうに従って線状体10の幅が狭くなる形状といえる。 The angle formed by the line segment 37 connecting the first side end 31 and the inner peripheral end 30 and the line segment 35 having the maximum width w max is defined as the first angle θ 1 . The angle formed by the line segment 38 connecting the second side end 32 and the inner peripheral end 30 (inner peripheral end 34 in FIG. 2C) and the line segment 35 having the maximum width w max is defined as the second angle θ 2 . The first angle θ 1 is an acute angle larger than the second angle θ 2 . Therefore, the second angle θ 2 is also an acute angle. Such a cross-sectional shape has a width of the linear body 10 from the outer peripheral side of the tubular body 15 (upper side in FIGS. 2A to 2C) toward the inner peripheral side of the tubular body 15 (lower side in FIGS. 2A to 2C). It can be said that the shape becomes narrower.

〈主な作用〉
以下、主に図3を参照して、上述の特定の横断面形状を有する線状体10の作用を説明する。筒体15の交差箇所を構成する線状体10は、線状体10の延伸方向に沿った軸が筒体15の軸方向に交差するように設けられる。そのため、筒体15の交差箇所を構成する線状体10は、ステント1が血管5に配置された状態において、血液の流通方向に対して交差するように配置される。このような線状体10における血流の上流側の領域は、血液が勢いよく接触する領域といえる。筒体15の交差箇所を構成する線状体の横断面形状が長方形であれば、この線状体の内周面は、血管5の内壁面50に直交するように配置される。そのため、横断面形状が長方形の線状体は、血流を阻害する。また、横断面形状が長方形の線状体の内周面と血管5の内壁面50とがつくる角部が直角である。そのため、この角部及びその近傍の領域に血流が滞留し易い。
<Main action>
Hereinafter, the operation of the linear body 10 having the above-mentioned specific cross-sectional shape will be described mainly with reference to FIG. The linear body 10 constituting the intersecting portion of the tubular body 15 is provided so that the axes along the extending direction of the linear body 10 intersect in the axial direction of the tubular body 15. Therefore, the linear body 10 constituting the intersecting portion of the tubular body 15 is arranged so as to intersect with respect to the blood flow direction in a state where the stent 1 is arranged in the blood vessel 5. The region on the upstream side of the blood flow in such a linear body 10 can be said to be a region in which the blood vigorously contacts. If the cross-sectional shape of the linear body constituting the intersection of the tubular bodies 15 is rectangular, the inner peripheral surface of the linear body is arranged so as to be orthogonal to the inner wall surface 50 of the blood vessel 5. Therefore, a linear body having a rectangular cross-sectional shape obstructs blood flow. Further, the corners formed by the inner peripheral surface of the linear body having a rectangular cross-sectional shape and the inner wall surface 50 of the blood vessel 5 are at right angles. Therefore, blood flow tends to stay in this corner and the region in the vicinity thereof.

これに対し、筒体15の交差箇所を構成する線状体10が上述の特定の横断面形状を有すると、上述の横断面形状が長方形である場合に比較して、血流を阻害し難い。また、線状体10の内周面20と血管5の内壁面50とがつくる領域に血流が滞留し難い。以下、詳しく説明する。 On the other hand, when the linear body 10 constituting the intersection of the tubular bodies 15 has the above-mentioned specific cross-sectional shape, it is less likely to obstruct blood flow as compared with the case where the above-mentioned cross-sectional shape is rectangular. .. Further, it is difficult for blood flow to stay in the region formed by the inner peripheral surface 20 of the linear body 10 and the inner wall surface 50 of the blood vessel 5. Hereinafter, it will be described in detail.

上述の特定の横断面形状を有する線状体10は、図3に示すように血管5に配置されると、比較的平坦な外周面21に対して、内周面20が筒体15の軸63側に向かって内壁面50から張り出すように配置される。しかし、この線状体10では、上流側の内周縁部25の角部及び下流側の内周縁部26の角部がいずれも鋭角である。そのため、線状体10の内周面20は、血管5の内壁面50に対して鈍角に交差するように配置される。上流側の角度θ51及び下流側の角度θ52はいずれも鈍角である。従って、血流が上流側の内周縁部25に接触すると、内周縁部25に沿って流れ易い。また、血流は、上流側の内周縁部25から内周端30を経て下流側の内周縁部26に沿って、下流側に向い易い。 When the linear body 10 having the above-mentioned specific cross-sectional shape is arranged in the blood vessel 5 as shown in FIG. 3, the inner peripheral surface 20 is the axis of the tubular body 15 with respect to the relatively flat outer peripheral surface 21. It is arranged so as to project from the inner wall surface 50 toward the 63 side. However, in this linear body 10, both the corner portion of the inner peripheral edge portion 25 on the upstream side and the corner portion of the inner peripheral edge portion 26 on the downstream side are acute angles. Therefore, the inner peripheral surface 20 of the linear body 10 is arranged so as to intersect the inner wall surface 50 of the blood vessel 5 at an obtuse angle. The angle θ 51 on the upstream side and the angle θ 52 on the downstream side are both obtuse angles. Therefore, when the blood flow comes into contact with the inner peripheral edge portion 25 on the upstream side, it tends to flow along the inner peripheral edge portion 25. Further, the blood flow tends to go to the downstream side from the inner peripheral edge portion 25 on the upstream side through the inner peripheral end 30 and along the inner peripheral edge portion 26 on the downstream side.

更に、線状体10の内周面20と、血管5の内壁面50とがつくる角部及びその近傍の領域に血流が滞留し難い。角度θ51,角度θ52が鈍角であるため、上記角部及びその近傍の領域は、血管5の中心軸に向かって開いたような領域であるからである。血流が滞留し難いことで、線状体10に血栓が付着し難い。 Further, it is difficult for blood flow to stay in the corner portion formed by the inner peripheral surface 20 of the linear body 10 and the inner wall surface 50 of the blood vessel 5 and the region in the vicinity thereof. This is because the angle θ 51 and the angle θ 52 are obtuse angles, so that the corner portion and the region in the vicinity thereof are regions that open toward the central axis of the blood vessel 5. Since the blood flow is difficult to stay, it is difficult for a thrombus to adhere to the linear body 10.

特に、線状体10における上流側の内周縁部25の角部の角度θは、下流側の内周縁部26の角部の角度θよりも大きい。そのため、血流は、上流側の内周縁部25に接すると、内周縁部25に沿って、血管5の内壁面50からある程度立ち上がるように流れ易い。このことからも、線状体10に血栓が付着し難い。 In particular, the angle θ 1 of the corner portion of the inner peripheral edge portion 25 on the upstream side of the linear body 10 is larger than the angle θ 2 of the corner portion of the inner peripheral edge portion 26 on the downstream side. Therefore, when the blood flow comes into contact with the inner peripheral edge portion 25 on the upstream side, the blood flow tends to rise along the inner peripheral edge portion 25 from the inner wall surface 50 of the blood vessel 5 to some extent. For this reason as well, it is difficult for a thrombus to adhere to the linear body 10.

従って、上述の特定の横断面形状は、血流の抵抗になり難い形状であり、血栓が付着し難い形状といえる。 Therefore, it can be said that the above-mentioned specific cross-sectional shape is a shape that is unlikely to cause resistance to blood flow and is difficult for a thrombus to adhere to.

《角度》
第一の角度θは、例えば、40°以上85°以下が挙げられる。角度θが40°以上であれば、血流が上流側の内周縁部25に沿って流れることで、下流側に向い易い。また、血流が上流側の内周縁部25に接すると、血管5の内壁面50からある程度立ち上るように流れ易く、線状体10における血栓の付着を低減し易い。第一の角度θが85°以下であれば、上流側の内周縁部25による血流の阻害を低減し易い。また、線状体10における上流側の角部及びその近傍の領域に血流が滞留し難い。この点で、線状体10における血栓の付着を防止し易い。血流の抵抗の更なる低減、血流の滞留の更なる抑制等を望む場合には、第一の角度θを45°以上83°以下、更に80°以下、70°以下、60°以下としてもよい。
"angle"
The first angle θ 1 may be, for example, 40 ° or more and 85 ° or less. When the angle θ 1 is 40 ° or more, the blood flow flows along the inner peripheral edge portion 25 on the upstream side, so that it tends to face the downstream side. Further, when the blood flow comes into contact with the inner peripheral edge portion 25 on the upstream side, it tends to flow so as to rise to some extent from the inner wall surface 50 of the blood vessel 5, and it is easy to reduce the adhesion of thrombus on the linear body 10. When the first angle θ 1 is 85 ° or less, it is easy to reduce the obstruction of blood flow by the inner peripheral edge portion 25 on the upstream side. In addition, it is difficult for blood flow to stay in the upstream corner of the linear body 10 and the region in the vicinity thereof. In this respect, it is easy to prevent thrombus from adhering to the linear body 10. If it is desired to further reduce the resistance of blood flow, further suppress the retention of blood flow, etc., set the first angle θ 1 to 45 ° or more and 83 ° or less, and further to 80 ° or less, 70 ° or less, 60 ° or less. May be.

第二の角度θは、例えば、20°以上50°以下が挙げられる(但しθ<θ)。角度θが20°以上であれば、線状体10における下流側の角部及びその近傍の領域に血流が滞留し難い。この点で、線状体10における血栓の付着を防止し易い。第二の角度θが50°以下であれば、血流が上流側の内周縁部25を経て下流側の内周縁部26に向い易く、下流側の内周縁部26による血流の阻害を低減し易い。血流の抵抗の更なる低減、血流の滞留の更なる抑制等を望む場合には、第二の角度θを25°以上45°以下、更に40°未満としてもよい。 The second angle θ 2 may be, for example, 20 ° or more and 50 ° or less (however, θ 21 ). When the angle θ 2 is 20 ° or more, it is difficult for blood flow to stay in the downstream corner of the linear body 10 and the region in the vicinity thereof. In this respect, it is easy to prevent thrombus from adhering to the linear body 10. When the second angle θ 2 is 50 ° or less, the blood flow tends to go to the inner peripheral edge 26 on the downstream side via the inner peripheral edge 25 on the upstream side, and the blood flow is hindered by the inner peripheral edge 26 on the downstream side. Easy to reduce. If it is desired to further reduce the resistance of the blood flow, further suppress the retention of the blood flow, etc., the second angle θ 2 may be set to 25 ° or more and 45 ° or less, and further less than 40 °.

《内周縁部》
≪湾曲部を含む形状≫
上流側の内周縁部25、及び下流側の内周縁部26の少なくとも一方に湾曲部を含むことが挙げられる。この場合、上流側の内周縁部25及び下流側の内周縁部26の少なくとも一部は、横断面では円弧(曲線)で描かれ、曲面で構成される。筒体15の交差箇所を構成する線状体10が曲面を含むことで、血流を阻害し難い。
《Inner peripheral edge》
≪Shape including curved part≫
It is mentioned that at least one of the inner peripheral edge portion 25 on the upstream side and the inner peripheral edge portion 26 on the downstream side includes a curved portion. In this case, at least a part of the inner peripheral edge portion 25 on the upstream side and the inner peripheral edge portion 26 on the downstream side is drawn as an arc (curve) in the cross section and is composed of a curved surface. Since the linear body 10 constituting the intersection of the tubular body 15 includes a curved surface, it is difficult to obstruct blood flow.

図2Aに示すように、上流側の内周縁部25の全てが滑らかに連続する湾曲部250で構成されると共に、下流側の内周縁部26の全てが滑らかに連続する湾曲部260で構成されると、血液の流通性により優れて、線状体10に血栓が付着し難く好ましい。特に、図2Aに示す線状体10では、上流側の内周縁部25を構成する湾曲部250と下流側の内周縁部26を構成する湾曲部260とが滑らかに連続して一つの湾曲部を形成する。つまり、この線状体10は、第一の側端31から内周端30を経て第二の側端32に連続する湾曲部を含む。線状体10における内周面20の実質的に全体が湾曲形状であり、曲面で構成される。このような線状体10は、少なくとも一部に平面を含む場合(例、図2C)に比較して、血液の流通性に更に優れて、血栓が付着し難く好ましい。 As shown in FIG. 2A, all of the inner peripheral edge portion 25 on the upstream side is composed of a smoothly continuous curved portion 250, and all of the inner peripheral edge portion 26 on the downstream side is composed of a smoothly continuous curved portion 260. Then, it is preferable that the blood circulation is excellent and the thrombus does not easily adhere to the linear body 10. In particular, in the linear body 10 shown in FIG. 2A, the curved portion 250 constituting the inner peripheral edge portion 25 on the upstream side and the curved portion 260 constituting the inner peripheral edge portion 26 on the downstream side are smoothly continuous and one curved portion. To form. That is, the linear body 10 includes a curved portion continuous from the first side end 31 to the second side end 32 via the inner peripheral end 30. Substantially the entire inner peripheral surface 20 of the linear body 10 has a curved shape, and is composed of a curved surface. Such a linear body 10 is preferable because it has better blood circulation and is less likely to have a thrombus as compared with the case where at least a part thereof contains a flat surface (eg, FIG. 2C).

その他、例えば、上流側の内周縁部25の少なくとも一部にのみ湾曲部250を含み、下流側の内周縁部26に湾曲部を含まなくてもよい。又は、上流側の内周縁部25に湾曲部を含まず、下流側の内周縁部26の少なくとも一部にのみ湾曲部260を含んでもよい。各内周縁部25,26における湾曲部250,260以外の箇所は、横断面では直線で描かれ、平面で構成される。又は、後述するように、両内周縁部25,26が湾曲部を含まなくてもよい(図2C)。 In addition, for example, the curved portion 250 may be included only in at least a part of the inner peripheral edge portion 25 on the upstream side, and the curved portion may not be included in the inner peripheral edge portion 26 on the downstream side. Alternatively, the inner peripheral edge portion 25 on the upstream side may not include the curved portion, and the curved portion 260 may be included only in at least a part of the inner peripheral edge portion 26 on the downstream side. The portions of the inner peripheral edges 25 and 26 other than the curved portions 250 and 260 are drawn in a straight line in the cross section and are formed of a plane. Alternatively, as will be described later, both inner peripheral edges 25 and 26 may not include curved portions (FIG. 2C).

《曲げ半径》
線状体10が湾曲部250,260を含む場合、湾曲部250,260の曲げ半径は適宜選択できる。例えば、上流側の内周縁部25は、線状体10の最大厚さtmaxの1倍以上3倍以下である曲げ半径R1を有する湾曲部250を含むことが挙げられる(図2B)。
《Bending radius》
When the linear body 10 includes the curved portions 250 and 260, the bending radius of the curved portions 250 and 260 can be appropriately selected. For example, the inner peripheral edge portion 25 on the upstream side includes a curved portion 250 having a bending radius R1 which is 1 time or more and 3 times or less the maximum thickness t max of the linear body 10 (FIG. 2B).

曲げ半径R1が最大厚さtmaxの1倍以上である第一の湾曲部250に血流が接触すると、血管5の内壁面50からある程度立ち上がるように流れ易い。その結果、線状体10における血栓の付着を低減し易い。曲げ半径R1が最大厚さtmaxの3倍以下であれば、第一の湾曲部250による血流の阻害を低減し易い。また、線状体10における上流側の角部及びその近傍の領域に血流が滞留し難い。この点で、線状体10における血栓の付着を防止し易い。血流の抵抗の更なる低減、血流の滞留の更なる抑制等を望む場合には、上流側の内周縁部25は、例えば最大厚さtmaxの1.1倍以上2.5倍以下、更に1.2倍以上2.0倍以下、更に1.5倍以下の曲げ半径R1を有する湾曲部250を含んでもよい。上流側の内周縁部25が、曲げ半径R1が異なる複数の湾曲部250を含む場合には、最大曲げ半径R1maxが最大厚さtmaxの1倍以上3倍以下であることが好ましい。 When the blood flow comes into contact with the first curved portion 250 whose bending radius R1 is at least 1 times the maximum thickness t max , it tends to flow so as to rise to some extent from the inner wall surface 50 of the blood vessel 5. As a result, it is easy to reduce the adhesion of thrombi on the linear body 10. When the bending radius R1 is 3 times or less of the maximum thickness t max , it is easy to reduce the obstruction of blood flow by the first bending portion 250. In addition, it is difficult for blood flow to stay in the upstream corner of the linear body 10 and the region in the vicinity thereof. In this respect, it is easy to prevent thrombus from adhering to the linear body 10. If it is desired to further reduce the resistance of blood flow, further suppress the retention of blood flow, etc., the inner peripheral edge portion 25 on the upstream side is, for example, 1.1 times or more and 2.5 times or less of the maximum thickness t max . Further, a curved portion 250 having a bending radius R1 of 1.2 times or more and 2.0 times or less and further 1.5 times or less may be included. When the inner peripheral edge portion 25 on the upstream side includes a plurality of bending portions 250 having different bending radii R1, it is preferable that the maximum bending radius R1 max is 1 times or more and 3 times or less the maximum thickness t max .

また、例えば、下流側の内周縁部26は、第一の湾曲部250の曲げ半径R1よりも大きな曲げ半径R2を有する第二の湾曲部260を含むことが挙げられる。このような下流側の内周縁部26は、第一の湾曲部250よりも十分に大きい湾曲部260を有するといえる。そのため、下流側の内周縁部26による血流の阻害を低減し易く、血液の流通性に優れる。下流側の内周縁部26が、曲げ半径R2が異なる複数の湾曲部260を含む場合には、上記最大曲げ半径R1maxよりも大きな曲げ半径R2を有する湾曲部260を含むことが好ましい。また、下流側の内周縁部26に備えられる湾曲部260の最大曲げ半径R2maxが上記最大曲げ半径R1maxよりも大きいことが好ましい。この場合、下流側の内周縁部26による血流の阻害をより低減し易く、血液の流通性に更に優れる。 Further, for example, the inner peripheral edge portion 26 on the downstream side may include a second curved portion 260 having a bending radius R2 larger than the bending radius R1 of the first curved portion 250. It can be said that the inner peripheral edge portion 26 on the downstream side has a curved portion 260 that is sufficiently larger than the first curved portion 250. Therefore, it is easy to reduce the obstruction of blood flow due to the inner peripheral edge portion 26 on the downstream side, and the blood flowability is excellent. When the inner peripheral edge portion 26 on the downstream side includes a plurality of curved portions 260 having different bending radii R2, it is preferable to include the curved portion 260 having a bending radius R2 larger than the maximum bending radius R1 max . Further, it is preferable that the maximum bending radius R2 max of the curved portion 260 provided on the inner peripheral edge portion 26 on the downstream side is larger than the maximum bending radius R1 max . In this case, it is easier to reduce the obstruction of blood flow by the inner peripheral edge portion 26 on the downstream side, and the blood flowability is further excellent.

曲げ半径R2が大きいほど、下流側の内周縁部26によって血流を阻害し難い。血流の抵抗の更なる低減等を望む場合には、下流側の内周縁部26は、例えば最大曲げ半径R1maxの1倍超、更に1.1倍以上、1.2倍以上の曲げ半径R2を有する湾曲部260を含んでもよい。但し、最大曲げ半径R2maxが大き過ぎると平面に近づくため、最大曲げ半径R2maxを最大曲げ半径R1maxの2.0倍以下、更に1.8倍以下としてもよい。 The larger the bending radius R2, the less likely it is that the blood flow is obstructed by the inner peripheral edge portion 26 on the downstream side. If it is desired to further reduce the resistance of blood flow, the inner peripheral edge portion 26 on the downstream side has a bending radius of, for example, more than 1 times the maximum bending radius R1 max , and further 1.1 times or more and 1.2 times or more. The curved portion 260 having R2 may be included. However, if the maximum bending radius R2 max is too large, it approaches a plane, so the maximum bending radius R2 max may be 2.0 times or less of the maximum bending radius R1 max , and further may be 1.8 times or less.

≪湾曲部を含まない形状≫
図2Cに示す線状体10は、上流側の内周縁部25及び下流側の内周縁部26に湾曲部を含まない例である。本例の線状体10の内周面20は、両内周縁部25,26と、平坦部27とを備え、横断面形状が台形状である。各内周縁部25,26、平坦部27はいずれも、横断面では直線で描かれ、平面で構成される。平坦部27は、両内周縁部25,26の間に設けられる。
≪Shape not including curved parts≫
The linear body 10 shown in FIG. 2C is an example in which the inner peripheral edge portion 25 on the upstream side and the inner peripheral edge portion 26 on the downstream side do not include a curved portion. The inner peripheral surface 20 of the linear body 10 of this example includes both inner peripheral edges 25 and 26 and a flat portion 27, and has a trapezoidal cross-sectional shape. Each of the inner peripheral edges 25 and 26 and the flat portion 27 is drawn as a straight line in the cross section and is composed of a plane. The flat portion 27 is provided between both inner peripheral edges 25 and 26.

なお、本例の線状体10のように、最大厚さtmaxを有する領域がある程度の幅で存在すると、最大厚さtmaxをとる線分が複数存在する。この場合、内周端30は、線状体10の横断面の周縁2において、最大厚さtmaxをとる複数の線分のうち、最も上流側(第一の側端31側)に位置する線分と交差する箇所とする。本例では、最大厚さtmaxをとる複数の線分のうち、最も下流側(第二の側端32側)に位置する線分と交差する箇所を下流側の内周端34とする。周縁2において、上流側の内周縁部25は、第一の側端31から内周端30までの領域である。周縁2において、平坦部27は、内周端30から下流側の内周端34までの領域である。周縁2において、下流側の内周縁部26は、下流側の内周端34から第二の側端32までの領域である。 If a region having a maximum thickness t max exists with a certain width as in the linear body 10 of this example, there are a plurality of line segments having a maximum thickness t max . In this case, the inner peripheral end 30 is located on the most upstream side (first side end 31 side) of the plurality of line segments having the maximum thickness t max on the peripheral edge 2 of the cross section of the linear body 10. The point where it intersects with the line segment. In this example, among the plurality of line segments having the maximum thickness t max , the portion intersecting the line segment located on the most downstream side (second side end 32 side) is defined as the downstream inner peripheral end 34. In the peripheral edge 2, the upstream inner peripheral edge portion 25 is a region from the first side end 31 to the inner peripheral end 30. In the peripheral edge 2, the flat portion 27 is a region from the inner peripheral end 30 to the downstream inner peripheral end 34. In the peripheral edge 2, the downstream inner peripheral edge portion 26 is a region from the downstream inner peripheral end 34 to the second side end 32.

又は、線状体10の横断面形状を、両内周縁部25,26が内周端30で繋がる三角形状としてもよい(図示せず)。 Alternatively, the cross-sectional shape of the linear body 10 may be a triangular shape in which both inner peripheral edges 25 and 26 are connected at the inner peripheral end 30 (not shown).

《角部》
その他、線状体10の横断面において、線状体10の周縁2のうち、角部22,23は、図2A~図2Cに例示すように丸められていることが好ましい。ここで、角部22,23を角張らせることができる。しかし、内周面20と外周面21との角部22、即ち外周面21の幅方向の両端に位置する角部22が丸められて曲面から構成されれば、血管5の内壁面50に接触しても、内壁面50を気付つけ難い。内周面20に設けられる角部、例えば図2Cに示す各内周縁部25,26と平坦部27との角部23が丸められており、曲面から構成されれば、血流の乱れを生じ得る変曲点になり難いと考えられる。角部22,23の曲げ半径は、上述の曲げ半径R1に比較して小さくてよい。
《Corner part》
In addition, in the cross section of the linear body 10, it is preferable that the corner portions 22 and 23 of the peripheral edge 2 of the linear body 10 are rounded as shown in FIGS. 2A to 2C. Here, the corner portions 22 and 23 can be made angular. However, if the corner portions 22 between the inner peripheral surface 20 and the outer peripheral surface 21, that is, the corner portions 22 located at both ends of the outer peripheral surface 21 in the width direction are rounded and formed of a curved surface, they come into contact with the inner wall surface 50 of the blood vessel 5. Even so, it is difficult to notice the inner wall surface 50. The corners provided on the inner peripheral surface 20, for example, the corners 23 of the inner peripheral edges 25 and 26 and the flat portion 27 shown in FIG. 2C are rounded, and if they are composed of curved surfaces, blood flow is disturbed. It is thought that it is unlikely to be a turning point to be obtained. The bending radii of the corner portions 22 and 23 may be smaller than the bending radius R1 described above.

《その他》
ステント1が上述の交差箇所と非交差箇所(例、上述のリンク部17の直線部170)とを含む場合、交差箇所を構成する線状体10のみが上述の血栓が付着し難いという特定の横断面形状を有してもよい。非交差箇所を構成する線状体10は、線状体10の延伸方向に沿った軸が筒体15の軸方向に沿って設けられる。いわば、非交差箇所を構成する線状体10は、血液の流通方向に沿って配置される。そのため、非交差箇所を構成する線状体10が上記特定の横断面形状を有していなくても、非交差箇所による血流の抵抗の増大を招き難いからである。非交差箇所を構成する線状体10の横断面形状の自由度が大きい点で、ステント1は製造性に優れる。上記特定の横断面形状以外の横断面形状として、例えば、長方形(正方形を含む)、半円状や半楕円状等の湾曲形状、三角形状や台形状等の平面を含む形状等が挙げられる。また、上記特定の横断面形状以外の横断面形状として、線対称の形状でもよい。長方形のように角部を有する形状では、上述のように角部が丸められていることが好ましい。
"others"
When the stent 1 includes the above-mentioned intersection and the non-intersection (eg, the straight portion 170 of the above-mentioned link portion 17), only the linear body 10 constituting the intersection is difficult to attach the above-mentioned thrombus. It may have a cross-sectional shape. The linear body 10 constituting the non-intersecting portion is provided with an axis along the extending direction of the linear body 10 along the axial direction of the tubular body 15. So to speak, the linear bodies 10 constituting the non-intersection points are arranged along the blood flow direction. Therefore, even if the linear body 10 constituting the non-intersection portion does not have the above-mentioned specific cross-sectional shape, it is unlikely to cause an increase in blood flow resistance due to the non-intersection portion. The stent 1 is excellent in manufacturability in that the degree of freedom in the cross-sectional shape of the linear body 10 constituting the non-intersection portion is large. Examples of the cross-sectional shape other than the specific cross-sectional shape include a rectangular shape (including a square), a curved shape such as a semicircle or a semi-elliptical shape, and a shape including a plane such as a triangle shape or a trapezoidal shape. Further, the cross-sectional shape other than the specific cross-sectional shape may be a line-symmetrical shape. In a shape having corners such as a rectangle, it is preferable that the corners are rounded as described above.

又は、交差箇所を構成する線状体10と、非交差箇所の少なくとも一部を構成する線状体10とが上述の特定の横断面形状を有してもよい。非交差箇所を構成する線状体10が上記特定の横断面形状を有することで、血流の抵抗となり難く、血液の流通性に優れる。又は、ステント1を構成する全ての線状体10が上記特定の横断面形状を有していてもよい。この場合、ステント1を構成する全ての線状体10が血流の抵抗になり難く、血液の流通性により優れる。 Alternatively, the linear body 10 constituting the intersection and the linear body 10 constituting at least a part of the non-intersection may have the above-mentioned specific cross-sectional shape. Since the linear body 10 constituting the non-intersecting portion has the above-mentioned specific cross-sectional shape, it is less likely to cause resistance to blood flow and is excellent in blood circulation. Alternatively, all the linear bodies 10 constituting the stent 1 may have the above-mentioned specific cross-sectional shape. In this case, all the linear bodies 10 constituting the stent 1 are less likely to become resistance to blood flow, and are more excellent in blood circulation.

筒体15の異なる複数の箇所を構成する線状体10の横断面形状が上述の特定の横断面形状である場合、全ての横断面形状が同一形状でもよいし、異なる形状でもよい。例えば、筒体15の或る交差箇所を構成する線状体10の横断面形状は、図2Aに示す湾曲部を含む形状であり、別の箇所を構成する線状体10の横断面形状は、図2Cに示す湾曲部を含まない形状としてもよい。 When the cross-sectional shape of the linear body 10 constituting the plurality of different portions of the tubular body 15 is the above-mentioned specific cross-sectional shape, all the cross-sectional shapes may be the same shape or different shapes. For example, the cross-sectional shape of the linear body 10 constituting a certain intersection of the tubular body 15 is a shape including a curved portion shown in FIG. 2A, and the cross-sectional shape of the linear body 10 constituting another portion is a shape including a curved portion. , The shape may not include the curved portion shown in FIG. 2C.

図1Aの例示では、各環状部16を構成する線状体10の実質的に全てが筒体15の交差箇所を構成する。そのため、各環状部16を構成する線状体10は、上述の特定の横断面形状を有する。本例のように複数の環状部16を備える場合、一つの環状部16を構成する線状体10の横断面形状はその全長に亘って同一形状でもよいし、異なる形状でもよい。図1Eは、一つの環状部16を構成する線状体10がその全長に亘って、図2Aに示す横断面形状を有する場合を例示する。図1Eに示すように、環状部16の任意の箇所において、環状部16を構成する線状体10の第一の側端31及び上流側の内周縁部25が血流の上流側に配置される。上記線状体10の第二の側端32及び下流側の内周縁部26が血流の下流側に配置される。各環状部16は、このような線状体10で構成されることで、血流の抵抗となり難く、血液の流通性に優れる。なお、複数の環状部16のうち、全ての環状部16の横断面形状が同一形状でもよいし、異なる形状でもよい。 In the example of FIG. 1A, substantially all of the linear bodies 10 constituting each annular portion 16 form the intersection of the tubular bodies 15. Therefore, the linear body 10 constituting each annular portion 16 has the above-mentioned specific cross-sectional shape. When a plurality of annular portions 16 are provided as in this example, the cross-sectional shapes of the linear bodies 10 constituting one annular portion 16 may be the same shape or different shapes over the entire length thereof. FIG. 1E illustrates a case where the linear body 10 constituting one annular portion 16 has the cross-sectional shape shown in FIG. 2A over its entire length. As shown in FIG. 1E, at an arbitrary position of the annular portion 16, the first side end 31 of the linear body 10 constituting the annular portion 16 and the inner peripheral edge portion 25 on the upstream side are arranged on the upstream side of the blood flow. Ru. The second side end 32 of the linear body 10 and the inner peripheral edge portion 26 on the downstream side are arranged on the downstream side of the blood flow. Since each annular portion 16 is composed of such a linear body 10, it is unlikely to cause resistance to blood flow and is excellent in blood circulation. Of the plurality of annular portions 16, all the annular portions 16 may have the same cross-sectional shape or different shapes.

複数のリンク部17を備える場合、一つのリンク部17を構成する線状体10の横断面形状は、その全長に亘って同一形状でもよいし、異なる形状でもよい。複数のリンク部17のうち、全てのリンク部17の横断面形状が同一形状でもよいし、異なる形状でもよい。リンク部17を構成する線状体10が筒体15の交差箇所を構成する場合には、この線状体10は、上述の特定の横断面形状を有するとよい。 When a plurality of link portions 17 are provided, the cross-sectional shape of the linear body 10 constituting one link portion 17 may be the same shape or a different shape over the entire length thereof. Of the plurality of link portions 17, all the link portions 17 may have the same cross-sectional shape or may have different shapes. When the linear body 10 constituting the link portion 17 constitutes the intersection of the tubular body 15, the linear body 10 may have the above-mentioned specific cross-sectional shape.

また、少なくとも一つの環状部16の横断面形状と少なくとも一つのリンク部17の横断面形状とが同一形状でもよいし、異なる形状でもよい。リンク部17が直線部170を含む場合、少なくとも一つの環状部16の横断面形状と少なくとも一つの直線部170の横断面形状とがいずれも上述の特定の横断面形状であり、かつ同一形状でもよいし、異なる形状でもよい。又は、少なくとも一つの直線部170の横断面形状は、上記特定の横断面形状以外でもよい。この場合、この直線部170の横断面形状と、環状部16の横断面形状とは異なる。 Further, the cross-sectional shape of at least one annular portion 16 and the cross-sectional shape of at least one link portion 17 may be the same shape or may be different shapes. When the link portion 17 includes the straight portion 170, both the cross-sectional shape of at least one annular portion 16 and the cross-sectional shape of at least one straight portion 170 are the above-mentioned specific cross-sectional shapes, and even if they have the same shape. It may have a different shape. Alternatively, the cross-sectional shape of at least one straight portion 170 may be other than the above-mentioned specific cross-sectional shape. In this case, the cross-sectional shape of the straight portion 170 and the cross-sectional shape of the annular portion 16 are different.

このようにステント1は、線状体10の横断面形状の自由度が大きく、製造性に優れる。 As described above, the stent 1 has a large degree of freedom in the cross-sectional shape of the linear body 10, and is excellent in manufacturability.

〈大きさ〉
線状体10の厚さ、幅は適宜選択できる。筒体15を構成する線状体10の全てが同一の最大厚さtmaxを有すると共に、同一の最大幅wmaxを有してもよい。又は、筒体15を構成する線状体10の一部について、最大厚さtmax及び最大幅wmaxの少なくとも一方が異なってもよい。
<size>
The thickness and width of the linear body 10 can be appropriately selected. All of the linear bodies 10 constituting the tubular body 15 may have the same maximum thickness t max and the same maximum width w max . Alternatively, at least one of the maximum thickness t max and the maximum width w max may be different for a part of the linear body 10 constituting the tubular body 15.

最大幅wmaxは、所定の強度を有し、線状体10が網目を確保できる範囲で適宜選択するとよい。 The maximum width w max may be appropriately selected as long as it has a predetermined strength and the linear body 10 can secure a mesh.

最大厚さtmaxは、例えば30μm以上150μm以下が挙げられる。最大厚さtmaxが150μm以下であれば、線状体10が血流の抵抗になり難い。血流の抵抗の更なる低減等を望む場合では、最大厚さtmaxを140μm以下、更に130μm以下、120μm以下、更には100μm以下としてもよい。特に、上述の交差箇所を構成する線状体10の最大厚さtmaxは小さいほど、線状体10が血流の抵抗になり難く、血液の流通性に優れて好ましい。一方、最大厚さtmaxが30μm以上であれば、強度に優れる。高強度化等を望む場合には、最大厚さtmaxを50μm以上、更に55μm以上、60μm以上としてもよい。 The maximum thickness t max is, for example, 30 μm or more and 150 μm or less. When the maximum thickness t max is 150 μm or less, the linear body 10 is unlikely to become a resistance to blood flow. If it is desired to further reduce the resistance of blood flow, the maximum thickness t max may be 140 μm or less, further 130 μm or less, 120 μm or less, and further 100 μm or less. In particular, the smaller the maximum thickness t max of the linear body 10 constituting the above-mentioned intersection, the less likely the linear body 10 becomes a resistance to blood flow, and it is preferable that the linear body 10 is excellent in blood flowability. On the other hand, when the maximum thickness t max is 30 μm or more, the strength is excellent. If higher strength or the like is desired, the maximum thickness t max may be 50 μm or more, further 55 μm or more, and 60 μm or more.

ステント1が上述の環状部16とリンク部17とを備え、リンク部17が直線部170を含む場合、直線部170の最大厚さtmaxは、環状部16の最大厚さtmaxよりも薄いことが挙げられる。血液の流通方向に沿って配置される直線部170の最大厚さtmaxが環状部16の最大厚さtmaxよりも薄ければ、リンク部17を構成する線状体10による血流の抵抗を低減できる。従って、この形態は、血液の流通性により優れる。その他、環状部16の最大幅とリンク部17の最大幅とは等しくてもよいし、異なってもよい。また、環状部16の最大厚さとリンク部17の最大厚さとは等しくてもよいし、異なってもよい。 When the stent 1 includes the above-mentioned annular portion 16 and the link portion 17, and the link portion 17 includes the straight portion 170, the maximum thickness t max of the straight portion 170 is thinner than the maximum thickness t max of the annular portion 16. Can be mentioned. If the maximum thickness t max of the straight portion 170 arranged along the blood flow direction is thinner than the maximum thickness t max of the annular portion 16, the resistance of blood flow by the linear body 10 constituting the link portion 17 Can be reduced. Therefore, this form is superior to blood circulation. In addition, the maximum width of the annular portion 16 and the maximum width of the link portion 17 may be equal to or different from each other. Further, the maximum thickness of the annular portion 16 and the maximum thickness of the link portion 17 may be equal to or different from each other.

(主な効果)
実施形態のステント1は、筒体15の交差箇所を構成する線状体10の横断面形状が上述の血流の抵抗になり難いという特定の形状である。そのため、ステント1は、血液の流通性に優れて、血栓が付着し難い。血栓の付着を抑制できることで、ステント1は、血管5の再狭窄の防止に寄与すると期待される。また、実施形態のステント1は、筒体15が純鉄の線状体10から構成される場合には、生体分解性にも優れる。更に、実施形態のステント1は、後述する実施形態のステントの製造方法によって製造できるため、生産性にも優れる。
(Main effect)
The stent 1 of the embodiment has a specific shape in which the cross-sectional shape of the linear body 10 constituting the intersection of the tubular body 15 is unlikely to cause the above-mentioned resistance to blood flow. Therefore, the stent 1 has excellent blood circulation and is less likely to have a thrombus. The stent 1 is expected to contribute to the prevention of restenosis of the blood vessel 5 by being able to suppress the adhesion of thrombus. Further, the stent 1 of the embodiment is also excellent in biodegradability when the tubular body 15 is composed of the linear body 10 of pure iron. Further, since the stent 1 of the embodiment can be manufactured by the method of manufacturing the stent of the embodiment described later, the productivity is also excellent.

[ステントの製造方法]
上述の特定の横断面形状を有する線状体10を含むステント1は、例えば、以下の実施形態のステントの製造方法(以下、第一の製法と呼ぶことがある)によって製造できる。第一の製法は、めっき法を利用する製法であり、以下の各工程を備える。
[Manufacturing method of stent]
The stent 1 including the linear body 10 having the above-mentioned specific cross-sectional shape can be manufactured, for example, by the method for manufacturing a stent according to the following embodiment (hereinafter, may be referred to as a first manufacturing method). The first manufacturing method is a manufacturing method using a plating method, and includes the following steps.

(第一の製法)
〈型材の準備工程〉所定の形状の溝が形成された型材を用意する工程。
〈めっき工程〉上記型材において上記溝を含めた表面に純鉄めっきを施す工程。
〈一部除去工程〉上記型材に形成された純鉄めっき部において、上記溝から突出する箇所を除去する工程。
〈型材の分離工程〉上記溝に残存する純鉄めっき部と上記型材とを分離する工程。
(First manufacturing method)
<Preparation process of mold material> A process of preparing a mold material in which a groove having a predetermined shape is formed.
<Plating process> A process of applying pure iron plating to the surface of the mold material including the grooves.
<Partial removal step> A step of removing a portion protruding from the groove in the pure iron-plated portion formed on the mold material.
<Separation step of the mold material> A step of separating the pure iron-plated portion remaining in the groove and the mold material.

以下、第一の製法を詳細に説明する。
〈概要〉
第一の製法は、純鉄めっきから構成されるステント1を製造する。特に、第一の製法では、型材に形成される溝を埋めるように純鉄めっきを施す。そのため、型材の溝の断面形状に沿った横断面形状を有する純鉄製の線状体を容易に、かつ形状精度よく製造できる。上記溝の断面形状が上述の特定の横断面形状を含めば、実施形態のステント1を容易に、かつ形状精度よく製造できる。また、めっき法を利用すれば、所定の形状の純鉄めっき部を量産できる。
Hereinafter, the first manufacturing method will be described in detail.
<Overview>
The first manufacturing method manufactures a stent 1 composed of pure iron plating. In particular, in the first manufacturing method, pure iron plating is applied so as to fill the grooves formed in the mold material. Therefore, a pure iron linear body having a cross-sectional shape along the cross-sectional shape of the groove of the mold material can be easily and accurately manufactured. If the cross-sectional shape of the groove includes the above-mentioned specific cross-sectional shape, the stent 1 of the embodiment can be easily manufactured with high shape accuracy. Further, if the plating method is used, a pure iron-plated portion having a predetermined shape can be mass-produced.

更に、型材の溝の断面形状及び溝の大きさは任意に変更できる。このような第一の製法は、線状体10の横断面形状の自由度及び線状体10の大きさの自由度が上述のレーザーを利用する場合に比較して格段に大きい。また、従来のステントの製法として金属線を所定の形状に曲げ、所定の箇所を溶接して一体化する方法がある。金属線の横断面形状及び線径は、通常、金属線の全長に亘って一様である。このような金属線を利用する従来の製法に比較しても、第一の製法は、線状体10の横断面形状の自由度及び線状体10の大きさの自由度が格段に大きい。この段落に記載の事項は、後述の第二の製法にも適用される。 Further, the cross-sectional shape of the groove of the mold material and the size of the groove can be arbitrarily changed. In such a first manufacturing method, the degree of freedom of the cross-sectional shape of the linear body 10 and the degree of freedom of the size of the linear body 10 are remarkably large as compared with the case where the above-mentioned laser is used. Further, as a conventional method for manufacturing a stent, there is a method in which a metal wire is bent into a predetermined shape and a predetermined portion is welded to be integrated. The cross-sectional shape and wire diameter of the metal wire are usually uniform over the entire length of the metal wire. Compared with the conventional manufacturing method using such a metal wire, the first manufacturing method has a significantly larger degree of freedom in the cross-sectional shape of the linear body 10 and the degree of freedom in the size of the linear body 10. The matters described in this paragraph also apply to the second manufacturing method described later.

〈型材の準備工程〉
型材の構成材料は樹脂が挙げられる。樹脂製の型材は、以下に説明するように、型材の製造性に優れる上にステント1の製造性にも優れる。型材には、所定の形状の溝が形成される。型材に形成される溝は、網状に配置され、型材の一端側から他端側に向かって連続する。また、型材に形成される溝の断面形状及び大きさは、型材の各所で異なる場合がある。このような複雑な形状の溝を有する型材であっても、型材の構成材料が樹脂であれば、射出成形等の成形法を利用して、容易に、かつ高精度に型材を量産できる。また、後述するように樹脂製の型材は、めっき後に型材の溝に残存する純鉄めっき部との分離を容易に行える。そのため、樹脂製の型材は、純鉄めっき部との分離作業性に優れる。
<Preparation process of mold material>
Examples of the constituent material of the mold material include resin. As will be described below, the resin mold material is excellent in the manufacturability of the mold material and also in the manufacturability of the stent 1. A groove having a predetermined shape is formed in the mold material. The grooves formed in the mold material are arranged in a mesh pattern and are continuous from one end side to the other end side of the mold material. In addition, the cross-sectional shape and size of the groove formed in the mold material may differ from place to place in the mold material. Even if the mold material has a groove having such a complicated shape, if the constituent material of the mold material is a resin, the mold material can be mass-produced easily and with high accuracy by using a molding method such as injection molding. Further, as will be described later, the resin mold material can be easily separated from the pure iron-plated portion remaining in the groove of the mold material after plating. Therefore, the resin mold material is excellent in separation workability from the pure iron-plated portion.

《構成材料》
型材の構成樹脂は、後述するめっき工程で使用するめっき液等に対する耐性を有する各種の樹脂を利用できる。特に、ある程度加熱されると変形可能な樹脂を好適に利用できる。純鉄めっき部との分離作業性に優れるからである。このような樹脂の一例として、熱可塑性樹脂が挙げられる。熱可塑性樹脂の一例として、ポリアミド、スチレン等が挙げられる。別例として、熱硬化性樹脂であって、変形温度が200℃以下程度の樹脂が挙げられる。このような熱硬化性樹脂の一例として、ウレタン、メラミン等が挙げられる。
《Constituent materials》
As the constituent resin of the mold material, various resins having resistance to the plating solution or the like used in the plating step described later can be used. In particular, a resin that can be deformed when heated to some extent can be preferably used. This is because the separation workability from the pure iron-plated portion is excellent. An example of such a resin is a thermoplastic resin. Examples of the thermoplastic resin include polyamide and styrene. Another example is a thermosetting resin having a deformation temperature of about 200 ° C. or lower. Examples of such thermosetting resins include urethane and melamine.

《形状》
型材の形状は、ステント1の筒体15の形状に応じて選択すればよい。円筒状のステント1を製造する場合には、型材として丸棒材が好適に利用できる。その他、筒体15の形状によっては、端面形状が楕円状、多角形状等の棒材を型材に利用できる。型材は、一体に成形された棒材としてもよい。又は、型材は、複数の分割片を組み合わせて一つの棒状となる組物としてもよい。組物の型材とする場合には、分割片は、型材の端面の周縁を複数に分割可能な割面、即ち型材の軸方向に沿った割面を有するものが挙げられる。このような組物は、めっき後に純鉄めっき部との分離作業性に優れる。組物の具体例として、組み合わせて丸棒状となる組物であって、型材の径方向に分割された半円柱片や円弧状片といった分割片を含むものが挙げられる。
"shape"
The shape of the mold material may be selected according to the shape of the tubular body 15 of the stent 1. When manufacturing a cylindrical stent 1, a round bar material can be preferably used as a mold material. In addition, depending on the shape of the tubular body 15, a bar having an elliptical or polygonal end face shape can be used as the mold material. The mold material may be an integrally molded rod material. Alternatively, the mold material may be an assembly in which a plurality of divided pieces are combined to form one rod. In the case of a braided material, the divided piece may have a split surface capable of dividing the peripheral edge of the end face of the mold material into a plurality of parts, that is, a split surface having a split surface along the axial direction of the mold material. Such a braid is excellent in separation workability from the pure iron plated portion after plating. Specific examples of the braid include a braid that is combined into a round bar shape and includes a semi-cylindrical piece or an arc-shaped piece that is divided in the radial direction of the mold material.

《大きさ》
型材の大きさ(直径や端面の外周長さ、軸方向に沿った長さ等)は、ステント1の筒体15の大きさ(外径、長さ)に応じて選択すればよい。
"size"
The size of the mold material (diameter, outer peripheral length of the end face, length along the axial direction, etc.) may be selected according to the size (outer diameter, length) of the tubular body 15 of the stent 1.

《溝》
型材の表面には、所定の断面形状及び所定の大きさの溝が形成される。溝の断面形状及び大きさ(溝深さ、溝幅、溝長さ等)は、ステント1を構成する線状体10の横断面形状及び大きさ(最大厚さtmax、最大幅wmax等)に応じて設定すればよい。例えば、筒体15の交差箇所を構成する線状体10の横断面形状が上述の特定の横断面形状となるように溝の断面形状を調整する。溝の断面形状や大きさを型材の各所で異ならせてもよい。この場合、異なる横断面形状や異なる大きさを有する線状体10を含むステント1を製造できる。
"groove"
A groove having a predetermined cross-sectional shape and a predetermined size is formed on the surface of the mold material. The cross-sectional shape and size of the groove (groove depth, groove width, groove length, etc.) are the cross-sectional shape and size (maximum thickness t max , maximum width w max , etc.) of the linear body 10 constituting the stent 1. ) May be set. For example, the cross-sectional shape of the groove is adjusted so that the cross-sectional shape of the linear body 10 constituting the intersection of the tubular body 15 has the above-mentioned specific cross-sectional shape. The cross-sectional shape and size of the groove may be different in each part of the mold material. In this case, the stent 1 including the linear bodies 10 having different cross-sectional shapes and different sizes can be manufactured.

〈めっき工程〉
第一の製法では、型材の表面全体にめっきを施す。つまり、型材の表面において、溝の内周面だけでなく、溝以外の箇所にもめっきを施す。めっき直後には、純鉄めっき部は、溝内に充填された箇所と、溝から突出する箇所とを含み、全体として筒状である。後述する一部除去工程で、純鉄めっき部のうち、溝内に充填された箇所を残し、この箇所以外の箇所を除去する。一部除去工程を備えることで、溝のみにめっきを施す場合に比較して、マスキングが不要であり、作業性に優れる。このような第一の製法は、製造性に優れ、ステント1を量産できる。
<Plating process>
In the first manufacturing method, the entire surface of the mold material is plated. That is, on the surface of the mold material, not only the inner peripheral surface of the groove but also the portion other than the groove is plated. Immediately after plating, the pure iron-plated portion includes a portion filled in the groove and a portion protruding from the groove, and has a tubular shape as a whole. In the partial removal step described later, the portion of the pure iron-plated portion filled in the groove is left, and the portion other than this portion is removed. By providing a partial removal step, masking is not required and workability is excellent as compared with the case where only the groove is plated. Such a first manufacturing method is excellent in manufacturability and can mass-produce the stent 1.

《めっき条件》
めっき法は、電気めっき法を好適に利用できる。電気めっき法は、通電条件等を制御することで、所定の厚さのめっきを容易に、かつ精度よく形成し易い。この点から、電気めっき法は利用し易い。なお、無電解めっき法を利用してもよい。
<< Plating conditions >>
As the plating method, an electroplating method can be preferably used. In the electroplating method, by controlling the energization conditions and the like, it is easy to easily and accurately form plating of a predetermined thickness. From this point, the electroplating method is easy to use. An electroless plating method may be used.

電気めっき法を利用する場合には、前処理として、型材の表面には、導通層を設けておく。 When the electroplating method is used, a conductive layer is provided on the surface of the mold material as a pretreatment.

導通層の構成材料は、各種の金属、炭素系材料等が挙げられる。具体的な金属は、ニッケル、銅、錫、鉄、タングステン、チタン、ステンレス鋼等が挙げられる。炭素系材料はグラファイト等が挙げられる。 Examples of the constituent material of the conductive layer include various metals and carbon-based materials. Specific metals include nickel, copper, tin, iron, tungsten, titanium, stainless steel and the like. Examples of carbon-based materials include graphite and the like.

導通層の形成には、例えば以下の手法を利用できる。金属の導通層を形成する場合、無電解めっき法、気相処理法等を利用できる。気相処理法は、例えばスパッタリング法、イオンプレーティング法、蒸着法等が挙げられる。金属粉末又は炭素系材料の粉末を用いて導通層を形成する場合、塗布処理等を利用できる。塗布処理では、微細な粉末とバインダとの混合物を型材の表面に塗着することが挙げられる。導通層は、めっき後に選択的に除去して、純鉄めっき部のみとする。 For the formation of the conductive layer, for example, the following method can be used. When forming a conductive layer of metal, an electroless plating method, a gas phase treatment method, or the like can be used. Examples of the gas phase treatment method include a sputtering method, an ion plating method, a vapor deposition method and the like. When forming a conductive layer using a metal powder or a powder of a carbon-based material, a coating treatment or the like can be used. In the coating process, a mixture of a fine powder and a binder may be applied to the surface of the mold material. The conductive layer is selectively removed after plating to leave only the pure iron-plated portion.

純鉄めっきに用いるめっき液は、純鉄を生成可能な溶液を利用できる。例えば、電気めっきに用いる溶液として、FeSO(硫酸鉄)とFeCl(塩化鉄)とカルボン酸(例、クエン酸)とを含む酸溶液が挙げられる。具体的な溶液として、FeSO・7HOを250g/L、FeCl・4HOを45g/L、NHCl(塩化アンモニウム)を20g/L、クエン酸を1.5g/Lを含む溶液が挙げられる。 As the plating solution used for pure iron plating, a solution capable of producing pure iron can be used. For example, examples of the solution used for electroplating include an acid solution containing FeSO 4 (iron sulfate), FeCl 2 (iron chloride) and a carboxylic acid (eg, citric acid). Specific solutions include FeSO 4.7H 2 O at 250 g / L, FeCl 2.4H 2 O at 45 g / L, NH 4 Cl (ammonium chloride) at 20 g / L, and citric acid at 1.5 g / L. The solution is mentioned.

例えば、電気めっきの条件は、pH(水素イオン指数)が4.0以上4.5以下、めっき液の温度が50℃、電流密度が5A/dm以上10A/dm以下が挙げられる。 For example, the conditions for electroplating include a pH (hydrogen ion index) of 4.0 or more and 4.5 or less, a plating solution temperature of 50 ° C., and a current density of 5 A / dm 2 or more and 10 A / dm 2 or less.

〈一部除去工程〉
めっき直後には、型材の外形に沿った筒状の純鉄めっき部が形成される。上記筒状の純鉄めっき部のうち、溝内に充填される箇所は、ステント1の形成箇所であり、所定の網状に形成される。但し、この筒状の純鉄めっき部において上記溝内に充填される箇所は、溝から突出する箇所によって連結されている。そのため、上記筒状の純鉄めっき部では、所定の網状が現れていない。そこで、めっき後に、純鉄めっき部における型材の溝から突出する箇所を除去して、溝内に充填される箇所を抽出する。なお、純鉄めっき部において溝から突出する箇所とは、溝の開口部から突出するもの、及び型材の表面であって溝以外の箇所に形成されたものを含む。
<Partial removal process>
Immediately after plating, a tubular pure iron-plated portion is formed along the outer shape of the mold material. Of the tubular pure iron-plated portions, the portion filled in the groove is the portion where the stent 1 is formed, and is formed in a predetermined net shape. However, in this tubular pure iron-plated portion, the portion filled in the groove is connected by a portion protruding from the groove. Therefore, the predetermined net-like shape does not appear in the tubular pure iron-plated portion. Therefore, after plating, the portion of the pure iron-plated portion that protrudes from the groove of the mold material is removed, and the portion that is filled in the groove is extracted. In the pure iron-plated portion, the portion protruding from the groove includes a portion protruding from the opening of the groove and a portion formed on the surface of the mold material other than the groove.

この除去作業には、切削や研磨等を利用できる。型材の表面であって、溝以外の箇所が露出されるまで、除去作業を行う。この除去作業によって抽出される「純鉄めっき部における溝内に充填される箇所」は、溝の形状に応じた網状の筒体をなす一体物である。この工程では、この網状の筒体は、型材に保持された状態である。 Cutting, polishing, or the like can be used for this removal work. The removal work is performed until the surface of the mold material other than the groove is exposed. The "location filled in the groove in the pure iron-plated portion" extracted by this removal operation is an integral body forming a net-like cylinder according to the shape of the groove. In this step, the net-like cylinder is in a state of being held by the mold material.

〈分離工程〉
上述の型材の溝に残存する純鉄めっき部と、型材とを分離する。純鉄めっき部と型材との分離によって、上述の網状の筒体を構成する純鉄めっき部が得られる。型材の構成材料が樹脂であれば、分離前の純鉄めっき部と型材との複合物を所定の温度に加熱したり、型材を溶解したりすれば、純鉄めっき部と型材との分離を容易に行える。樹脂製の型材の分離方法を以下に例示する。
<Separation process>
The pure iron-plated portion remaining in the groove of the above-mentioned mold material and the mold material are separated. By separating the pure iron-plated portion and the mold material, the pure iron-plated portion constituting the above-mentioned net-like cylinder can be obtained. If the constituent material of the mold material is resin, if the composite of the pure iron-plated part and the mold material before separation is heated to a predetermined temperature or the mold material is melted, the pure iron-plated part and the mold material can be separated. Easy to do. The method of separating the resin mold material is illustrated below.

《分離方法》
(a)型材を変形可能な温度に加熱して、型材を延伸して引き抜く。
(b)型材を揮発又は分解可能な温度に加熱して、型材を揮発又は分解する。
(c)型材を溶剤で溶解する。
<< Separation method >>
(A) The mold material is heated to a deformable temperature, and the mold material is stretched and pulled out.
(B) The mold material is heated to a temperature at which it can be volatilized or decomposed to volatilize or decompose the mold material.
(C) Dissolve the mold material with a solvent.

分離方法(a),(b)では、型材の構成樹脂に応じて加熱温度を選択すればよい。分離方法(a)の加熱温度は、例えば100℃以上200℃以下が挙げられる。分離方法(b)の加熱温度は、例えば400℃以上、更に500℃以上、600℃以上が挙げられる。加熱温度の上限は、純鉄の融点(1535℃)未満とする。加熱時間は、型材を変形、又は揮発、又は分解可能な範囲で適宜選択すればよい。分離方法(a),(b)では、溶剤が不要である。 In the separation methods (a) and (b), the heating temperature may be selected according to the constituent resin of the mold material. The heating temperature of the separation method (a) is, for example, 100 ° C. or higher and 200 ° C. or lower. The heating temperature of the separation method (b) is, for example, 400 ° C. or higher, further 500 ° C. or higher, and 600 ° C. or higher. The upper limit of the heating temperature is less than the melting point (1535 ° C.) of pure iron. The heating time may be appropriately selected within a range in which the mold material can be deformed, volatilized, or decomposed. The separation methods (a) and (b) do not require a solvent.

分離方法(c)では、純鉄が溶解せず、型材の構成樹脂を溶解可能な溶剤を利用できる。溶剤は、構成樹脂に応じて選択すればよい。代表的には、有機溶剤を利用できる。分離方法(c)では、加熱エネルギーが不要である。 In the separation method (c), a solvent that does not dissolve pure iron and can dissolve the constituent resin of the mold material can be used. The solvent may be selected according to the constituent resin. Typically, an organic solvent can be used. The separation method (c) does not require heating energy.

〈熱処理工程〉
本発明者らが検討した結果、めっき法によって形成された純鉄材は、熱処理を施すことで、強度及び靭性を向上できるとの知見を得た。従って、第一の製法では、めっき後に熱処理を行ってもよい。熱処理を行うことで、血栓が付着し難い上に、強度及び靭性にも優れる純鉄製のステント1を製造できる。代表的には、バルーン拡張型ステントとして良好に利用できるステント1を製造できる。
<Heat treatment process>
As a result of the study by the present inventors, it was found that the pure iron material formed by the plating method can be subjected to heat treatment to improve the strength and toughness. Therefore, in the first production method, heat treatment may be performed after plating. By performing the heat treatment, it is possible to manufacture a stent 1 made of pure iron, which is difficult for thrombi to adhere and has excellent strength and toughness. Typically, a stent 1 that can be satisfactorily used as a balloon dilated stent can be manufactured.

《加熱温度》
熱処理を行う場合、加熱温度は、例えば150℃以上1000℃以下が挙げられる。加熱温度が150℃以上であれば、強度及び靭性の向上効果を得られる。加熱温度が高いほど、特に靭性の向上効果を得易い。靭性の向上等を望む場合には、加熱温度を300℃以上、更に400℃以上、450℃以上としてもよい。
"Heating temperature"
When heat treatment is performed, the heating temperature may be, for example, 150 ° C. or higher and 1000 ° C. or lower. When the heating temperature is 150 ° C. or higher, the effect of improving strength and toughness can be obtained. The higher the heating temperature, the easier it is to obtain the effect of improving toughness. If it is desired to improve the toughness, the heating temperature may be 300 ° C. or higher, 400 ° C. or higher, 450 ° C. or higher.

樹脂製の型材である場合、上記熱処理時の加熱温度を450℃以上、更に500℃以上と高くすれば、所定の加熱温度に昇温する過程で、型材を変形できる。型材の構成樹脂によっては、型材を揮発又は溶解できる場合がある。そのため、上述の分離工程は、熱処理工程の昇温過程で行ってもよい。熱処理工程の昇温過程に上記分離工程を含むと、加熱エネルギーを低減できる。この点で、低コスト化を図れる。 In the case of a resin mold material, if the heating temperature during the heat treatment is raised to 450 ° C. or higher and further to 500 ° C. or higher, the mold material can be deformed in the process of raising the temperature to a predetermined heating temperature. Depending on the constituent resin of the mold material, the mold material may be able to volatilize or dissolve. Therefore, the above-mentioned separation step may be performed in the temperature raising step of the heat treatment step. If the separation step is included in the temperature raising step of the heat treatment step, the heating energy can be reduced. In this respect, the cost can be reduced.

《雰囲気》
熱処理工程の雰囲気は、大気雰囲気が挙げられる。大気雰囲気とすれば、雰囲気制御が不要であり、作業性に優れる。熱処理対象である純鉄めっき部は、Feの純度が高く、酸化し難い。そのため、大気雰囲気でも、純鉄めっき部が酸化し難い。又は、熱処理工程の雰囲気は、非酸化性雰囲気としてもよい。非酸化性雰囲気とすれば、純鉄めっき部の酸化を防止できる。非酸化性雰囲気は、例えば、真空雰囲気、不活性雰囲気、還元雰囲気等が挙げられる。真空雰囲気は、大気圧以下の低圧雰囲気が挙げられる。不活性雰囲気は、アルゴン雰囲気、窒素雰囲気等が挙げられる。還元雰囲気は、水素雰囲気、水素ガスと不活性ガスとの混合雰囲気、一酸化炭素雰囲気等が挙げられる。
"atmosphere"
The atmosphere of the heat treatment process may be an atmospheric atmosphere. Atmospheric atmosphere does not require atmosphere control and is excellent in workability. The pure iron-plated portion, which is the target of heat treatment, has high Fe purity and is difficult to oxidize. Therefore, the pure iron-plated portion is unlikely to oxidize even in the atmospheric atmosphere. Alternatively, the atmosphere of the heat treatment step may be a non-oxidizing atmosphere. A non-oxidizing atmosphere can prevent oxidation of the pure iron-plated portion. Examples of the non-oxidizing atmosphere include a vacuum atmosphere, an inert atmosphere, a reducing atmosphere and the like. The vacuum atmosphere includes a low pressure atmosphere below atmospheric pressure. Examples of the inert atmosphere include an argon atmosphere and a nitrogen atmosphere. Examples of the reducing atmosphere include a hydrogen atmosphere, a mixed atmosphere of hydrogen gas and an inert gas, and a carbon monoxide atmosphere.

(第二の製法)
上述の特定の横断面形状を有する線状体10を含むステント1を製造する第二の製法として、焼結法を利用する製法であって、以下の各工程を備えるものが挙げられる。
〈型材の準備工程〉所定の形状の溝が形成された型材を用意する工程。
〈成形工程〉純鉄粉を含む原料を上記型材の溝に充填する工程。
〈焼結工程〉上記型材の溝に充填された上記原料を焼結する工程。
(Second manufacturing method)
As a second manufacturing method for manufacturing the stent 1 including the linear body 10 having the above-mentioned specific cross-sectional shape, there is a manufacturing method using a sintering method, which includes the following steps.
<Preparation process of mold material> A process of preparing a mold material in which a groove having a predetermined shape is formed.
<Molding process> A process of filling the groove of the above-mentioned mold material with a raw material containing pure iron powder.
<Sintering step> A step of sintering the raw material filled in the groove of the mold material.

〈概要〉
第二の製法は、純鉄の焼結体から構成されるステント1を製造する。特に、焼結前の粉末成形体は、型材に形成される溝を埋めるように、純鉄粉を含む原料を充填することで形成する。このような粉末成形体の形成には、金属粉末射出成型法(MIM法)を好適に利用できる。MIM法を利用すれば、型材の溝の断面形状に沿った横断面形状を有する粉末成形体を容易にかつ形状精度よく製造できる。この粉末成形体を焼結すれば、型材の溝の断面形状に沿った横断面形状を有する純鉄製の線状体10を容易にかつ形状精度よく製造できる。上記溝の断面形状が上述の特定の横断面形状を含めば、実施形態のステント1を容易に、かつ形状精度よく製造できる。
<Overview>
The second manufacturing method manufactures a stent 1 composed of a sintered body of pure iron. In particular, the powder molded body before sintering is formed by filling a raw material containing pure iron powder so as to fill the grooves formed in the mold material. A metal powder injection molding method (MIM method) can be suitably used for forming such a powder molded body. If the MIM method is used, a powder molded body having a cross-sectional shape along the cross-sectional shape of the groove of the mold material can be easily and accurately manufactured. By sintering this powder molded body, a pure iron linear body 10 having a cross-sectional shape along the cross-sectional shape of the groove of the mold material can be easily and accurately manufactured. If the cross-sectional shape of the groove includes the above-mentioned specific cross-sectional shape, the stent 1 of the embodiment can be easily manufactured with high shape accuracy.

更に、第二の製法で製造する焼結体は、微細な気孔を有する多孔体である。この気孔は、例えば、薬剤の保持部として利用できる。従って、第二の製法は、薬剤溶出型ステント(DES)とする場合に薬剤の保持性に優れるステント1を製造できる。 Further, the sintered body produced by the second manufacturing method is a porous body having fine pores. These pores can be used, for example, as a holding portion for the drug. Therefore, the second manufacturing method can produce a stent 1 having excellent drug retention when a drug-eluting stent (DES) is used.

〈型材の準備工程〉
第二の製法では、型材として、表面に所定の形状の溝が形成された棒状の第一型材と、第一型材の外周面を覆うように配置される筒状の第二型材とを備えるものを利用するとよい。第二型材は、第一型材の外周面に対応した形状及び大きさを有する内周面を有する。第二型材の内周面で第一型材の外周面を覆った状態では、第一型材の溝の内周面と、第二型材の内周面との間に溝の大きさに応じた所定の隙間が設けられる。この隙間を、原料を充填するキャビティとする。この隙間は、溝の形状に応じて網状に設けられており、第一型材の一端側から他端側に向かって連続する空間である。
<Preparation process of mold material>
In the second manufacturing method, the mold material includes a rod-shaped first mold material having a groove of a predetermined shape formed on the surface and a tubular second mold material arranged so as to cover the outer peripheral surface of the first mold material. It is good to use. The second mold material has an inner peripheral surface having a shape and size corresponding to the outer peripheral surface of the first mold material. When the outer peripheral surface of the first mold material is covered with the inner peripheral surface of the second mold material, a predetermined value according to the size of the groove between the inner peripheral surface of the groove of the first mold material and the inner peripheral surface of the second mold material. A gap is provided. This gap is used as a cavity for filling the raw material. This gap is provided in a mesh shape according to the shape of the groove, and is a space that is continuous from one end side to the other end side of the first mold material.

所定の溝を有する第一型材の構成材料は、例えば第一の製法と同様に、樹脂としてもよい。第一型材の構成材料が樹脂であれば、第一の製法で説明したように、射出成形等によって所定の溝を有する第一型材を容易に、かつ高精度に製造できる。また、上記型材を量産できる。更に、第二の製法では、焼結工程を備える。焼結工程では、比較的高温(例、800℃以上)の加熱を行う。第一型材の構成材料が樹脂であれば、焼結工程において、焼結温度に昇温する過程で、第一型材を揮発又は溶解させられる。その結果、粉末成形体と第一型材とを容易に分離できる。樹脂製の型材の詳細は、第一の製法を参照するとよい。 The constituent material of the first mold material having a predetermined groove may be a resin, for example, as in the first manufacturing method. If the constituent material of the first mold material is a resin, as described in the first manufacturing method, the first mold material having a predetermined groove can be easily and highly accurately manufactured by injection molding or the like. In addition, the above-mentioned mold materials can be mass-produced. Further, the second manufacturing method includes a sintering step. In the sintering step, heating is performed at a relatively high temperature (eg, 800 ° C. or higher). If the constituent material of the first mold material is a resin, the first mold material can be volatilized or melted in the process of raising the temperature to the sintering temperature in the sintering step. As a result, the powder molded product and the first mold material can be easily separated. For details of the resin mold material, it is advisable to refer to the first manufacturing method.

又は、第一型材の構成材料は、焼結温度以上の耐熱温度を有する金属としてもよい。第一型材の構成材料を金属とする場合、第一型材は、複数の分割片を組み合わせて一つの棒状となる組物であることが好ましい。組物を分離することで、粉末成形体と第一型材とを分離し易いからである。組物の詳細は、第一の製法を参照するとよい。 Alternatively, the constituent material of the first mold material may be a metal having a heat resistant temperature equal to or higher than the sintering temperature. When the constituent material of the first mold material is a metal, the first mold material is preferably an assembly in which a plurality of divided pieces are combined to form one rod. This is because it is easy to separate the powder molded body and the first mold material by separating the braid. For details of the braid, refer to the first manufacturing method.

第二型材は、複数の分割片を組み合わせて一つの筒体となる組物が挙げられる。第二型材が上記組物であれば、第一型材に対して容易に着脱できて好ましい。第二型材を組物とする場合には、分割片は、第二型材の環状の端面に、この端面の内周縁から外周縁に至る割面、即ち型材の軸方向に沿った割面を有するものが挙げられる。組物の具体例として、組み合わせて円筒状となる組物であって、第二型材の径方向に分割された半円筒片等の分割片を含むものが挙げられる。第二型材の構成材料は、上述の樹脂でも、金属でもよい。 Examples of the second mold material include a braid in which a plurality of divided pieces are combined to form one cylinder. If the second mold material is the above-mentioned assembly, it is preferable because it can be easily attached to and detached from the first mold material. When the second mold is used as a dougong, the split piece has a split surface extending from the inner peripheral edge to the outer peripheral edge of the annular end face of the second mold, that is, a split surface along the axial direction of the mold. Things can be mentioned. Specific examples of the braid include a braid that is combined into a cylindrical shape and includes a semi-cylindrical piece or the like that is divided in the radial direction of the second mold member. The constituent material of the second mold material may be the above-mentioned resin or metal.

〈成形工程〉
焼結体の素材となる粉末成形体の原料には、代表的には純鉄粉と、バインダとを含む混合物が利用できる。この混合物は、所定の圧力でキャビティに充填可能な程度の流動性を有するように調整する。
<Molding process>
As a raw material for a powder molded body as a material for a sintered body, a mixture containing pure iron powder and a binder can be typically used. The mixture is adjusted to have sufficient fluidity to fill the cavity at a given pressure.

純鉄粉は、公知の製法によって製造できる。市販の純鉄粉を用いてもよい。また、純鉄粉は、例えば平均粒径(ここではメジアン径)が10μm以下といった微細な粉末を好適に利用できる。微細な粉末は、原料の流動性に優れる上に、緻密な焼結体を形成し易い。 Pure iron powder can be produced by a known production method. Commercially available pure iron powder may be used. Further, as the pure iron powder, for example, a fine powder having an average particle size (here, a median diameter) of 10 μm or less can be preferably used. The fine powder has excellent fluidity of the raw material and easily forms a dense sintered body.

バインダは、MIM法に利用されている公知のものを利用できる。代表的にはバインダは、樹脂と、ワックス類とを含む有機材料が挙げられる。樹脂の一例として、ポリエチレン、ポリプロピレン等が挙げられる。その他、バインダは、結合剤、潤滑剤、可塑剤、界面活性剤等を含んでもよい。 As the binder, a known one used in the MIM method can be used. Typically, the binder is an organic material containing a resin and waxes. Examples of the resin include polyethylene, polypropylene and the like. In addition, the binder may contain a binder, a lubricant, a plasticizer, a surfactant and the like.

原料の充填後、第二型材を取り外し、充填物と第一型材との複合物のみの状態とする。充填物は、上述の網状のキャビティに沿って網状に形成されている。焼結前に、充填物からバインダを除去する処理を行ってもよい。バインダの除去処理は、例えばバインダを溶融可能な溶剤を用いて行うことが挙げられる。又は、焼結工程の昇温過程で上記バインダの除去処理を行ってもよい。昇温過程の加熱によって、バインダを揮発したり、分解したりすることでバインダを除去できる。 After filling the raw materials, the second mold material is removed, leaving only the composite of the filling material and the first mold material. The filler is reticulated along the reticulated cavities described above. Before sintering, a treatment may be performed to remove the binder from the filler. The binder removal treatment may be performed, for example, by using a solvent that can melt the binder. Alternatively, the binder may be removed in the heating process of the sintering step. The binder can be removed by volatilizing or decomposing the binder by heating in the heating process.

〈焼結工程〉
上述の充填物と第一型材との複合物を焼結温度に加熱して、上記充填物を焼結する。上記複合物を焼結炉内に吊るす等して、焼結することが挙げられる。焼結条件は、以下の通りである。
<Sintering process>
The composite of the above-mentioned filling and the first mold material is heated to a sintering temperature to sinter the above-mentioned filling. It is possible to sinter the composite by suspending it in a sintering furnace. The sintering conditions are as follows.

《焼結条件》
焼結温度は、純鉄粉を焼結可能な温度を選択すればよい。代表的には焼結温度は800℃以上1150℃以下が挙げられる。焼結温度を900℃以上、更に950℃以上としてもよい。特に、焼結温度は1130℃程度が利用し易い。
<< Sintering conditions >>
As the sintering temperature, a temperature at which pure iron powder can be sintered may be selected. Typically, the sintering temperature is 800 ° C. or higher and 1150 ° C. or lower. The sintering temperature may be 900 ° C. or higher, and further may be 950 ° C. or higher. In particular, it is easy to use a sintering temperature of about 1130 ° C.

焼結時の雰囲気は、大気雰囲気でも非酸化性雰囲気でもよい。雰囲気の詳細は、第一の製法を参照するとよい。 The atmosphere at the time of sintering may be an atmospheric atmosphere or a non-oxidizing atmosphere. For details of the atmosphere, refer to the first manufacturing method.

《型材の除去》
第一型材が樹脂製の型材であれば、焼結工程の昇温過程で、型材を揮発又は分解することで、上記充填物(粉末成形体)と型材とを分離できる。又は、第一型材が金属製の型材であれば、焼結後、第一型材を分割すれば、焼結体と型材とを分離できる。得られた焼結体は、網状の筒体から構成される。
<< Removal of mold material >>
If the first mold material is a resin mold material, the filler (powder molded product) and the mold material can be separated by volatilizing or decomposing the mold material in the heating process of the sintering step. Alternatively, if the first mold material is a metal mold material, the sintered body and the mold material can be separated by dividing the first mold material after sintering. The obtained sintered body is composed of a net-like cylinder.

(第一の製法及び第二の製法に共通事項)
上述のようにして製造された純鉄めっき材や焼結体において、線状体の横断面形状に角張った箇所(例、角部22,23、図2A~図2C)がある場合、角張った箇所を丸める処理を行ってもよい。丸め処理には、電解研磨やバレル研磨等を利用できる。
(Matters common to the first and second manufacturing methods)
In the pure iron-plated material or sintered body manufactured as described above, if there are angular portions (eg, corner portions 22, 23, FIGS. 2A to 2C) in the cross-sectional shape of the linear body, they are angular. The process of rounding the portion may be performed. Electrolytic polishing, barrel polishing, or the like can be used for the rounding process.

(主な効果)
実施形態のステントの製造方法は、血栓が付着し難いステント1、更には生体分解性にも優れるステント1を生産性よく製造できる。第二の製法も、血栓が付着し難く、更には生体分解性にも優れるステント1を生産性よく製造できる。
(Main effect)
The method for manufacturing a stent of the embodiment can produce a stent 1 to which a thrombus does not easily adhere and a stent 1 having excellent biodegradability with high productivity. Also in the second manufacturing method, the stent 1 which is hard to adhere to thrombus and has excellent biodegradability can be manufactured with high productivity.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

なお、本開示のステントの製造方法は、純鉄以外の金属にも適用できる。
例えば、めっき可能な金属であって、生体に適用可能な金属に適用できる。このような金属の一例として、鉄合金、金、金合金、プラチナ、プラチナ合金が挙げられる。
The method for manufacturing a stent disclosed in the present disclosure can be applied to metals other than pure iron.
For example, it can be applied to a metal that can be plated and is applicable to a living body. Examples of such metals include iron alloys, gold, gold alloys, platinum and platinum alloys.

1 ステント、10 線状体、11 網状部材
15 筒体、16 環状部、17 リンク部、170 直線部
2 周縁、20 内周面、21 外周面、22,23 角部
25,26 内周縁部、250,260 湾曲部、27 平坦部
30,34 内周端、31,32 側端、35,36,37,38 線分
5 血管、50 内壁面
61 接線、62 垂線、63 軸
1 stent, 10 linear body, 11 reticulated member 15 tubular body, 16 annular part, 17 link part, 170 straight part 2 peripheral edge, 20 inner peripheral surface, 21 outer peripheral surface, 22,23 square part 25,26 inner peripheral edge, 250, 260 Curved part, 27 Flat part 30, 34 Inner peripheral end, 31, 32 Side end, 35, 36, 37, 38 Line segment 5 Blood vessel, 50 Inner wall surface 61 tangent, 62 Perpendicular line, 63 axis

Claims (8)

血管内に配置され、網状部材で構成される筒体を有するステントであって、
前記網状部材は、金属からなる線状体で構成され、
前記網状部材のうち、前記筒体の軸方向に交差する箇所を構成する前記線状体の横断面における周縁は、
前記線状体の最大幅をとる線分と交差し、前記血管内において血流の上流側に配置される第一の側端及び前記血流の下流側に配置される第二の側端と、
前記線状体の最大厚さをとる線分と交差する内周端とを含み、
前記第一の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第一の角度とし、前記第二の側端と前記内周端とを結ぶ線分と前記最大幅をとる線分とがつくる角度を第二の角度とし、前記第一の角度は、前記第二の角度よりも大きい鋭角である、
ステント。
A stent that is placed inside a blood vessel and has a tubular body composed of reticulated members.
The net-like member is composed of a linear body made of metal.
Among the net-like members, the peripheral edge in the cross section of the linear body constituting the portion intersecting the axial direction of the tubular body is
A first side end located upstream of the blood flow and a second side end located downstream of the blood flow intersecting the line segment having the maximum width of the striatum. ,
Including the line segment having the maximum thickness of the striatum and the inner peripheral end intersecting with the line segment.
The angle formed by the line segment connecting the first side end and the inner peripheral end and the line segment having the maximum width is defined as the first angle, and the line connecting the second side end and the inner peripheral end. The angle formed by the minute and the line segment having the maximum width is defined as the second angle, and the first angle is a sharp angle larger than the second angle.
Stent.
前記周縁は、
前記第一の側端から前記内周端までの領域、及び前記内周端から前記第二の側端までの領域の少なくとも一方に湾曲部を含む請求項1に記載のステント。
The peripheral edge is
The stent according to claim 1, wherein the stent includes a curved portion in at least one of the region from the first side end to the inner peripheral end and the region from the inner peripheral end to the second side end.
前記周縁は、
前記第一の側端から前記内周端までの領域に、前記最大厚さの1倍以上3倍以下である曲げ半径を有する第一の湾曲部を含み、
前記内周端から前記第二の側端までの領域に、前記第一の湾曲部の曲げ半径よりも大きな曲げ半径を有する第二の湾曲部を含む請求項2に記載のステント。
The peripheral edge is
The region from the first side end to the inner peripheral end includes a first bending portion having a bending radius of 1 times or more and 3 times or less of the maximum thickness.
The stent according to claim 2, wherein the region from the inner peripheral end to the second side end includes a second curved portion having a bending radius larger than the bending radius of the first curved portion.
前記周縁は、
前記第一の側端から前記内周端を経て前記第二の側端に連続する湾曲部を含む請求項3に記載のステント。
The peripheral edge is
The stent according to claim 3, further comprising a curved portion continuous from the first side end to the second side end via the inner peripheral end.
前記筒体は、
複数の環状部と、
前記筒体の軸方向に隣り合う前記環状部を繋ぐリンク部とを備え、
前記各環状部は、前記筒体の周方向に連続する前記線状体から構成され、
前記リンク部は、前記筒体の軸方向に沿って設けられる直線部を含み、
前記環状部の横断面形状と前記直線部の横断面形状とが異なる請求項1から請求項4のいずれか1項に記載のステント。
The cylinder is
With multiple annular parts,
A link portion connecting the annular portions adjacent to each other in the axial direction of the cylinder is provided.
Each annular portion is composed of the linear body continuous in the circumferential direction of the cylinder.
The link portion includes a straight portion provided along the axial direction of the cylinder.
The stent according to any one of claims 1 to 4, wherein the cross-sectional shape of the annular portion and the cross-sectional shape of the straight portion are different.
前記直線部の最大厚さは、前記環状部の最大厚さよりも薄い請求項5に記載のステント。 The stent according to claim 5, wherein the maximum thickness of the straight portion is thinner than the maximum thickness of the annular portion. 前記金属は、純鉄である請求項1から請求項6のいずれか1項に記載のステント。 The stent according to any one of claims 1 to 6, wherein the metal is pure iron. 所定の形状の溝が形成された型材を用意する工程と、
前記型材において前記溝を含めた表面に純鉄めっきを施す工程と、
前記型材に形成された純鉄めっき部において、前記溝から突出する箇所を除去する工程と、
前記溝に残存する純鉄めっき部と前記型材とを分離する工程とを備える、
ステントの製造方法。
The process of preparing a mold material with a groove of a predetermined shape and
The process of applying pure iron plating to the surface of the mold material including the groove,
In the step of removing the portion protruding from the groove in the pure iron-plated portion formed on the mold material,
A step of separating the pure iron-plated portion remaining in the groove and the mold material is provided.
How to make a stent.
JP2018232746A 2018-12-12 2018-12-12 Stent and manufacturing method of stent Pending JP2022028088A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018232746A JP2022028088A (en) 2018-12-12 2018-12-12 Stent and manufacturing method of stent
PCT/JP2019/047957 WO2020121980A1 (en) 2018-12-12 2019-12-06 Stent and method for producing stent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232746A JP2022028088A (en) 2018-12-12 2018-12-12 Stent and manufacturing method of stent

Publications (1)

Publication Number Publication Date
JP2022028088A true JP2022028088A (en) 2022-02-15

Family

ID=71075585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232746A Pending JP2022028088A (en) 2018-12-12 2018-12-12 Stent and manufacturing method of stent

Country Status (2)

Country Link
JP (1) JP2022028088A (en)
WO (1) WO2020121980A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772864A (en) * 1996-02-23 1998-06-30 Meadox Medicals, Inc. Method for manufacturing implantable medical devices
DE19731021A1 (en) * 1997-07-18 1999-01-21 Meyer Joerg In vivo degradable metallic implant
ATE433730T1 (en) * 2003-09-30 2009-07-15 Alveolus Inc REMOVABLE STENT
US20080306581A1 (en) * 2007-06-07 2008-12-11 Medtronic Vascular, Inc. Streamlined Stents
CN108778194A (en) * 2016-03-16 2018-11-09 泰尔茂株式会社 Holder

Also Published As

Publication number Publication date
WO2020121980A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US5772864A (en) Method for manufacturing implantable medical devices
EP1755491B1 (en) Method for reducing stent weld profiles and a stent having reduced weld profiles and a closed-end wire configuration
US7323001B2 (en) Embolic filters with controlled pore size
US20160008149A1 (en) Intravascular stent with helical struts and specific cross-sectional shapes
WO2011092909A1 (en) Metal member manufacturing method, and metal member
JP2004279203A (en) Hair spring for time piece
CN109998746B (en) Support frame
JP2007289664A (en) Injection needle manufacturing method and injection needle
JPH08196642A (en) In-vivo laid stent
CN104096267B (en) A kind of medical gradient composites
WO2021181116A1 (en) Method of manufacturing a medical device
JP2022028088A (en) Stent and manufacturing method of stent
JP2018512227A (en) Electroformed needle cannula
EP2752261A2 (en) Process for producing watch parts
CN105568031A (en) Preparation method of controllable porous titanium of three-dimensional structure
JP2016512751A (en) Integrated medical device, method for manufacturing the same, and method for using the same
JP6428050B2 (en) Stent
JP6380909B2 (en) Stent
JP4845074B2 (en) Guide wire
CN113020908B (en) Preparation method of medical stent and medical stent
US20030106800A1 (en) Rigidified mesh structure and process for obtaining same
JP3586245B2 (en) In-vivo stent
US10821011B2 (en) Medical device and method of manufacturing using micro-cladding to form functionally graded materials
JP2005334560A (en) Method for manufacturing stent
US20200094355A1 (en) Method of manufacturing metallic welding wires and metallic welding wires formed thereby