JP2021141737A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2021141737A
JP2021141737A JP2020038405A JP2020038405A JP2021141737A JP 2021141737 A JP2021141737 A JP 2021141737A JP 2020038405 A JP2020038405 A JP 2020038405A JP 2020038405 A JP2020038405 A JP 2020038405A JP 2021141737 A JP2021141737 A JP 2021141737A
Authority
JP
Japan
Prior art keywords
command value
power supply
control unit
circuit
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020038405A
Other languages
English (en)
Inventor
靖理 大元
Yasumichi Omoto
靖理 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Mobility Corp
Original Assignee
Nidec Mobility Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Mobility Corp filed Critical Nidec Mobility Corp
Priority to JP2020038405A priority Critical patent/JP2021141737A/ja
Publication of JP2021141737A publication Critical patent/JP2021141737A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】パルス信号を生成する信号生成部がハードウェア回路から構成される場合でも、制御部においてパルス信号のデューティ等を把握できるようにする。【解決手段】DC−DCコンバータ101は、スイッチング素子Qを有するスイッチング回路1と、スイッチング素子Qをオン・オフさせるためのPWM信号を生成するPWM信号生成部4と、PWM信号の生成に必要な指令値を演算し、当該指令値をPWM信号生成部4へ出力する指令値演算部3とを備えている。PWM信号生成部4は、ハードウェア回路から構成される。指令値演算部3は、ソフトウェア処理によって指令値Xを演算する。マイクロコンピュータから構成される制御部2は、指令値演算部3とPWM信号生成部4とインプットキャプチャ回路5とを内蔵している。PWM信号生成部4から出力されるPWM信号は、スイッチング素子Qに与えられるとともに、インプットキャプチャ回路5にも入力される。【選択図】図1

Description

本発明は、電源と負荷との間に設けられるDC−DCコンバータなどのスイッチング電源装置に関し、特に、スイッチング素子を駆動するためのパルス信号を生成する信号生成部が、ハードウェア回路で構成されているスイッチング電源装置に関する。
DC−DCコンバータにおいては、スイッチング素子を駆動するパルス信号として、一般にPWM(Pulse Width Modulation)信号が用いられる。PWM信号のデューティを制御する方式には、大別して電圧モード制御と電流モード制御の2つがある。電圧モード制御は、DC−DCコンバータの出力電圧を検出し、検出した電圧値に基づいてPWM信号のデューティを制御する方式である。一方、電流モード制御は、出力電圧のほかにスイッチング回路に流れる電流を検出し、検出した電圧値と電流値とに基づいてPWM信号のデューティを制御する方式である。いずれの方式においても、電圧や電流の検出結果がPWM信号生成部へフィードバックされ、目標とするデューティを持ったPWM信号が生成される。特許文献1には、電流モード制御方式のDC−DCコンバータが記載されている。
電流モード制御には、さらに平均電流モード制御、固定オンオフ時間制御、ピーク電流モード制御などの方式がある。このうち、ピーク電流モード制御は、スイッチング回路に流れる電流のピークを検出し、このピーク値に基づいてPWM信号のデューティを制御するもので、検出される電流ピークは出力電圧に応じて変化する。このピーク電流モード制御方式は、負荷の変動に対する応答が高速で、広い負荷範囲で安定して動作する利点を有していることから、種々の用途に広く用いられている。特許文献2には、ピーク電流モード制御方式のDC−DCコンバータが記載されている。
ところで、このようなピーク電流モード制御で動作するDC−DCコンバータでは、制御部を構成するマイクロコンピュータが、ソフトウェアの実装部分(以下、「ソフトウェア実装部」という。)と、ハードウェアの実装部分(以下、「ハードウェア実装部」という。)とから構成される。ソフトウェア実装部は、出力電圧を基準電圧と比較して両者の偏差を演算し、この偏差に基づいてPWM信号のデューティ決定に必要な指令値を演算し出力するブロックであり、これらの処理はソフトウェアプログラムに従って実行される。一方、ハードウェア実装部は、スイッチング回路に流れる電流と上記指令値とが入力されるコンパレータや、このコンパレータの出力に基づいて所定のデューティを持ったPWM信号を生成し出力するフリップフロップ回路などを含み、ハードウェア回路としてマイクロコンピュータに組み込まれる。
このように、ピーク電流モード制御方式のDC−DCコンバータにおいて、ソフトウェア実装部から分離してハードウェア実装部が設けられるのは、次のような理由による。スイッチング素子の高速動作に対応するためには、スイッチング回路に流れる電流のピーク検出からPWM信号のデューティ決定までの一連の処理を高速に行う必要がある。しかるに、この処理をソフトウェアで行うと、ハードウェアで行う場合に比べてはるかに時間を要するため、PWM信号の生成をソフトウェア実装部で担うことは、現実的に困難だからである。なお、平均電流モード制御方式では、電流のピークを検出せず処理が簡単なので、ソフトウェア実装部だけで対応可能であり、ハードウェア実装部をあえて設ける必要はない。
ピーク電流モード制御方式のDC−DCコンバータでは、上述したように、PWM信号を生成するハードウェア実装部がソフトウェア実装部から分離しており、PWM信号のデューティを最終的に決定するのはハードウェア実装部であることから、ソフトウェア実装部では、ハードウェア実装部で生成されたPWM信号のデューティを把握することができない。したがって、マイクロコンピュータ自身は、デューティを用いた各種の演算を行うことができず、たとえば、入力電流とデューティに基づいて出力電流や入力電圧などを推定するための演算を行うことが不可能となる。そのため、出力電流や入力電圧などを直接検出するセンサが別途必要となる。
また、マイクロコンピュータがソフトウェア実装部でPWM信号のデューティを決定できる場合は、自身でデューティの上限値を定めることができるが、ピーク電流モード制御方式の場合はそうではないので、ハードウェア実装部から出力されるPWM信号のデューティが過大になる可能性がある。このため、デューティを制限する回路を別途設ける必要がある。
特開2004−282842号公報 特開2003−244953号公報
本発明は、パルス信号を生成する信号生成部がハードウェア回路から構成される場合でも、制御部においてパルス信号のデューティなどを把握することが可能なスイッチング電源装置を提供することを課題としている。
本発明に係るスイッチング電源装置は、電源と負荷との間に設けられ、入力電圧を所定の直流電圧に変換して負荷へ供給する装置であって、スイッチング素子のオン・オフ動作により電源の直流電圧をスイッチングするスイッチング回路と、スイッチング素子をオン・オフさせるためのパルス信号を生成する信号生成部と、パルス信号の生成に必要な指令値を演算し、当該指令値を信号生成部へ出力する指令値演算部と、信号生成部と指令値演算部のうち、少なくとも指令値演算部が内蔵されているとともに、インプットキャプチャ回路が内蔵されている制御部とを備えている。信号生成部は、ハードウェア回路から構成されており、指令値演算部は、ソフトウェア処理によって指令値を演算する。信号生成部から出力されるパルス信号は、スイッチング素子に与えられるとともに、インプットキャプチャ回路にも入力される。
このような構成によると、パルス信号を生成する信号生成部がハードウェア回路から構成される一方、指令値演算部ではソフトウェア処理によって指令値が演算される。また、信号生成部から出力されるパルス信号が、スイッチング素子に与えられるとともに、制御部に備わるインプットキャプチャ回路にも入力される。このため、信号生成部がハードウェア回路であっても、制御部は、内蔵されているインプットキャプチャ回路のカウンタ値を参照することによって、パルス信号のデューティなどの値を容易に取得することができる。その結果、制御部では、たとえばデューティの値を用いて所定の演算を行うことにより、出力電流や入力電圧などを推定することが可能となる。また、制御部で常にパルス信号のデューティを把握できるので、制御部の監視の下で、パルス信号生成部から出力されるパルス信号のデューティが過大になるのを抑制することができる。
本発明において、スイッチング回路は、スイッチング素子のオン・オフ動作に応じて電流が流れるインダクタをさらに有し、信号生成部は、指令値演算部から与えられる指令値に基づいて得られる閾値信号と、インダクタに流れるインダクタ電流とを比較して、インダクタ電流のピークを検出し、検出されたピーク値に応じたオン時間幅を持つパルス信号を生成してもよい。
本発明において、制御部は、インプットキャプチャ回路のカウント値を参照して、パルス信号のオン時間幅、パルス信号のオフ時間幅、およびパルス信号の周期の少なくとも1つを取得してもよい。
本発明において、パルス信号はPWM信号であり、制御部は、インプットキャプチャ回路のカウント値を参照して、PWM信号のデューティを取得してもよい。
本発明において、信号生成部を構成するハードウェア回路は、制御部に内蔵されていてもよいし、制御部の外部に設けられていてもよい。
本発明において、信号生成部から出力されるパルス信号をインプットキャプチャ回路へ入力することに代えて、当該パルス信号をローパスフィルタを介して制御部のA/D変換ポートに入力してもよい。
本発明において、制御部を、ハードウェア回路からなる第1制御部と、マイクロコンピュータからなる第2制御部とで構成し、第1制御部には信号生成部と指令値演算部を内蔵し、第2制御部にはインプットキャプチャ回路を内蔵し、第1制御部の信号生成部から出力されるパルス信号を、第2制御部のインプットキャプチャ回路に入力してもよい。
本発明によれば、パルス信号を生成する信号生成部がハードウェア回路から構成される場合でも、制御部においてパルス信号のデューティなどを把握することが可能となる。
本発明の第1実施形態のDC−DCコンバータの回路図である。 インプットキャプチャ回路の動作を説明するための模式図である。 図1の回路における各部の波形を示した図である。 本発明の第2実施形態のDC−DCコンバータの回路図である。 本発明の第3実施形態のDC−DCコンバータの回路図である。 本発明の第4実施形態のDC−DCコンバータの回路図である。 本発明の第5実施形態のDC−DCコンバータの回路図である。
以下、本発明の実施形態につき、図面を参照しながら説明する。各図を通して、同一の部分または対応する部分には同一符号を付してある。以下では、スイッチング電源装置として、DC−DCコンバータを例に挙げる。
<第1実施形態>
図1は、第1実施形態のDC−DCコンバータ101の回路図を示している。DC−DCコンバータ101は、直流電源10と負荷20との間に接続される。直流電源10は、たとえば車両に搭載されているバッテリであり、負荷20は、たとえば車両に装備されたオーディオ装置、空調装置、照明装置などの電装品である。DC−DCコンバータ101には、スイッチング回路1、制御部2、および電圧検出抵抗R1、R2が備わっている。
スイッチング回路1は、直流電源10の直流電圧(入力電圧Vin)をスイッチングして降圧する降圧チョッパ回路であり、スイッチング素子Q、ダイオードD、インダクタL、およびコンデンサCを備えた公知の回路から構成されている。スイッチング素子Qは、本例ではFETからなり、後述する制御部2から出力されるPWM信号によって、オン・オフのスイッチング動作を行う。ダイオードDは、スイッチング素子Qのオフ期間に導通して、当該素子Qのオン期間にインダクタLに蓄積された電気エネルギーを環流させる環流ダイオードである。コンデンサCは、ダイオードDおよびインダクタLを環流する電流を平滑するコンデンサである。
制御部2は、マイクロコンピュータから構成されており、スイッチング回路1の動作を制御する。制御部2には、指令値演算部3と、PWM信号生成部4と、インプットキャプチャ回路5とが内蔵されている。指令値演算部3は、ここではハードウェア回路で表されているが、実際にはソフトウェアで演算処理を行うブロック、すなわち前述したソフトウェア実装部である。以下、指令値演算部3については、便宜上ハードウェア回路として説明する。PWM信号生成部4は、前述したハードウェア実装部であり、純粋なハードウェア回路から構成されている。また、インプットキャプチャ回路5も同様に、ハードウェア回路から構成されている。なお、制御部2のソフトウェア実装部には、指令値演算部3だけでなく、その他の演算処理を行う部分も含まれる。PWM信号生成部4は、本発明における「信号生成部」の一例である。
指令値演算部3は、誤差増幅器31と、補償器32とを有している。誤差増幅器31の反転入力端子(−端子)は、制御部2のポートP1(A/D変換ポート)に接続されており、非反転入力端子(+端子)には、基準電圧Vrefが入力される。ポートP1は、電圧検出抵抗R1、R2の接続点に接続されており、この接続点の電圧VpがポートP1に入力される。電圧Vpは、出力電圧Voutに比例した値となる。誤差増幅器31は、電圧Vpを基準電圧Vrefと比較し、両者の差分(偏差)を増幅して出力する。補償器32は、誤差増幅器31の出力に対してPI(比例積分)演算などを行うことで、応答性や安定性を改善する。補償器32の出力Xは、インダクタLに流れる電流Iに対する指令値となる。
PWM信号生成部4は、コンパレータ41と、RSフリップフロップ42と、ドライバ43と、スロープ補償回路44とを有している。コンパレータ41は、アナログのコンパレータである。コンパレータ41の非反転入力端子(+端子)には、指令値演算部3からの指令値Xが入力される。また、コンパレータ41の一方の反転入力端子(上側の−端子)は、制御部2のポートP2(アナログコンパレータポート)に接続されており、他方の反転入力端子(下側の−端子)は、スロープ補償回路44に接続されている。ポートP2には、スイッチング回路1からインダクタ電流Iが入力される。スロープ補償回路44は、DC−DCコンバータ101の出力電圧Voutが乱れた場合に、PWM信号のデューティがばらばらの値になるのを抑制するために設けられている。スロープ補償回路44の出力は、のこぎり波の信号である。
RSフリップフロップ42は、コンパレータ41の出力に基づいて、所定のデューティを持ったPWM信号を生成する。RSフリップフロップ42のリセット端子Rには、コンパレータ41の出力が入力される。RSフリップフロップ42のセット端子Sには、図示しないクロック回路で生成されたクロック信号が入力される。RSフリップフロップ42の一方の出力端子は、ドライバ43の入力端子に接続されている。ドライバ43の出力端子は、制御部2のポートP3(PWM出力ポート)に接続されている。RSフリップフロップ42で生成されたPWM信号は、ドライバ43とポートP3を介して、スイッチング回路1のスイッチング素子Qのゲートへ与えられるとともに、ポートP4(インプットキャプチャポート)を介して、制御部2に内蔵されているインプットキャプチャ回路5にも入力される。
インプットキャプチャ回路5は、制御部2を構成するマイクロコンピュータにもともと内蔵されている回路である。インプットキャプチャは、入力されたパルス信号の立上がり、立下がり、またはそれらの両方のタイミングで、その時のカウンタの値をレジスタ(Capture Compare Register:CCR)に取り込んで保持する機能であり、レジスタのカウンタ値を参照することによって、パルス信号の周期やデューティなどを取得することができる。
図2は、インプットキャプチャ回路5の動作を模式的に表した図である。図2(a)は、ポートP4からインプットキャプチャ回路5に入力されるPWM信号の波形である。PWM信号の周期Tは一定であるが、スイッチング素子Qのオン期間に対応するオン時間幅t1、t3、t5と、スイッチング素子Qのオフ期間に対応するオフ時間幅t2、t4、t6は、PWM信号のデューティに応じて変化する。
インプットキャプチャ回路5では、図2(b)に示すように、PWM信号が立ち上がった時点から、カウンタによるオン時間幅の計数が開始され、PWM信号が立ち下がった時点で計数が停止される。また、図2(c)に示すように、PWM信号が立ち下がった時点から、カウンタによるオフ時間幅の計数が開始され、PWM信号が立ち上がった時点で計数が停止される。したがって、制御部2では、カウンタの計数値から、オン時間幅とオフ時間幅を知ることができ、また、オン時間幅とオフ時間幅から周期Tを知ることができ、さらに、オン時間幅と周期Tからデューティを知ることができる。なお、制御部2は、ここで挙げたオン時間幅、オフ時間幅、および周期の全てを取得してもよいし、いずれか1つまたは2つを取得してもよい。また、これらに加えて、デューティを取得してもよい。
図3は、図1のDC−DCコンバータ101における各部の波形を示した図である。図3の(a)は、入力電圧Vinと出力電圧Voutを示している。入力電圧Vinは略一定であるが、出力電圧Voutにはスイッチング素子Qのオン・オフによる変動がみられる。図3の(b)における実線は、インダクタLに流れる電流、すなわちインダクタ電流Iの波形を示している。インダクタ電流Iは、スイッチング素子Qのオン・オフに応じた三角波となる。また、破線で示したのこぎり波は、指令値演算部3から出力される指令値Xと、スロープ補償回路44の出力とを加算または減算(本例では減算)した信号であり、これがピーク電流モード制御においてインダクタ電流Iのピークを検出するための閾値信号Yとなる。
詳しくは、ポートP2から制御部2へ入力するインダクタ電流Iは、コンパレータ41で上記の閾値信号Yと比較され、インダクタ電流Iが閾値信号Yと等しくなるまで、コンパレータ41はRSフリップフロップ42への信号出力を継続する。この間、PWM信号はH(High)レベルとなって、スイッチング素子Qがオン状態となる(図3(c)参照)。そして、インダクタ電流Iが閾値信号Yと等しくなると、コンパレータ41は信号出力を停止する。これによってPWM信号はL(Low)レベルとなり、スイッチング素子Qがオフする結果、インダクタ電流Iは減少して閾値信号Yを下回る。その後、閾値信号Yが立ち上がると、コンパレータ41は信号出力を開始し、スイッチング素子Qが再びオンとなって、以後同様の動作が繰り返される。
このようにして、インダクタ電流Iを閾値信号Yと比較することで、インダクタ電流Iのピーク(三角波の頂点)が検出される。そして、図3の(b)と(c)に一点鎖線で示したように、インダクタ電流Iのピーク値が大きいほど、PWM信号のオン時間幅は短くなる。逆に、インダクタ電流Iのピーク値が小さいほど、PWM信号のオン時間幅は長くなる。したがって、PWM信号のデューティも、インダクタ電流Iのピーク値が大きいほど小さくなり、ピーク値が小さいほど大きくなる。すなわち、ピーク電流モード制御では、PWM信号のデューティが、インダクタ電流Iのピーク値に応じて可変される。
図3の(d)は、インプットキャプチャ回路5におけるカウンタの計数値の時間的変化を示している。実線はオン時間幅の計数値を示し、破線はオフ時間幅の計数値を示している。本例では、各周期ごとにカウンタをリセットするようにしている。したがって、各周期ごとの累積計数値K1、K2が、それぞれ当該周期におけるオン時間幅とオフ時間幅になる。
上述した第1実施形態のDC−DCコンバータ101によれば、PWM信号生成部4がハードウェア回路から構成される一方、指令値演算部3ではソフトウェア処理によって指令値が演算される。また、PWM信号生成部4から出力されるPWM信号が、スイッチング素子Qに与えられるとともに、制御部2に備わるインプットキャプチャ回路5にも入力される。このため、PWM信号生成部4がハードウェア回路であっても、制御部2は、内蔵されているインプットキャプチャ回路5のカウンタ値を参照することによって、PWM信号のオン時間幅、オフ時間幅、周期、デューティなどの値を容易に取得することができる。その結果、たとえば、デューティの値を用いて所定の演算を行うことにより、出力電流や入力電圧などを推定することが可能となる。また、制御部2で常にPWM信号のデューティを把握できるので、制御部2の監視の下で、PWM信号生成部4から出力されるパルス信号のデューティが過大になるのを抑制することができる。
<第2実施形態>
図4は、第2実施形態のDC−DCコンバータ102の回路図を示している。第2実施形態が第1実施形態と異なる点は、制御部2のポートP3から出力されるPWM信号が、ローパスフィルタ6を介して制御部2のポートP5(A/D変換ポート)に入力されるように構成されていることである。なお、図4では、制御部2に内蔵されているインプットキャプチャ回路の図示を省略してある。その他の構成については、図1と同じであるので、図4の各部の詳細な説明は省略する。
ローパスフィルタ6は、コンデンサと抵抗を含むCRフィルタ回路などから構成される。ポートP3から出力されたPWM信号は、ローパスフィルタ6において平滑化され、アナログ信号となる。デューティの大きいPWM信号ほど、ローパスフィルタ6から出力されるアナログ信号のレベルが高くなる。ローパスフィルタ6の出力は、ポートP5から制御部2へ取り込まれて内部でA/D変換され、制御部2は、デジタル変換値に基づきソフトウェア演算を行って、PWM信号のデューティを取得する。
このような第2実施形態のDC−DCコンバータ102によっても、制御部2でPWM信号のデューティを把握できるため、第1実施形態と同様の効果が得られる。ただ、第2実施形態では、第1実施形態のDC−DCコンバータ101と比較して、ローパスフィルタ6による遅延が大きくなるが、遅延が問題とならない用途であれば、支障なく使用が可能である。
<第3実施形態>
図5は、第3実施形態のDC−DCコンバータ103の回路図を示している。第3実施形態が第1実施形態と異なる点は、制御部が、第1制御部7と第2制御部8に分かれていることである。第1制御部7はアナログICから構成され、図1と同じ指令値演算部3とPWM信号生成部4とを有している。ただし、この第1制御部7に含まれる回路は、すべてハードウェア回路である。第2制御部8はマイクロコンピュータから構成されており、図1と同じインプットキャプチャ回路5を有している。インプットキャプチャ回路5には、ポートP6(インプットキャプチャポート)を介して、第1制御部7からPWM信号が入力される。なお、第2制御部8にはソフトウェア実装部も内蔵されているが、図示は省略してある。その他の構成については、図1と同じであるので、図5の各部の詳細な説明は省略する。
このような第3実施形態のDC−DCコンバータ103によっても、第2制御部8でPWM信号のデューティを把握できるため、第1実施形態と同様の効果が得られる。また、第3実施形態によれば、第1実施形態のDC−DCコンバータ101のように、マイクロコンピュータ(制御部2)にPWM信号生成部4を構成するハードウェア回路を内蔵する必要がないので、第2制御部8として汎用のマイクロコンピュータを用いることができる利点がある。
<第4実施形態>
図6は、第4実施形態のDC−DCコンバータ104の回路図を示している。第4実施形態が第1実施形態と異なる点は、PWM信号生成部4を構成するハードウェア回路が、制御部2の外部に設けられていることである。ソフトウェア処理を行う指令値演算部3は、第1実施形態と同様に制御部2に内蔵されており、また、インプットキャプチャ回路5も制御部2に内蔵されている。その他の構成については、図1と同じであるので、図6の各部の詳細な説明は省略する。
このような第4実施形態のDC−DCコンバータ104によっても、制御部2でPWM信号のデューティを把握できるため、第1実施形態と同様の効果が得られる。また、第4実施形態によれば、第3実施形態と同様に、制御部2にPWM信号生成部4のハードウェア回路を内蔵する必要がないので、制御部2として汎用のマイクロコンピュータを用いることができる利点がある。
<第5実施形態>
図7は、第5実施形態のDC−DCコンバータ105の回路図を示している。第5実施形態が第1〜第4実施形態と異なる点は、スイッチング回路11が降圧チョッパ回路ではなく、昇圧チョッパ回路となっていることである。スイッチング回路11は、スイッチング素子Q’、インダクタL’、ダイオードD’、コンデンサC1、およびコンデンサC2を備えた公知の回路から構成されている。スイッチング素子Q’はFETからなる。スイッチング素子Q’と、インダクタL’と、ダイオードD’の接続関係は、図1のスイッチング素子Qと、インダクタLと、ダイオードDの接続関係と異なっている。その他の構成については、図1と同じであるので、図7の各部の詳細な説明は省略する。
このような第5実施形態のDC−DCコンバータ105によっても、制御部2でPWM信号のデューティを把握できるため、第1実施形態と同様の効果が得られる。
<その他の実施形態>
本発明では、上述した実施形態以外にも、以下のような種々の実施形態を採用することができる。
前記の各実施形態では、スイッチング素子Q、Q’を駆動する信号としてPWM信号を例に挙げたが、本発明は、スイッチング素子の駆動信号がPWM信号以外のパルス信号である場合にも適用することができる。
図7の第5実施形態においては、図1の第1実施形態における降圧チョッパ回路からなるスイッチング回路1を、昇圧チョッパ回路からなるスイッチング回路11に置き換えた例を挙げたが、図4〜図6の第2〜第4実施形態において、降圧チョッパ回路からなるスイッチング回路1を、図7の昇圧チョッパ回路からなるスイッチング回路11に置き換えてもよい。さらに、スイッチング回路1、11は、昇降圧チョッパ回路や、絶縁型の回路(たとえばフライバック回路)などから構成することもできる。
前記の各実施形態では、指令値演算部3から出力される指令値Xとスロープ補償回路44の出力との加減算を、ハードウェア実装部であるPWM信号生成部4で行う例を挙げたが、この演算をソフトウェア実装部である指令値演算部3で行ってもよい。この場合、指令値演算部3は、ソフトウェアによる演算を行い、その演算結果をD/A変換して出力する。コンパレータ41は、この出力とインダクタ電流Iとの比較を行う。
前記の各実施形態では、スイッチング素子Q、Q’としてFETを用いたが、FETの替わりに、トランジスタやIGBT(絶縁ゲート型バイポーラトランジスタ)などのスイッチング素子を用いてもよい。
前記の各実施形態では、電源として直流電源10を例に挙げたが、本発明はこれに限定されない。たとえば、交流電源を電源とし、この交流電源とDC−DCコンバータとの間に、交流電圧を全波整流する整流回路を設けてもよい。また、前記の各実施形態では、負荷20として車両の電装品を例に挙げたが、負荷の種類はこれに限定されない。
前記の各実施形態では、車両に搭載されるDC−DCコンバータを例に挙げたが、本発明は、車両以外の用途に用いられるDC−DCコンバータにも適用することができる。さらに、本発明は、DC−DCコンバータに限らず、AC−DCコンバータや、DC−ACコンバータなどのスイッチング電源装置にも適用が可能である。
1、11 スイッチング回路
2 制御部
3 指令値演算部
4 PWM信号生成部(信号生成部)
5 インプットキャプチャ回路
6 ローパスフィルタ
7 第1制御部
8 第2制御部
10 直流電源(電源)
20 負荷
101〜105 DC−DCコンバータ(スイッチング電源装置)
L、L’ インダクタ
Q、Q’ スイッチング素子
P5 A/D変換ポート

Claims (8)

  1. 電源と負荷との間に設けられ、入力電圧を所定の電圧に変換して負荷へ供給するスイッチング電源装置であって、
    スイッチング素子を有し、当該スイッチング素子のオン・オフ動作により前記電源の直流電圧をスイッチングするスイッチング回路と、
    前記スイッチング素子をオン・オフさせるためのパルス信号を生成する信号生成部と、
    前記パルス信号の生成に必要な指令値を演算し、当該指令値を前記信号生成部へ出力する指令値演算部と、
    前記信号生成部と前記指令値演算部のうち、少なくとも指令値演算部が内蔵されているとともに、インプットキャプチャ回路が内蔵されている制御部と、を備え、
    前記信号生成部は、ハードウェア回路から構成されており、
    前記指令値演算部は、ソフトウェア処理によって前記指令値を演算し、
    前記信号生成部から出力される前記パルス信号が、前記スイッチング素子に与えられるとともに、前記インプットキャプチャ回路にも入力されるように構成されている、ことを特徴とするスイッチング電源装置。
  2. 請求項1に記載のスイッチング電源装置において、
    前記スイッチング回路は、前記スイッチング素子のオン・オフ動作に応じて電流が流れるインダクタをさらに有し、
    前記信号生成部は、前記指令値演算部から与えられる前記指令値に基づいて得られる閾値信号と、前記インダクタに流れるインダクタ電流とを比較して、前記インダクタ電流のピークを検出し、検出されたピーク値に応じたオン時間幅を持つパルス信号を生成することを特徴とするスイッチング電源装置。
  3. 請求項1または請求項2に記載のスイッチング電源装置において、
    前記制御部は、前記インプットキャプチャ回路のカウント値を参照して、前記パルス信号のオン時間幅、前記パルス信号のオフ時間幅、および前記パルス信号の周期、の少なくとも1つを取得することを特徴とするスイッチング電源装置。
  4. 請求項1ないし請求項3のいずれかに記載のスイッチング電源装置において、
    前記パルス信号はPWM信号であり、
    前記制御部は、前記インプットキャプチャ回路のカウント値を参照して、前記PWM信号のデューティを取得する、ことを特徴とするスイッチング電源装置。
  5. 請求項1ないし請求項4のいずれかに記載のスイッチング電源装置において、
    前記信号生成部を構成するハードウェア回路は、前記制御部に内蔵されている、ことを特徴とするスイッチング電源装置。
  6. 請求項1ないし請求項4のいずれかに記載のスイッチング電源装置において、
    前記信号生成部を構成するハードウェア回路は、前記制御部の外部に設けられている、ことを特徴とするスイッチング電源装置。
  7. 直流電源と負荷との間に設けられ、前記電源の直流電圧を所定の直流電圧に変換して負荷へ供給するスイッチング電源装置であって、
    スイッチング素子を有し、当該スイッチング素子のオン・オフ動作により前記電源の直流電圧をスイッチングするスイッチング回路と、
    前記スイッチング素子をオン・オフさせるためのパルス信号を生成する信号生成部と、
    前記パルス信号の生成に必要な指令値を演算し、当該指令値を前記信号生成部へ出力する指令値演算部と、
    前記信号生成部と前記指令値演算部のうち、少なくとも指令値演算部が内蔵されている制御部と、を備え、
    前記信号生成部は、ハードウェア回路から構成されており、
    前記指令値演算部は、ソフトウェア処理によって前記指令値を演算し、
    前記信号生成部から出力される前記パルス信号が、前記スイッチング素子に与えられるとともに、ローパスフィルタを介して前記制御部のA/D変換ポートにも入力されるように構成されている、ことを特徴とするスイッチング電源装置。
  8. 直流電源と負荷との間に設けられ、前記電源の直流電圧を所定の直流電圧に変換して負荷へ供給するスイッチング電源装置であって、
    スイッチング素子を有し、当該スイッチング素子のオン・オフ動作により前記電源の直流電圧をスイッチングするスイッチング回路と、
    前記スイッチング素子をオン・オフさせるためのパルス信号を生成する信号生成部と、
    前記パルス信号の生成に必要な指令値を演算し、当該指令値を前記信号生成部へ出力する指令値演算部と、
    前記信号生成部および前記指令値演算部が内蔵されている第1制御部と、
    インプットキャプチャ回路が内蔵されている第2制御部と、を備え、
    前記第1制御部は、ハードウェア回路から構成されており、
    前記第2制御部は、マイクロコンピュータから構成されており、
    前記第1制御部の前記信号生成部から出力される前記パルス信号が、前記スイッチング素子に与えられるとともに、前記第2制御部の前記インプットキャプチャ回路にも入力されるように構成されている、ことを特徴とするスイッチング電源装置。
JP2020038405A 2020-03-06 2020-03-06 スイッチング電源装置 Pending JP2021141737A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038405A JP2021141737A (ja) 2020-03-06 2020-03-06 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038405A JP2021141737A (ja) 2020-03-06 2020-03-06 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2021141737A true JP2021141737A (ja) 2021-09-16

Family

ID=77669239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038405A Pending JP2021141737A (ja) 2020-03-06 2020-03-06 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2021141737A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117854A1 (ko) * 2022-12-01 2024-06-06 삼성전자 주식회사 Dc/dc 컨버터를 제어하는 전자 장치 및 이의 동작 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117854A1 (ko) * 2022-12-01 2024-06-06 삼성전자 주식회사 Dc/dc 컨버터를 제어하는 전자 장치 및 이의 동작 방법

Similar Documents

Publication Publication Date Title
US8248040B2 (en) Time-limiting mode (TLM) for an interleaved power factor correction (PFC) converter
JP5163283B2 (ja) 力率改善回路
JP3994953B2 (ja) 力率改善回路
US9048751B2 (en) Power supply circuit with ripple compensation
JP6075462B2 (ja) 力率改善回路
US8085022B2 (en) Switching regulator and control circuit thereof, and method for determining on-time in switching regulator
TWI404309B (zh) 切換式升降壓轉換器控制電路及方法
US20050219871A1 (en) Piecewise on-time modulation apparatus and method for a power factor corrector
WO2011030640A1 (ja) Pfcコンバータ
JP5293155B2 (ja) Dc−dcコンバータ
US8248041B2 (en) Frequency compression for an interleaved power factor correction (PFC) converter
JP5402469B2 (ja) 電力変換装置及び制御回路
JP5799262B2 (ja) 力率改善コンバータ
US11855537B2 (en) Switching converters with adaptive constant on-time control and control methods thereof
US9641071B2 (en) Cuk based current source
JP2019068675A (ja) 交流−直流変換装置
JP4854556B2 (ja) 電源装置
JP5071129B2 (ja) チョッパ型コンバータのリアクトル状態検出装置
JP6911677B2 (ja) 交流−直流変換装置
JP2021141737A (ja) スイッチング電源装置
JP6815495B2 (ja) リップル注入回路及びこれを備えた電子機器
US11764667B2 (en) Switching control circuit and power factor correction circuit
US11539282B2 (en) Switching control circuit and power supply circuit
US20240072648A1 (en) Switching control circuit and power factor correction circuit
CN112350574B (zh) 适用于直流转换器的数字固定导通时间控制器