JP2021189158A - ハイブリッド自動試験装置を使用する光電気デバイス - Google Patents

ハイブリッド自動試験装置を使用する光電気デバイス Download PDF

Info

Publication number
JP2021189158A
JP2021189158A JP2020112610A JP2020112610A JP2021189158A JP 2021189158 A JP2021189158 A JP 2021189158A JP 2020112610 A JP2020112610 A JP 2020112610A JP 2020112610 A JP2020112610 A JP 2020112610A JP 2021189158 A JP2021189158 A JP 2021189158A
Authority
JP
Japan
Prior art keywords
pic
temperature
optical
calibration
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020112610A
Other languages
English (en)
Other versions
JP7275079B2 (ja
Inventor
クリス・バーナード
Barnard Chris
スティーブン・ウィリアム・ケック
William Keck Steven
クリスピン・クルス・マパガイ
Cruz Mapagay Crispin
ジョージ・アール.・ソスノースキー
R Sosnowski George
マーク・ステンホルム
Stenholm Mark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juniper Networks Inc
Original Assignee
Juniper Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juniper Networks Inc filed Critical Juniper Networks Inc
Publication of JP2021189158A publication Critical patent/JP2021189158A/ja
Application granted granted Critical
Publication of JP7275079B2 publication Critical patent/JP7275079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/32Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2862Chambers or ovens; Tanks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • G01R1/071Non contact-making probes containing electro-optic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • G01R1/072Non contact-making probes containing ionised gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31728Optical aspects, e.g. opto-electronics used for testing, optical signal transmission for testing electronic circuits, electro-optic components to be tested in combination with electronic circuits, measuring light emission of digital circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automation & Control Theory (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】より高いデータレートを達成するために電気と光の両方を処理する光トランシーバなどの、現代の一部のハイブリッド高速デバイスの迅速な試験および較正を提供する。【解決手段】光電気デバイス405は、構成部品較正中にデバイスの温度のためのフィードバックベースの制御ループを実施することができる。光電気デバイス405は、較正中のデバイス温度を変化させるように圧縮空気を実施することができる。追加的に、デバイスのアクティブでない構成部品には、供給された圧縮空気と同時に、デバイスの温度を変化させる電流が供給されることができる。追加の較正温度が、光源、光増幅器、および変調器などの、デバイス内のアクティブでない追加の構成部品を起動および停止することによって実施されることができる。【選択図】図4

Description

[0001] 本開示は、概して、温度制御に関し、より具体的には、光電気デバイスの温度制御メカニズムに関する。
[0002] 現代の高速集積回路(IC)は複雑なアーキテクチャを有し、複数ギガビットのデータレートでデータを送信するように同時に動作しなければならないトランジスタなどの何百万もの構成部品が、現代の通信ネットワークによって必要とされている。このようなデバイスを製造する重要なステップの1つは、デバイスが後の時点で(製品への統合後)故障しないことを保証するために高速デバイスを試験および較正することである。このような高速デバイスの試験および較正の1つの問題は、デバイスの様々な構成部品が、「市販」の構成部品として様々な企業によって設計されている現代の設計プロセスから起きる。この目的のために、自動試験装置(ATE)が、チップおよびウエハレベルで高速設計を効率的に試験するようにデバイスエンジニアによって実装されることができる。一般に、ATEシステムは、最小限の人間の介在で負荷試験を行い個々の構成部品を分析するために被試験デバイス(DUT)とインターフェースをとる1つまたは複数のコンピュータ制御の機器またはモジュールを含む。電子または半導体デバイスのために構成されている現在のATEシステムは、より高いデータレートを達成するために電気と光の両方を処理する光トランシーバなどの、現代の一部のハイブリッド高速デバイスの迅速な試験および較正を提供するようには構成されていない。
[0003] 以下の説明は、本開示の実施形態の実施の例として与えられた例示を有する図の説明を含む。図面は、限定としてではなく、例として理解されるべきである。本明細書で使用されるとき、1つまたは複数の「実施形態」の参照は、本発明の主題の少なくとも1つの実装形態に含まれる特定の特徴、構造、または特性を説明するものとして理解されるべきである。よって、本明細書に現れる「1つの実施形態では」または「代替の実施形態では」などのフレーズは、本発明の主題の様々な実施形態および実装形態を説明するものであり、必ずしもすべて同じ実施形態を参照するわけではない。しかしながら、それらは必ずしも相互排他的であるわけでもない。任意の特定の要素または動作の説明を容易に特定するために、参照番号の単数または複数の最上位桁は、当該要素または動作が最初に紹介された図(「FIG」)番号を参照する。
[0004] いくつかの例示的な実施形態による、同時の光電気ATE試験および較正を実施するための例示的な光電気試験システムを示す。 [0005] いくつかの例示的な実施形態による、光信号を送受信するための光トランシーバを例示するブロック図である。 [0006] いくつかの例示的な実施形態による、光電気ATEアーキテクチャを表示する。 [0007] いくつかの例示的な実施形態による、光電気被試験デバイス(DUT)の気流ベースの制御のための光電気ATE温度制御アーキテクチャを示す。 [0008] いくつかの例示的な実施形態による、フォトニクス温度制御アーキテクチャを示す。 [0009] 本開示の一実施形態による、1つまたは複数の光デバイスを含む光電気デバイス(例えば光トランシーバ)の例示である。 [0010] いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正およびより高圧の気流の閉ループ制御を実施するための方法のフロー図を示す。 [0011] いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正および光電気デバイス内の副生熱(byproduct heat)生成構成部品の閉ループ制御を実施するための方法のフロー図を示す。 [0012] いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正および受動副生熱と気流を使用した閉ループ制御を実施するための方法のフロー図を示す。
詳細な説明
[0013] 以下で説明される実施形態の一部または全部を示し得る図の説明を含み、ならびに本明細書に提示される本発明の概念の他の可能性のある実施形態または実装形態を説明する、ある特定の詳細および実装形態の説明が続く。本開示の実施形態の概要が以下に提供され、図面を参照してより詳細な説明が続く。
[0014] 以下の説明には、説明の目的で、本発明の主題の様々な実施形態の理解を提供するために多くの具体的な詳細が記述される。しかしながら、本発明の主題の実施形態がこれらの具体的な詳細なしに実施され得ることが、当業者に明らかとなる。一般に、周知の命令インスタンス、構造、および技法は、必ずしも詳細に示されるわけではない。
[0015] 現代のATEシステムは、複雑な電気モジュールと光モジュールの両方を含む、光トランシーバなどの、現代のハイブリッド高速デバイスの試験、検証、および較正を迅速に行うようには構成されていない。この目的のために、ハイブリッド光電気ATEシステムが実装されることができ、これは、ATEシステムの電気装置とインターフェースをとるための1つまたは複数の電気インターフェースと、ATEシステムの光学装置とインターフェースをとるための1つまたは複数の光インターフェース(例えばファイバ、レンズ、回折格子)とを使用する。異なる電気および光インターフェースは、典型的には物理的に大きく、ハイブリッドATE試験を行うために様々な電気および光入力/出力ポートを接続することが難しい可能性がある。さらにこの課題を複雑にするのは、いくつかの光学部品の較正であり、これらは、各光学部品がハイブリッド被試験デバイス(DUT)内で正確に機能することを保証するために、ある特定の温度(例えば小さい温度範囲、例えば3度の範囲)で較正される。さらに、(例えば製造および光スイッチなどの製品への統合後に)ハイブリッドデバイスが耐えそうな温度のスペクトラムにわたる信頼性を保証するために、多くの場合、構成部品は2つの異なる温度で較正される。ATE較正中にDUTの温度を制御するための1つのアプローチは、デバイスに金属ブロック(例えば銅ブロック)を取り付け、次いで、デバイス較正を行うために当該ブロックを所望の温度に加熱および冷却することを含む。しかしながら、そのようなブロックは、密集したATE環境においてDUTとインターフェースをとることが難しい可能性があり、ここで、DUTは多くの場合、1平方センチメートルに満たない。さらに、そのようなブロックは、非常に壊れやすい構成部品(例えば触ることができない光学部品)を含むDUTに損傷を引き起こしやすい可能性がある。他のアプローチは、DUTへの冷却構造(例えばペルチェ冷却器)の統合に依存するが、統合された冷却デバイスはハイブリッドデバイスの電力および設計空間を無駄にし、外部の冷却構造(例えば外部のペルチェ冷却器)は、ATE環境においてDUTとインターフェースをとることが難しく、その結果、外部冷却構造を置こうと試みるとDUTに損傷の可能性を与える。
[0016] この目的のために、ハイブリッド光電気ATEシステムは、DUTの温度を変更し、1つまたは複数の光学部品の較正プロシージャ中のDUTの温度を効率的に維持するために、気流冷却および付帯デバイス熱を使用する温度制御ループを実施することができる。いくつかの例示的な実施形態では、ハイブリッド光電気ATEシステムは、DUTのフォトニクス集積回路(PIC)近くに取り付けられた指向性流路(例えばチューブ)からの圧縮空気を実施する。いくつかの例示的な実施形態では、DUTは、DUTの温度をモニタし、DUT温度を増加または減少させるように気流を調節するために使用される温度センサを含む。さらに、いくつかの例示的な実施形態では、DUTの1つまたは複数の構成部品(例えば光路上にある光学部品)が較正される間、較正を受けていない他の光学部品には、熱を生成してDUTの温度を上昇させるために電気電流が供給される。
[0017] 一例として、DUTが、所与の温度、すなわち摂氏40度で較正されるべき光送信機(例えばレーザ、変調器)および光受信機(例えば半導体増幅器、フォトダイオード)を含むPICを有する波長分割多重(WDM)光トランシーバであると仮定する。いくつかの例示的な実施形態では、光送信機は、送信機を起動し、DUTに最大レベルで空気を吹きつけるように圧縮空気源をオンにすることによって最初に較正される。送信機が起動され、圧縮空気源が全出力となり、送信機構成部品の各々は、気流を使用した閉制御ループがDUT温度を例えば摂氏50度に維持する間に較正されることができる。例えば、DUTが35度まで冷却された場合、圧縮空気源の量は、DUTを再び50度まで熱くさせるように、最大から低減される。
[0018] さらに、較正のための第2の温度に素早く移行するために、1つまたは複数のアクティブでない構成部品が、DUTを第2の温度に加熱するように起動されることができる。送信機が第1の温度で較正された後、DUTの光受信機構成部品は、DUTの温度を第2の温度に上昇させるように起動される。例えば、光受信機内の光SOAは、電流を受け取り、熱を生成するように電源オンにされる。
[0019] いくつかの例示的な実施形態では、アクティブでない構成部品が起動されることに加えて、DUTが第2の温度点または平衡状態に落ち着くまで、気流が再び最大まで増加される。第2の温度にある間、受信機構成部品(例えばSOA)および圧縮空気がDUTを第2の温度に維持する間に、送信機構成部品を較正することができる。特に、例えばDUTの温度が低下した場合、再び第2の温度になるまでDUT温度を増加させるように気流の強さが低減される。代替的に、DUTの温度が増加した場合、受信機内の1つまたは複数のSOAが停止されるか(deactivated)、もしくは供給される電流を低減しDUTの温度を減少させて第2の温度に戻すように、それらの利得レベルが低減される。
[0020] 図1は、いくつかの例示的な実施形態による、フォトニックデバイスの同時の光電気温度制御の試験を実施するための光電気試験システム100を示す。例示されるように、ハンドラ105(例えば集積回路(IC)ハンドラ、チップハンドラ)は、被試験デバイス(DUT)120を試験および較正のための位置に慎重に移動させることができるロボットシステムである。DUT120を試験ソケットベース125に移動させるために、ワークプレス110(例えばワークプレスアセンブリ)がハンドラ105に取り付けられる。試験ソケットベース125はさらに、1つまたは複数の光分析モジュール(例えば光スペクトラムアナライザ(OSA))を使用してDUT120の光学試験を提供する光学試験アセンブリ130上と、1つまたは複数の電気アナライザモジュールを使用して電気的自動試験を提供する電気自動試験装置(ATE)145上に配置される。DUT120は、電気接続(例えば高速ソケット125)を介して光学試験アセンブリおよびATE145に電気接続される。さらに、DUT120は、1つまたは複数の光接続140を使用して光学試験アセンブリと光学的にインターフェースをとることができる。例えば、光接続140はファイバとして実装されることができ、当該ファイバは、光学試験アセンブリ130からワークプレス110内に延び、DUT120の上側(例えば、「上側」がインターポーザまたはホストボードに面するフリップチップ構成における上側または「下側」とすることができる)に向かって折り返される。光学試験アセンブリのさらなる機能的な構成部品および詳細が、図3を参照して、以下でさらに詳細に説明される。光電気試験システム100の光電気接触と位置合わせされると、DUT120は、同時の電気的および光学的試験および較正を受けることができる。さらに、図4を参照して以下でさらに詳細に説明されるように、ある特定の温度でのDUT120の正確な較正を可能にするために、空気源115が、方向付けられた空気流路(例えばホース、チューブ、中空経路)を介してDUT120に気流を当て、当該空気流路は、熱を除去するために、ワークプレス110を通して延びて、加圧された空気をDUTのほうに向ける。
[0021] 図2は、いくつかの例示的な実施形態による、光信号を送受信するための光トランシーバ200を例示するブロック図である。光トランシーバ200は、分かれた利得増幅器が統合されることができる例示的なシステムである。例示されるように、光トランシーバ200は、電気ハードウェアデバイス250などの電気デバイスからの電気データをインターフェースし、電気データを光データに変換し、光デバイス275などの1つまたは複数の光デバイスを用いて光データを送受信するように実装されることができる。説明の目的から、以下の説明では、電気ハードウェアデバイス250は、光スイッチネットワークにデータを送受信するプラグ接続可能なデバイスとして光トランシーバ200を「ホスト」するホストボードであり、ここで、例えば、光デバイス275は、光スイッチネットワーク(例えば外部送信機277)の他の構成部品とすることができる。しかしながら、光トランシーバ200が他のタイプの電気デバイスおよび光デバイスとインターフェースをとるように実装されることができることが理解される。例えば、光トランシーバ200は、いくつかの例示的な実施形態によれば、データが光からバイナリ電気データに変換された後にデータを処理するオンボード電気チップをインターコネクトするための光バスとして光ネットワーク(例えば導波路、ファイバ)を使用するハイブリッド「マザーボード」上のシングルチップとして実装されることができる。
[0022] いくつかの例示的な実施形態では、ハードウェアデバイス250は、光トランシーバ200の電気インターフェースを受信し、それと接続するための電気インターフェースを含む。光トランシーバ200は、通信システムまたはデバイス内のバックエンドモジュールとして動作するハードウェアデバイス250によって物理的に受容され、それから取り外され得る取り外し可能なフロントエンドモジュールであり得る。光トランシーバ200およびハードウェアデバイス250は、例えば、高密度波長分割多重(DWDM)システムを含む、波長分割多重(WDM)システムなどの、光通信デバイスまたはシステム(例えばネットワークデバイス)の構成部品とすることができる。例えば、WDMシステムは、複数のハードウェアデバイスのホストボードのために予約された複数のスロットを含み得る。
[0023] 光トランシーバ200のデータ送信機205は、電気信号を受信することができ、当該電気信号は次いで、PIC210を介して光信号に変換される。PIC210は次いで、PIC210とインターフェースをとる導波路またはファイバなどの光リンクを介して光信号を出力することができる。次いで、出力された光データは、ワイドエリアネットワーク(WAN)、光スイッチネットワーク、組込みシステム内の光導波路ネットワーク、および他のものなどのネットワークを介して、他の構成部品(例えばスイッチ、エンドポイントサーバ、単一の組込みシステムの他の埋込みチップ)によって処理されることができる。
[0024] 受信機モードでは、光トランシーバ200は、光デバイス275への1つまたは複数の光リンクを介して高データレートの光信号を受信することができる。光信号は、電気ハードウェアデバイス250などの他のデバイスに出力するためにより低いデータレートにデータを復調するなどの、データ受信機215によるさらなる処理のために、PIC210によって光から電気信号に変換される。光トランシーバ200によって使用される変調は、パルス振幅変調(例えばPAM4)、四位相偏移変調(QPSK)、二位相偏移変調(BPSK)、偏波多重BPSK、M値振幅位相変調(M−QAM)などを含むことができる。
[0025] 図3は、いくつかの例示的な実施形態による、光電気ATEアーキテクチャ300を表示する。光電気ATEアーキテクチャ300は、光デバイスの光学試験および較正のための光学試験アセンブリ130の例示的な実装形態である。高レベルで、ATE325は、光電気被試験デバイス305およびビットエラーレートモジュール315(例えば組込みBERテスタ)とインターフェースをとる。さらに、いくつかの例示的な実施形態によれば、ATE325は、RS−232インターフェースを使用してDUT305と電気的にインターフェースをとり、および1つまたは複数のファイバならびに光スイッチ335を介して光学的にインターフェースをとる小型OSA330からのデータをインターフェースし、表示することができる。いくつかの例示的な実施形態では、DUT305は、複数のファイバ331(例えば図1の光接続140)のうちの1つまたは複数上に出力される異なる光ビームを(例えば異なる波長または異なるチャネルで)生成する。これらの例示的な実施形態では、光スイッチ335は、小型OSA330に出力するための利用可能な複数のファイバのうちの1つを選択するように動作可能である。図7〜図8を参照して以下で説明されるように、DUT305が1つまたは複数の較正温度に留まるように、指向性流路を介してDUT305のほうに圧縮空気を向けることができる熱コントローラ310(例えば温度センサ408、空気チューブ425、気流弁403)が、アーキテクチャ300にさらに例示されている。
[0026] 図4は、いくつかの例示的な実施形態による、光電気被試験デバイス(DUT)405の気流ベースの制御のための光電気ATE温度制御アーキテクチャ400を示す。例示された例では、光電気DUT405は、PIC410と、プロセッサ415(例えば中央処理ユニット(CPU)、マイクロコントローラ、特定用途向け集積回路(ASIC))とを備える。いくつかの例示的な実施形態では、PIC410は、PIC410の温度を感知する、1つまたは複数の組込み温度センサ408を含む。
[0027] いくつかの例示的な実施形態では、閉制御ループ(例えばフィードバック較正ループ)で動作するために、光電気DUT405は、第1の温度に初期化され、PIC410内の温度センサ408は、PIC410の温度を測定し、その温度を温度データとしてプロセッサ415に送る。プロセッサ415は、デジタルデータを、気流弁403を制御する制御信号電圧に(例えばデジタル・アナログコンバータ(DAC)を使用して)変換する。例えば、気流弁403は、空気チューブ425などの空気流路を閉じまたは開くように作動するリニアアクチュエータを有する電圧制御のニードルバルブを含むことができる。
[0028] 例示された例では、高圧(例えば周囲または周辺環境の空気圧よりも高い圧力)で空気をチューブ425に送り込む加圧空気源420(例えば空気圧縮器、高速ファン)によって気流が生成される。チューブ425は、ファンを使用するなどの他のアプローチよりも有利であり、これは、チューブ425が、PIC410などの冷却されるべき特定の小領域近くにより容易に配置されて、表面に触ることなく熱を逃す強い流れの空気を当該領域にわたって方向付けることができる短い直径を有することができるからである。チューブ425を介した圧縮空気冷却の1つのさらなる利点は、それが非接触であり、物理的接触(例えばヒートシンクをPIC410またはデバイス405に物理的に据えること)によって破壊される可能性がある多数の精密な構成部品を有するPIC410と物理的にインターフェースをとる必要がないことである。
[0029] 図5は、いくつかの例示的な実施形態による、フォトニクス温度制御アーキテクチャ500を示す。例示されるように、アーキテクチャ500は、図1および図3を参照して上述されたように、光電気自動試験装置(ATE)システム501とインターフェースをとる被試験デバイスである光電気DUT502を表示する。光電気DUT502は、電子機器モジュール504とフォトニクスモジュール507とを備える。
[0030] 電子機器モジュール504は、以下でさらに詳細に説明される、図6のASIC615などの、パッケージにされたチップ内の1つまたは複数の電気構造として統合されることができる電気部品(例えば電気導電路/トレース、回路制御ロジック、ASIC、プロセッサ、電力制御回路等)を含む。例示された例では、電子機器モジュール504は、光変調(例えばPAM4データ、QPSKデータ)のための信号を受信する送信機コントローラ506(例えば図2のデータ送信機205)を含む。いくつかの例示的な実施形態では、ハードウェアプロセッサ505(例えばCPU、ASIC、マイクロプロセッサ)が、光電気DUT502の異なるプロセスを制御する。例えば、ハードウェアプロセッサ505は、ハードウェアプロセッサ505(例えばファームウェア)のメモリに命令として記憶されるか、または光電気ATEシステム501に格納される(例えばメモリにアプリケーションとして格納され、光電気ATEシステム501の1つまたは複数のプロセッサによって実行される)、光熱フィードバックエンジン(optical thermal feedback engine)509を含むことができる。次いで命令は、較正試験のためにフォトニクスモジュール507の閉ループ制御を実行するようにプロセッサ505によって実行されることができる。さらに、いくつかの例示的な実施形態によれば、図7〜図9を参照して以下でさらに詳細に説明されるように、プロセッサ505は、光学的閉ループ制御動作を実施するように特別に設計された集積ASICとして実装されることができる。
[0031] 電子機器モジュール504はさらに、フォトニクスモジュール507内の光受信機構成部品によって生成された光データを受信することができる受信機コントローラ506(例えば図2のデータ受信機215)を含む。電子機器モジュール504はさらに、電子機器モジュール504内の電子構成部品を含み、光電気DUT502のための電気電力を供給および制御し、さらに、様々な電気制御のフォトニック構成部品(例えばレーザ、シリコン光増幅器、フィルタ、変調器など)に電力供給するためにフォトニクスモジュール507に電気電力を供給するための電力制御回路512を含むことができる。
[0032] いくつかの例示的な実施形態では、フォトニクスモジュール507は、統合されたフォトニクス送信機構造514および統合されたフォトニクス受信機構造532を備える、波長分割多重(WDM)トランシーバアーキテクチャである。いくつかの例示的な実施形態では、統合されたフォトニクス送信機構造514および統合されたフォトニクス受信機構造532は、以下でさらに詳細に説明される、図6のPIC620などのPICデバイスとして作製される例示的な光学部品である。統合されたフォトニクス送信機構造514は、各レーンが異なる波長の光に対処する4つのレーンを有するWDM送信機の一例である。簡潔にするために、例示された例では、第1の送信機レーン516と第4の送信機レーン518とを含む、送信機の2つのレーンのみが例示されており、第2および第3の送信機レーンは省略されている。
[0033] 統合されたフォトニクス受信機構造532は、(例えば光ネットワークから)WDM光を受け取り、マルチプレクサ534、半導体光増幅器535(SOA)、および光検出器536(例えばフォトダイオード)などの1つまたは複数の検出器などの構成部品を使用して、当該光を、フィルタリング、増幅、および電気信号に変換することによって処理するWDM受信機の一例である。
[0034] いくつかの例示的な実施形態によれば、フォトニクスモジュール507のフォトニクス構成部品のうちの1つまたは複数は、外部ヒータ(例えば、熱を加えるための銅ブロックなどの金属の熱源、または熱を逃すためのヒートシンク)を使用することなくDUT温度を維持するための閉フィードバック制御ループの一部として光電気DUT502の温度を制御するヒータとして作用するように起動される。いくつかの例示的な実施形態では、温度センサ571(例えば抵抗ベースの温度センサ、温度ダイオードモジュール)が、温度データまたはデバイス502の制御処理のための信号を生成するために、フォトニクス層507に統合される(例えば作製される)。いくつかの例示的な実施形態では、デバイス502は温度センサを含まず、非接触の外部温度プローブ575(例えば温度レーザプローブ)が、(例えばATEシステム501へのインターフェースを介して、またはCPU505のレジスタへのデータの入力を介して)較正中にデバイス502の温度を制御するための閉制御ループで使用される。他の例示的な実施形態では、温度センサは、フォトニクスモジュール507の外部に統合され、例えば、温度センサ573は、較正を受けているアクティブフォトニック構成部品の温度を示すために、電子機器モジュールに統合されるが依然として較正されるアクティブフォトニック構成部品の十分近くにある。
[0035] いくつかの例示的な実施形態では、較正のために生成される熱は、付帯的であるか、または較正(例えば製造または作製中のウエハレベルの試験)を受けているDUT構成部品の加熱以外の目的でモジュールによって生成されるという点で再利用される副生熱である。例えば、フォトニクスモジュール507の1つまたは複数の構成部品は、DC電流を使用して光を処理するために電源オンにされ得、当該DC電流は、フォトニクスモジュール507の近くの領域に放射される熱を受動的に生成する。追加的に、DC電流は、そのような構成部品を電源オンまたは起動するためだけでなく、例えば、(例えばSOAの)設定利得、(例えばフィルタ、ダイオードの)バイアスなどの構成部品のある特定の動作特性を設定するためにも使用され得る。例えば、レーザ550、レーザ528、電界吸収変調器(EAM)552、モニタフォトダイオード564、MZIフィルタ533、およびMZIフィルタ555は、電源オンまたは動作パラメータを設定するためにDC電流を受け取るいくつかの構成部品である。
[0036] 再利用される熱の追加の供給源は、構成部品の光学的な動作特性を制御するための様々な光学部品に特化した、統合されたヒータからもたらされることができる。特に、例えば、EAM530は、ヒータを使用して光信号に変調を与えることができる変調器である。EAM530のヒータは熱を発するように設計されているが、特別にEAM530を制御するための熱を発するように設計されており、EAM530ではない目的のため(例えばフォトニクスモジュール507全体を加熱するため)のヒータとなるようには設計されていない。追加の例として、レーザ528は、レーザ528の加熱を制御することに特化したいくつかのヒータを有し得、その結果、その経路(例えば経路518)のための正確なレーザ光を生成する。専用ヒータはそれらの様々な対応する構成部品を特定の方法で加熱することが必要とされるが、いくつかの例示的な実施形態では、ヒータは、迅速かつ破壊的でない様式で、較正を受けている他の構成部品を加熱するようにDC電流(例えば構成部品を起動しバイアスするために使用される)と共に再利用される熱を発するために最大電力に保持される。
[0037] いくつかの例示的な実施形態によれば、光電気DUT502の光路のうちの1つにおける構成部品が試験(例えば分析および較正)されているとき、他のアクティブでない光路の熱生成構成部品は、被試験経路に熱を供給するために起動される。例えば、第1の送信機レーン516の構成部品が較正(例えば、レーザ550の調整、MZIフィルタ555などのフィルタの様々なバイアスの調整、RFバイアスの設定等)を受けており、所与の温度の安定した較正温度を必要とする場合、他のレーン(例えば第4の送信機レーン518)の熱生成構成部品が起動または停止されて、被試験経路の温度を上昇させたり低下させたりすることができ、その結果、較正温度に安定して留まる。
[0038] さらに、いくつかの例示的な実施形態では、統合されたフォトニクス送信機構造514内の構成部品の一部または全部が較正を受けている間、統合されたフォトニクス受信機構造532の構成部品は、熱を供給して、統合されたフォトニクス送信機構造514を安定した温度に保持するために再利用され得る。例えば、統合されたフォトニクス送信機構造514の4つのすべてのレーンが較正されている場合(例えばそれらレーンの各々が4チャネルのWDM光の1つのチャネルに対処する)、統合されたフォトニクス送信機構造514内の熱生成構成部品(例えばヒータおよび電流供給されるポイント)は、利用/試験されており、ヒータとして再利用されることはできない。この目的のために、統合されたフォトニクス受信機構造532の1つまたは複数の構成部品が、統合されたフォトニクス送信機構造514の較正のための受動的な較正ヒータとして作用するように実装される。例えば、統合されたフォトニクス送信機構造514内の構成部品がATEシステム501を使用して試験および較正を受けている間、統合されたフォトニクス受信機構造532内のすべてのDC電流入力点が、DC電流のそれらそれぞれの最高レベルで電流を受け取り得る。例えば、各々の半導体光増幅器535の利得は最大利得に増加され得、各々の光検出器(フォトダイオード)536のDCバイアス利得は、それらそれぞれの最大動作レベルに増加され得る。
[0039] 図6は、本開示の一実施形態による1つまたは複数の光デバイスを含む光電気デバイス600(例えば光トランシーバ)の例示である。この実施形態では、光電気デバイス600は、プリント回路基板(PCB)基板605、有機基板660、ASIC615、およびフォトニック集積回路(PIC)620を含むと示されている。この実施形態では、PIC620は、上述の1つまたは複数の光学構造(例えば図2のPIC210、図5のフォトニクスモジュール507)を含み得る。
[0040] いくつかの例示的な実施形態では、PIC620は、シリコン・オン・インシュレータ(SOI)またはシリコン系(例えば窒化ケイ素(SiN:silicon nitride))デバイスを含むか、またはシリコン材料および非シリコン材料の両方から形成されたデバイスを備え得る。当該非シリコン材料(代替的に「異種材料」と呼ぶ)は、III−V族材料、磁気光学材料、または結晶基板材料のうちの1つを備え得る。III−V族半導体は、周期表のIII族とV族に見られる元素を有する(例えば、リン化インジウムガリウムヒ素(InGaAsP:Indium Gallium Arsenide Phosphide)、窒化ガリウムインジウムヒ素(GainAsN:Gallium Indium Arsenide Nitride))。III−V族系材料のキャリア分散効果は、III−V族半導体における電子速度がシリコンにおける電子速度よりもさらに速いので、シリコン系材料よりも著しく高くなり得る。さらに、III−V族材料は、電気的ポンピングからの光の効率的な生成を可能にする直接バンドギャップを有する。こうして、III−V族半導体材料は、光の生成および光の屈折率の変調の両方のために、シリコンにわたって効率が増加したフォトニック動作を可能にする。よって、III−V族半導体材料は、電気から光を生成し光を電気に変換して戻すのに効率が増加したフォトニック動作を可能にする。
[0041] よってシリコンの低い光損失および高品質の酸化物が、以下で説明される異種光デバイス内のIII−V族半導体の電気光学効率と組み合わされ、本開示の実施形態では、当該異種デバイスは、デバイスの異種導波路とシリコンのみの導波路との間の低損失の異種光導波路移行を利用する。
[0042] 磁気光学材料は、異種PICが、磁気光学(MO)効果に基づいて動作することを可能にする。このようなデバイスは、電気信号に関連付けられた磁場が、光ビームを変調して高帯域幅変調を提供し、光アイソレータをイネーブルにする光モードの電場を回転させるファラデー効果を利用し得る。当該磁気光学材料は、例えば、鉄、コバルト、またはイットリウム・鉄・ガーネット(YIG:yttrium iron garnet)などの材料を備え得る。さらに、いくつかの例示的な実施形態では、水晶基板材料は、異種PICに、高電気機械結合、線形電気光学係数、低い送信損失、および安定した物理的および化学的特性を提供する。当該水晶基板材料は、例えば、ニオブ酸リチウム(LiNbO3:lithium niobate)またはタンタル酸リチウム(LiTaO3:lithium tantalate)を備え得る。
[0043] 例示された例では、PIC620は、プリズム625を介してファイバ630と光を交換し、当該プリズム625は、いくつかの例示的な実施形態によれば、光モードを単一モードの光ファイバに結合するために使用される位置ずれ許容デバイスである。他の例示的な実施形態では、複数のファイバが、様々な光変調フォーマット(例えば4つのレーンを有する並列単一モード(PSM4))のためにプリズム625から受光するように実装される。
[0044] いくつかの例示的な実施形態では、PIC620の光デバイスは、ASIC615に含まれる制御回路によって少なくとも部分的に制御される。ASIC615およびPIC620の両方は、有機基板660を介してICを通信的に結合するために使用される銅柱614上に配設されることが示されている。PCB605は、ボールグリッドアレイ(BGA)インターコネクト616を介して有機基板660に結合され、有機基板660(ひいてはASIC615およびPIC620)をシステム600の他の構成部品(図示せず)、例えばインターコネクトモジュール、電源等にインターコネクトするために使用され得る。
[0045] 図7は、いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正およびより高圧の気流の閉ループ制御を実施するための方法700のフロー図を示す。図7の例では、光電気デバイスに統合された異なる構成部品(例えばレーザ、光検出器、増幅器)は、最低温度と最高温度の2つの温度で較正される。最低温度および最高温度は、例えば、光電気デバイスが動作中耐えることになる最低および最高の動作温度とすることができる(例えば摂氏30度から摂氏70度)。いくつかの例示的な実施形態では、構成部品のうちの1つまたは複数が、所与の単一の温度のみで較正される必要があることが理解される。それらの例示的な実施形態では、図7の方法700の様々な動作(例えば動作725〜740)を省略することができ、第1の較正温度(例えば摂氏40度)についてのみ較正が行われる。
[0046] 動作705において、光熱フィードバックエンジン509は、第1の被試験デバイスの温度を初期化する(例えば30°Cまたは室温より5°上の温度)。いくつかの例示的な実施形態では、被試験デバイスを第1の温度に設定するために、較正されるべき経路(例えば経路516)上にある光学部品は電源オンにされ、またはそうでない場合アクティブとなり、これはデバイスに熱を生成させる。いくつかの例示的な実施形態では、較正されるべき構成部品が電源オンにされた後、デバイスの温度は安定化する(例えば摂氏45度に安定化する)。デバイスがその温度に安定化した後、第1の温度(30°C)まで熱を減少させるために、方向付けられた気流が当てられる。このようにして、デバイスの温度は、気流を増加させることによって減少することができるだけでなく、さらにデバイスの温度は、気流を減少させることによって増加することができる(これは、デバイスが、電源オンにされた後、ただし空気が当てられる前に、その安定化温度、例えば摂氏40度に安定することを可能にする)。
[0047] 被試験デバイスが動作705で気流を使用して第1の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は次いで、動作710で較正される。例えば、動作710において、第1の送信機レーン516におけるレーザ550は、動作705で設定された第1の温度にある間に較正される。いくつかの例示的な実施形態では、光電気被試験デバイスの1つまたは複数の追加の構成部品もまた、次いで、動作710にループして戻ることによって同じ温度で較正される。例えば、エンジン509は、最初に第1の温度でレーザ550を較正し、次いで第1の温度でEAM552を較正し得、その後に第1の温度で較正されるべきすべての部分が較正されるまで第1の温度でMZI555を較正することが続き、それによって動作710における較正ループを終了する。
[0048] 1つまたは複数の構成部品の較正が動作710で行われる間、光熱フィードバックエンジン509は、第1の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作715および720を同時に実施する。例えば、動作715において、温度センサ(例えば図4のPIC温度センサ408)は、温度データまたは信号(例えばアナログ信号)を生成し、これは次いでプロセッサ(例えば図4のプロセッサ415)に送信される。動作720において、エンジン509は、PIC温度センサによって提供された温度フィードバックに基づいて気流を調節する。例えば、光電気DUTの温度が増加することに応答して、エンジン509は、PICを冷却して第1の温度に戻すために、PICのほうにより強い気流を向けるように作動するリニアアクチュエータに接続された制御信号電圧を(例えばデジタル・アナログコンバータ(DAC)を介して)生成する。
[0049] 動作725において、光熱フィードバックエンジン509は、温度下で第2のデバイスを初期化する。例えば、較正を受けていない光電気デバイスの1つまたは複数のフォトニクス構成部品が、ある量の熱を増加させ、デバイスの温度を第2の温度に上昇させるように起動される。
[0050] 光電気デバイスが動作725で第2の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は、第2の温度で較正される。例えば、動作710で第1の温度で較正された同じ構成部品の各々が、動作730で第2の温度で再び較正され、動作730は、追加の各光学部品を較正するためにループする。
[0051] 1つまたは複数の構成部品の較正が動作730で行われる間、光熱フィードバックエンジン509は、第2の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作735および740を同時に実施する。例えば、動作735において、温度センサ(例えば図4のPIC温度センサ408)は、温度データまたは信号(例えばアナログ信号)を生成し、これは次いでプロセッサ(例えば図4のプロセッサ415)に送信される。動作740において、エンジン509は、PIC温度センサによって提供された温度フィードバックに基づいて気流を調節する。例えば、光電気DUTの温度が温度において増加することに応答して、エンジン509は、より多くの空気が流れることを可能にするように作動するリニアアクチュエータに接続された制御信号電圧を(例えばデジタル・アナログコンバータ(DAC)を介して)生成し、空気は次いで、第2の温度に戻すためにチューブを介してPICのほうに向けられる。
[0052] 動作745において、エンジン509は、デバイスに対する較正データを記憶して、較正プロセスを完了する。例えば、動作745において、エンジン509は、後の時点(例えば、製造時間後に、現場で、別の製品に統合される)でデバイスを動作させるために使用されることができる利得、変調器、バイアス値を記憶する。
[0053] 図8は、いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正および光電気デバイス内の副生熱生成構成部品の閉ループ制御を実施するための方法800のフロー図を示す。図8の例では、光電気デバイスに統合された異なる構成部品(例えばレーザ、光検出器、増幅器)は、最低温度と最高温度の2つの温度で較正される。最低温度および最高温度は、例えば、光電気デバイスが動作中耐えることになる最低および最高の動作温度とすることができる(例えば摂氏30度から摂氏120度)。いくつかの例示的な実施形態では、構成部品のうちの1つまたは複数は、所与の単一の温度のみで較正される必要があることが理解される。それらの例示的な実施形態では、図8の方法800の様々な動作(例えば動作825〜840)を省略することができ、第1の較正温度(例えば摂氏40度)についてのみ較正が行われる。
[0054] 動作805において、光熱フィードバックエンジン509は、第1の被試験デバイスの温度を初期化する(例えば摂氏120度)。いくつかの例示的な実施形態では、被試験デバイスを第1の温度に設定するために、デバイスのPIC上の1つまたは複数の光学部品が、PICの温度を第1の温度に上昇させるように起動される。例えば、方法800において複数レーンのトランシーバのうちの1つのレーンのみが較正されている場合、較正されていない他のレーンの構成部品は、デバイスの温度を第1の温度に上昇させるために電源オンにされる(例えば受信機DC電流、1つまたは複数の構成部品ヒータを電源オンにする)か、または追加的に、デバイスの光受信機部分における電流駆動の構成部品(例えばSOA535)が、デバイスの温度を第1の温度に増加させるために、すべて起動され、最大利得に設定される。
[0055] 動作805で光電気被試験デバイスが第1の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は次いで、動作810で較正される。例えば、動作810において、第1の送信機レーン516におけるレーザ550は、動作805で設定された第1の温度にある間に較正される。いくつかの例示的な実施形態では、光電気被試験デバイスの1つまたは複数の追加の構成部品もまた、次いで、動作810にループして戻ることによって同じ温度で較正される。例えば、エンジン509は、最初に第1の温度でレーザ550を較正し、次いで第1の温度でEAM552を較正し得、その後に第1の温度で較正されるべきすべての部分が較正されるまで第1の温度でMZI555を較正することが続き、それによって動作810における較正ループを終了する。
[0056] 1つまたは複数の構成部品の較正が動作810で行われる間、光熱フィードバックエンジン509は、デバイス内の較正されていない他の光学または電気部品を起動したり停止したりするなど、気流ベースではないメカニズムを使用して、第1の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作815および820を同時に実施する。例えば、動作815において、温度センサ(例えば図4のPIC温度センサ408)は、温度データまたは信号(例えばアナログ信号)を生成し、これは次いでプロセッサ(例えば図4のプロセッサ415)に送信される。動作820において、温度が増加することに応答して、エンジン509は、デバイスを第1の温度に設定するために使用された起動された構成部品のうちの1つまたは複数を停止する。例えば、SOA535は停止され、それによってSOA535からの熱を減少させ、デバイスの温度を第1の温度に低減して戻す。反対に、デバイスの温度が低下した場合、動作820において、エンジン509は、較正を受けていないデバイス上のより多くの構成部品をイネーブルにし、および/または任意選択的に、起動された構成部品に供給される電流を増加させる。例えば、温度が低下することに応答して、エンジン509は、較正を受けている構成部品の温度を上昇させて第1の温度に戻すために、追加的に検出器536(図5)を起動し、受信機コントローラ510を起動し得る。
[0057] 動作825において、光熱フィードバックエンジン509は、温度下で第2のデバイスを初期化する。例えば、較正を受けていない光電気デバイスの1つまたは複数のフォトニクス構成部品が、ある量の熱を増加させ、デバイスの温度を第2の温度に上昇させるように起動される。
[0058] 光電気デバイスが動作825で第2の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は、第2の温度で較正される。例えば、動作810で第1の温度で較正された同じ構成部品の各々が、動作830で第2の温度で再び較正され、動作830は、追加の各光学部品を較正するためにループする。
[0059] 1つまたは複数の構成部品の較正が動作830で行われる間、光熱フィードバックエンジン509は、第2の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作835および840を同時に実施する。例えば、動作835において、温度センサ(例えば図4のPIC温度センサ408)が、デバイスの温度が増加していることを示す温度データまたは信号(例えばアナログ信号)を生成する場合、動作840において、エンジン509は、起動された構成部品に供給される電流を調節し(例えば、SOA535がすでに起動されており、最大利得に設定されている場合、利得を低減する)、および/または較正を受けていない起動された構成部品の量を、それらをディセーブルにする(例えばSOA535を変える)ことによって低減して、熱流を低減し、デバイス温度を第2の較正温度に戻す。反対に、温度が第2の温度よりも低く減少した場合、デバイスの較正されていない追加の構成部品が、DUT温度を増加させて第2の温度に戻すように起動される。
[0060] 動作845において、エンジン509は、デバイスに対する較正データを記憶して、較正プロセスを完了する。例えば、動作845において、エンジン509は、後の時点で(例えば、製造時間後に、現場で、別の製品に統合されるときに)デバイスを動作させるために使用されることができる利得およびバイアス値を記憶する。
[0061] 図9は、いくつかの例示的な実施形態による、光電気ATEシステムを使用した1つまたは複数の較正温度での光電気デバイスの較正および受動副生熱と気流を使用した閉ループ制御を実施するための方法900のフロー図を示す。図9の例では、較正されていないDUT光学部品は、閉ループの熱および冷却制御を提供し、圧縮気流も同時に閉ループの加熱および冷却制御を提供する。さらに図9の例では、構成部品は2つの温度で較正されるが、いくつかの例示的な実施形態では、構成部品のうちの1つまたは複数は単一の温度で較正され、方法900の1つまたは複数の動作(例えば動作925〜940)が省略されることが理解される。
[0062] 動作905において、光熱フィードバックエンジン509は、第1の被試験デバイスの温度を初期化する(例えば摂氏30度)。例えば、第1の温度は、較正されるべき構成部品を電源オンにし(例えばレーン516における構成部品を起動し)、任意選択的に、較正を受けていない構成部品(例えば送信機の他のレーンにある近くの構成部品またはSOA534などの受信機内の構成部品)を電源オンにすることによって設定されることができる。
[0063] 動作905で光電気被試験デバイスが第1の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は次いで、動作910で較正される。例えば、動作910において、第1の送信機レーン516におけるレーザ550は、動作905で設定された第1の温度にある間に較正される。いくつかの例示的な実施形態では、光電気被試験デバイスの1つまたは複数の追加の構成部品もまた、次いで、動作910にループして戻ることによって同じ温度で較正される。例えば、エンジン509は、最初に第1の温度でレーザ550を較正し、次いで第1の温度でEAM552を較正し得、その後に第1の温度で較正されるべきすべての部分が較正されるまで第1の温度でMZI555を較正することが続き、それによって動作910における較正ループを終了する。
[0064] 1つまたは複数の構成部品の較正が動作910で行われる間、光熱フィードバックエンジン509は、上述のように、気流制御と、較正されていない構成部品を起動し、それらの構成部品に供給される電流を変化させる(例えばSOA利得を増加/減少させる)ことの両方を使用して第1の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作915および920を同時に実施する。例えば、光電気デバイスが第1の温度よりも高く増加することに応答して、エンジン509は、気流弁が開くように作動させる制御信号を生成し、それによって、デバイスにわたる気流を増加させて、熱を逃し、温度を減少させて第1の温度に戻す。いくつかの例示的な実施形態では、より迅速に温度を第1の較正温度に増加または減少させて戻すために、較正されていない構成部品の量およびそれらに供給される電力も、被試験デバイスを第1の温度に戻すように修正される。
[0065] 動作925において、光熱フィードバックエンジン509は、温度下で第2のデバイスを初期化する。例えば、動作905の第1の温度が、第4のレーン518内の電流駆動の構成部品を起動することによって少なくとも部分的に設定された場合、動作925において、エンジン905は、光電気デバイスが第2の温度に落ち着くように熱を加えるために、追加の電流駆動の構成部品を起動する。
[0066] 光電気デバイスが動作925で第2の温度に設定された後、被試験デバイスの1つまたは複数の構成部品は、第2の温度で較正される。例えば、動作910で第1の温度で較正された同じ構成部品の各々が、動作930で第2の温度で再び較正され、動作930は、追加の各光学部品を較正するためにループする。
[0067] 1つまたは複数の構成部品の較正が動作930で行われる間、光熱フィードバックエンジン509は、動作920で行われた気流と電流駆動の構成部品の起動、調節、または停止とを使用して第2の温度での光電気DUTの閉ループ(フィードバックベースの)制御を行う動作935および940を同時に実施する。
[0068] 動作945において、エンジン509は、デバイスに対する較正データを記憶して、較正プロセスを完了する。例えば、動作945において、エンジン509は、後の時点(例えば、製造時間後に、現場で、別の製品に統合される)でデバイスを動作させるために使用されることができる利得およびバイアス値を記憶する。
[0069]
[0070] 以下は例示的な実施形態である。
[0071] [実施例1] フォトニクス集積回路(PIC)内の光学部品を較正するための方法であって、光電気回路構造の前記フォトニクス集積回路(PIC)内の1つまたは複数のアクティブ光学部品を起動することと、前記光電気回路構造は、前記PICと、前記PICの外部にある1つまたは複数の電気回路とを備え、前記1つまたは複数の電気回路は、前記PICのほうに高圧気流を向けるように構成された電気制御の加圧空気源を調節する温度制御信号を生成するように構成されたプロセッサ回路を含み、前記光電気回路構造に統合された統合温度センサを使用して初期温度値を生成することと、前記統合温度センサは、前記統合温度センサが前記PIC内の前記アクティブ光学部品によって生成された熱を受け取るように、前記アクティブ光学部品の近傍に配置され、前記初期温度値は、前記PICが前記PIC内の前記1つまたは複数のアクティブ光学部品の起動後に初期温度にあることを示し、前記初期温度は、前記PICを較正するために利用される予め構成された較正温度に対応し、前記PICが前記初期温度にあることを前記統合温度センサによって生成された前記初期温度値が示す間、前記PICの前記1つまたは複数のアクティブ光学部品への較正調節を受信することと、前記プロセッサ回路によって、前記統合温度センサによって生成された変化温度値を検出することと、前記変化温度値に応答して、前記プロセッサ回路を使用して、前記1つまたは複数のアクティブ光学部品が較正される間に、前記PICを通る前記高圧気流により前記PICの温度が前記初期温度に近づくように調節されるように、前記電気制御の加圧空気源に前記PICのほうに向けられた前記高圧気流の強さを変化させるように前記温度制御信号を継続して調節することとを備える、方法。
[0072] [実施例2] 前記高圧気流は、前記PICの近くにある中空チューブを使用して前記PICに向けられる、実施例1に記載の方法。
[0073] [実施例3] 前記中空チューブは、前記PICのほうに前記高圧気流を向けている間、前記PICに接触しない、実施例1または2に記載の方法。
[0074] [実施例4] 前記電気制御の加圧空気源は、電気制御可能な弁を有する空気圧縮器である、実施例1〜3のいずれかに記載の方法。
[0075] [実施例5] 前記プロセッサ回路は、前記統合温度センサから温度値を受信するために前記PICに電気接続される、実施例1〜4のいずれかに記載の方法。
[0076] [実施例6] 前記PICの外部にある前記1つまたは複数の電気回路は、1つまたは複数の電気接触を使用して前記PICに接続される、請求項1〜5のいずれかに記載の方法。
[0077] [実施例7] 前記1つまたは複数の電気接触は、前記PIC上の金属接触を備える、実施例1〜6のいずれかに記載の方法。
[0078] [実施例8] 前記PICは、前記1つまたは複数のアクティブ光学部品から独立して動作する追加のアクティブ光学部品を備える、実施例1〜7のいずれかに記載の方法。
[0079] [実施例9] 前記PICは、光送信機と光受信機とを備える光トランシーバであり、前記1つまたは複数のアクティブ光学部品は、前記光送信機の光送信機構成部品であり、前記追加のアクティブ光学部品は、前記光受信機の光受信機構成部品である、実施例1〜8のいずれかに記載の方法。
[0080] [実施例10] 前記PICは複数レーンの光送信機であり、前記1つまたは複数のアクティブ光学部品は、前記複数レーンの光送信機のうちの1つのレーンの構成部品であり、前記追加のアクティブ光学部品は、前記複数レーンの光送信機のうちの他のレーン内の他の光学部品である、実施例1〜9のいずれかに記載の方法。
[0081] [実施例11] 前記PICは複数レーンの光受信機であり、前記1つまたは複数のアクティブ光学部品は、前記複数レーンの光受信機のうちの1つのレーンの構成部品であり、前記追加のアクティブ光学部品は、前記複数レーンの光受信機のうちの他のレーン内の他の光学部品である、実施例1〜10のいずれかに記載の方法。
[0082] [実施例12] 前記1つまたは複数のアクティブ光学部品は、予め構成された較正温度に対応する前記初期温度での較正のための構成部品であり、前記追加のアクティブ光学部品は、前記予め構成された較正温度に対応する前記初期温度での較正調節を受信していない前記PICの電流受信構成部品である、実施例1〜11のいずれかに記載の方法。
[0083] [実施例13] 前記PICの熱を増加させるように前記追加のアクティブ光学部品を起動することと、前記統合温度センサを使用して上昇温度値を生成することと、前記上昇温度値は、前記予め構成された較正温度よりも高い予め構成された上昇較正温度に対応し、前記PICが前記予め構成された上昇較正温度にある間、較正調節を受信することと、前記プロセッサ回路によって、前記統合温度センサによって生成された追加の変化温度値を検出することと、前記追加の変化温度値に応答して、前記PICの前記温度が前記予め構成された上昇較正温度に近くなるように調節されるように、前記電気制御の加圧空気源に前記PICのほうに向けられた前記高圧気流の前記強さを変化させるように前記温度制御信号を継続して調節することとをさらに備える、実施例1〜12のいずれかに記載の方法。
[0084] [実施例14] 前記1つまたは複数のアクティブ光学部品は、前記1つまたは複数のアクティブ光学部品に電気電流を供給することによって少なくとも部分的に起動される、実施例1〜13のいずれかに記載の方法。
[0085] [実施例15] 前記1つまたは複数のアクティブ光学部品は、光源、光増幅器、電界吸収変調器(EAM)、位相ベースカプラ、光検出器のうちの1つまたは複数を含む、実施例1〜14のいずれかに記載の方法。
[0086] [実施例16] 機械の1つまたは複数のプロセッサと、命令を記憶したメモリとを備え、前記命令は、前記1つまたは複数のプロセッサによって実行されると、前記機械に実施例1〜15の方法のいずれか1つを実施する動作を行わせる、システム。
[0087] [実施例17] 機械によって実行されると、前記機械に方法1〜15のうちの1つを実施する動作を行わせる命令を具現化する機械可読記憶デバイス。
[0088] 前述の詳細な説明では、本発明の主題の方法および装置が、その特定の例示的な実施形態を参照して説明された。しかしながら、様々な修正および変更が、本発明の主題のより広い趣旨および範囲から逸脱することなく行われ得ることが明らかであろう。したがって、本明細書および図面は、限定的ではなくむしろ例示的なものとしてみなされるべきである。

Claims (20)

  1. フォトニック集積回路(PIC)内の光学部品を較正するための方法であって、
    光電気回路構造の前記PIC内の1つまたは複数のアクティブ光学部品を起動することと、前記光電気回路構造は、前記PICと、前記PICの外部にある1つまたは複数の電気回路とを備え、前記1つまたは複数の電気回路は、前記PICのほうに高圧気流を向けるように構成された電気制御の加圧空気源を調節する温度制御信号を生成するように構成されたプロセッサ回路を含み、
    前記光電気回路構造に統合された統合温度センサを使用して初期温度値を生成することと、前記統合温度センサは、前記統合温度センサが前記PIC内の前記アクティブ光学部品によって生成された熱を受け取るように、前記アクティブ光学部品の近傍に配置され、前記初期温度値は、前記PICが前記PIC内の前記1つまたは複数のアクティブ光学部品の起動後に初期温度にあることを示し、前記初期温度は、前記PICを較正するために利用される予め構成された較正温度に対応し、
    前記PICが前記初期温度にあることを前記統合温度センサによって生成された前記初期温度値が示す間、前記PICの前記1つまたは複数のアクティブ光学部品への較正調節を受信することと、
    前記プロセッサ回路によって、前記統合温度センサによって生成された変化温度値を検出することと、
    前記変化温度値に応答して、前記プロセッサ回路を使用して、前記1つまたは複数のアクティブ光学部品が較正される間に、前記PICを通る前記高圧気流により前記PICの温度が前記初期温度に近づくように調節されるように、前記電気制御の加圧空気源に前記PICのほうに向けられた前記高圧気流の強さを変化させるように前記温度制御信号を調節することと
    を備える、方法。
  2. 前記温度制御信号は、前記電気制御の加圧空気源に前記高圧気流の強さを変化させるように継続して調節され、前記高圧気流は、前記PICの近くにある指向性流路を使用して前記PICに向けられる、請求項1に記載の方法。
  3. 前記指向性流路は、前記PICのほうに前記高圧気流を向けている間、前記PICに接触しない、請求項2に記載の方法。
  4. 前記電気制御の加圧空気源は、電気制御可能な弁を有する空気圧縮器である、請求項1に記載の方法。
  5. 前記プロセッサ回路は、前記統合温度センサから温度値を受信するために前記PICに電気接続される、請求項1に記載の方法。
  6. 前記PICの外部にある前記1つまたは複数の電気回路は、1つまたは複数の電気接触を使用して前記PICに接続される、請求項1に記載の方法。
  7. 前記1つまたは複数の電気接触は、前記PIC上の金属接触を備える、請求項6に記載の方法。
  8. 前記PICは、前記1つまたは複数のアクティブ光学部品から独立して動作する追加のアクティブ光学部品を備える、請求項1に記載の方法。
  9. 前記PICは、光送信機と光受信機とを備える光トランシーバであり、前記1つまたは複数のアクティブ光学部品は、前記光送信機の光送信機構成部品であり、前記追加のアクティブ光学部品は、前記光受信機の光受信機構成部品である、請求項8に記載の方法。
  10. 前記PICは複数レーンの光送信機であり、前記1つまたは複数のアクティブ光学部品は、前記複数レーンの光送信機のうちの1つのレーンの構成部品であり、前記追加のアクティブ光学部品は、前記複数レーンの光送信機のうちの他のレーン内の他の光学部品である、請求項8に記載の方法。
  11. 前記PICは複数レーンの光受信機であり、前記1つまたは複数のアクティブ光学部品は、前記複数レーンの光受信機のうちの1つのレーンの構成部品であり、前記追加のアクティブ光学部品は、前記複数レーンの光受信機のうちの他のレーン内の他の光学部品である、請求項8に記載の方法。
  12. 前記1つまたは複数のアクティブ光学部品は、予め構成された較正温度に対応する前記初期温度での較正のための構成部品であり、前記追加のアクティブ光学部品は、前記予め構成された較正温度に対応する前記初期温度での較正調節を受信していない前記PICの電流受信構成部品である、請求項8に記載の方法。
  13. 前記PICの熱を増加させるように前記追加のアクティブ光学部品を起動することと、
    前記統合温度センサを使用して上昇温度値を生成することと、前記上昇温度値は、前記予め構成された較正温度よりも高い予め構成された上昇較正温度に対応し、
    前記PICが前記予め構成された上昇較正温度にある間、較正調節を受信することと、
    前記プロセッサ回路によって、前記統合温度センサによって生成された追加の変化温度値を検出することと、
    前記追加の変化温度値に応答して、前記PICの前記温度が前記予め構成された上昇較正温度に近くなるように調節されるように、前記電気制御の加圧空気源に前記PICのほうに向けられた前記高圧気流の前記強さを変化させるように前記温度制御信号を継続して調節することと
    をさらに備える、請求項8に記載の方法。
  14. 前記1つまたは複数のアクティブ光学部品は、前記1つまたは複数のアクティブ光学部品に電気電流を供給することによって少なくとも部分的に起動される、請求項1に記載の方法。
  15. 前記1つまたは複数のアクティブ光学部品は、光源、光増幅器、電界吸収変調器(EAM)、位相ベースカプラ、光検出器のうちの1つまたは複数を含む、請求項14に記載の方法。
  16. フォトニック集積回路(PIC)を初期温度に設定する電流を受け取る1つまたは複数のアクティブ光学部品を備える前記PICと、前記1つまたは複数のアクティブ光学部品は、前記PICが前記初期温度に設定される間、較正調節を受信し、
    前記アクティブ光学部品の近傍に配置された統合温度センサと、それにより前記統合温度センサは、前記PIC内の前記アクティブ光学部品によって生成される熱を受け取り、前記統合温度センサは、前記1つまたは複数のアクティブ光学部品が電流を受け取ることに応答して初期温度値を生成するためのものであり、
    前記PICの外部にある1つまたは複数の電気回路と、前記1つまたは複数の電気回路は、前記PICのほうに高圧気流を向けるように構成された電気制御の加圧空気源を調節する温度制御信号を生成するように構成されたプロセッサ回路を含み、前記プロセッサ回路は、前記統合温度センサによって生成された変化温度値を検出することに応答して、前記1つまたは複数のアクティブ光学部品が較正調節を受信する間、前記PIC上の前記高圧気流により前記PICの温度が前記初期温度に近づくように調節されるように、前記電気制御の加圧空気源に前記PICのほうに向けられた前記高圧気流の強さを変化させるように前記温度制御信号を調節するように構成される、
    を備える、光電気構造。
  17. 前記温度制御信号は、前記電気制御の加圧空気源に前記高圧気流の強さを変化させるように継続して調節され、前記高圧気流は、前記PICの近くにある中空チューブを使用して前記PICに向けられる、請求項16に記載の光電気構造。
  18. 前記統合温度センサは、前記PICに統合されている、請求項16に記載の光電気構造。
  19. 前記プロセッサ回路は、前記統合温度センサから温度値を受信するために前記PICに電気接続される、請求項16に記載の光電気構造。
  20. 前記PICは、前記1つまたは複数のアクティブ光学部品から独立して動作する追加のアクティブ光学部品を備え、前記追加のアクティブ部品は、上昇温度での追加の較正調節のために前記PICの熱を増加させる追加の電流を受け取るように構成される、請求項16に記載の光電気構造。
JP2020112610A 2020-05-29 2020-06-30 ハイブリッド自動試験装置を使用する光電気デバイス Active JP7275079B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/887,668 US11243550B2 (en) 2020-05-29 2020-05-29 Optical-electrical device using hybrid automated testing equipment
US16/887,668 2020-05-29

Publications (2)

Publication Number Publication Date
JP2021189158A true JP2021189158A (ja) 2021-12-13
JP7275079B2 JP7275079B2 (ja) 2023-05-17

Family

ID=71138592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112610A Active JP7275079B2 (ja) 2020-05-29 2020-06-30 ハイブリッド自動試験装置を使用する光電気デバイス

Country Status (6)

Country Link
US (2) US11243550B2 (ja)
EP (1) EP3916404A1 (ja)
JP (1) JP7275079B2 (ja)
KR (1) KR102444723B1 (ja)
CN (1) CN113740977B (ja)
TW (1) TWI792009B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243550B2 (en) * 2020-05-29 2022-02-08 Juniper Networks, Inc. Optical-electrical device using hybrid automated testing equipment
US11747396B2 (en) * 2020-07-30 2023-09-05 Openlight Photonics, Inc. Optical interconnections for hybrid testing using automated testing equipment
CN114460697A (zh) * 2022-01-07 2022-05-10 锐捷网络股份有限公司 网络设备的温控调速方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222303A (ja) * 2003-01-15 2004-08-05 Agilent Technol Inc 適応型試験による光トランシーバの較正
JP2006049389A (ja) * 2004-07-30 2006-02-16 Espec Corp 冷却装置
JP2006138711A (ja) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd 半導体装置の高温検査方法
JP2006226876A (ja) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd 半導体レーザデバイスのバーンイン装置
JP2007043153A (ja) * 2005-08-01 2007-02-15 Marvell World Trade Ltd ダイを急熱するためのオンダイ加熱回路及び制御ループ
JP2007315906A (ja) * 2006-05-25 2007-12-06 Fujitsu Ltd 半導体装置の温度制御方法及び装置、及び半導体装置の試験方法及び試験装置
US20080267621A1 (en) * 2007-04-25 2008-10-30 Samir Sheth Optical Transceiver Calibration System and Method
JP2010159988A (ja) * 2009-01-06 2010-07-22 Shinano Electronics:Kk Ic低温テストの温度制御装置
JP2018040925A (ja) * 2016-09-07 2018-03-15 富士通株式会社 光ファイバ搭載光集積回路装置
JP2019028008A (ja) * 2017-08-03 2019-02-21 エスペック株式会社 試験パターン生成装置及び試験パターン生成方法
JP2019133417A (ja) * 2018-01-31 2019-08-08 住友電気工業株式会社 光トランシーバおよびその制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206423A (ja) 1992-01-27 1993-08-13 Sony Corp 固体撮像装置
GB2368140A (en) 2000-10-19 2002-04-24 Bookham Technology Plc Integrated optical device with heaters
US7480006B1 (en) 2004-04-13 2009-01-20 Pixim, Inc. Optical package for image sensor with integrated heater
CN101470298B (zh) * 2007-12-29 2012-01-11 富士迈半导体精密工业(上海)有限公司 背光模组
JP5743855B2 (ja) * 2011-11-07 2015-07-01 浜松ホトニクス株式会社 発熱点検出方法及び発熱点検出装置
WO2013159040A1 (en) * 2012-04-19 2013-10-24 Packet Photonics, Inc. Heat removal system for devices and subassemblies
US9553670B2 (en) * 2014-03-03 2017-01-24 Inphi Corporation Optical module
EP2950525B1 (en) 2014-05-28 2020-08-12 ams AG Semiconductor image sensor with integrated pixel heating and method of operating a semiconductor image sensor
US20170122804A1 (en) * 2015-10-28 2017-05-04 Ranovus Inc. Avalanche photodiode in a photonic integrated circuit with a waveguide optical sampling device
CN111164476B (zh) * 2017-09-24 2023-05-02 申泰公司 有通用定位的光收发器
US20190391348A1 (en) * 2018-02-19 2019-12-26 Infinera Corporation Heterogeneous common substrate multi-chip package including photonic integrated circuit and digital signal processor
US11051431B2 (en) * 2018-06-29 2021-06-29 Juniper Networks, Inc. Thermal management with variable conductance heat pipe
CN109946550B (zh) * 2019-05-22 2019-08-13 北京中创为南京量子通信技术有限公司 用于对激光源、探测器、光学器件测试的装置及其测试方法
CN110749958B (zh) * 2019-11-01 2020-06-19 西安光谷防务技术股份有限公司 光纤熔接机加热槽的温度控制方法
CN111181632A (zh) * 2020-01-02 2020-05-19 武汉思博源科技有限公司 一种sfp光模块的自动化测试***
US11243550B2 (en) * 2020-05-29 2022-02-08 Juniper Networks, Inc. Optical-electrical device using hybrid automated testing equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222303A (ja) * 2003-01-15 2004-08-05 Agilent Technol Inc 適応型試験による光トランシーバの較正
JP2006049389A (ja) * 2004-07-30 2006-02-16 Espec Corp 冷却装置
JP2006138711A (ja) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd 半導体装置の高温検査方法
JP2006226876A (ja) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd 半導体レーザデバイスのバーンイン装置
JP2007043153A (ja) * 2005-08-01 2007-02-15 Marvell World Trade Ltd ダイを急熱するためのオンダイ加熱回路及び制御ループ
JP2007315906A (ja) * 2006-05-25 2007-12-06 Fujitsu Ltd 半導体装置の温度制御方法及び装置、及び半導体装置の試験方法及び試験装置
US20080267621A1 (en) * 2007-04-25 2008-10-30 Samir Sheth Optical Transceiver Calibration System and Method
JP2010159988A (ja) * 2009-01-06 2010-07-22 Shinano Electronics:Kk Ic低温テストの温度制御装置
JP2018040925A (ja) * 2016-09-07 2018-03-15 富士通株式会社 光ファイバ搭載光集積回路装置
JP2019028008A (ja) * 2017-08-03 2019-02-21 エスペック株式会社 試験パターン生成装置及び試験パターン生成方法
JP2019133417A (ja) * 2018-01-31 2019-08-08 住友電気工業株式会社 光トランシーバおよびその制御方法

Also Published As

Publication number Publication date
TW202144807A (zh) 2021-12-01
KR20210147809A (ko) 2021-12-07
CN113740977B (zh) 2023-04-18
JP7275079B2 (ja) 2023-05-17
TWI792009B (zh) 2023-02-11
US20210373585A1 (en) 2021-12-02
US20220107659A1 (en) 2022-04-07
CN113740977A (zh) 2021-12-03
US11243550B2 (en) 2022-02-08
EP3916404A1 (en) 2021-12-01
KR102444723B1 (ko) 2022-09-16

Similar Documents

Publication Publication Date Title
US20220107659A1 (en) Optical-electrical device using hybrid automated testing equipment
US11012152B2 (en) Method and system for connectionless integrated optical receiver and transmitter test
US11411644B2 (en) Multi-lane optical-electrical device testing using automated testing equipment
KR102663758B1 (ko) 내장형 자체 테스트를 갖는 하이-레인 카운트 광학 트랜시버
TW202206838A (zh) 光電裝置之測試的混合自動化測試設備
KR102637475B1 (ko) 포토닉 회로 제조에서의 손실 모니터링
CN114070395A (zh) 用于使用自动化测试设备的混合测试的光互连
US20240063601A1 (en) Multiple optoelectronic devices with thermal compensation
US11693195B2 (en) Optical based placement of an optical component using a pick and place machine
CN113965256B (zh) 具有内置自测功能的高通道计数光收发器
TW202414038A (zh) 半導體光學放大器光組合器
KR20240032675A (ko) 반도체 광학 증폭기 광 조합기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150