JP2021139040A - Manufacturing method of directional magnetic steel sheet - Google Patents

Manufacturing method of directional magnetic steel sheet Download PDF

Info

Publication number
JP2021139040A
JP2021139040A JP2021004038A JP2021004038A JP2021139040A JP 2021139040 A JP2021139040 A JP 2021139040A JP 2021004038 A JP2021004038 A JP 2021004038A JP 2021004038 A JP2021004038 A JP 2021004038A JP 2021139040 A JP2021139040 A JP 2021139040A
Authority
JP
Japan
Prior art keywords
mass
annealing
hot
rolling
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021004038A
Other languages
Japanese (ja)
Other versions
JP7463976B2 (en
Inventor
猛 今村
Takeshi Imamura
猛 今村
有衣子 脇阪
Yuiko WAKISAKA
有衣子 脇阪
広 山口
Hiroshi Yamaguchi
広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021139040A publication Critical patent/JP2021139040A/en
Application granted granted Critical
Publication of JP7463976B2 publication Critical patent/JP7463976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a method of obtaining a directional magnetic steel sheet excellent in magnetic characteristics, even when high speed rolling is applied in first cold rolling, when manufacturing a directional magnetic steel sheet by applying two or more times of cold rolling.SOLUTION: A steel slab containing, by mass%, C: 0.02 to 0.10%, Si: 2.0 to 5.0%, Mn: 0.01 to 1.00%, sol. Al: 0.01 to 0.04%, N: 0.004 to 0.020%, one or two kinds selected from S and Se, in total, 0.002 to 0.040% is hot rolled, is annealed with hot rolled plates, is subjected to two or more times of cold rolling with an intermediate annealing sandwiched therebetween, followed by primary recrystallization annealing, and after coated with the surface heating agent made of MgO on the steel plate surface, when manufacturing the directional electromagnetic steel plate after the finish annealing, the coil winding temperature CT in the hot rolling and the pressure reduction factor R (%) in the first cold rolling are controlled to a predetermined range, thereby stably manufacturing a directional magnetic steel sheet excellent in magnetic characteristics.SELECTED DRAWING: Figure 1

Description

本発明は、変圧器の鉄心材料に用いて好適な方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet suitable for use as an iron core material of a transformer.

方向性電磁鋼板は、変圧器や発電機、電動機等の鉄心材料として広く用いられている軟磁性材料であり、鉄の磁化容易軸である<001>方位が、鋼板の圧延方向に高度に揃った集合組織を有していることが特徴である。このような集合組織は、方向性電磁鋼板の製造工程の仕上焼鈍において、二次再結晶を起こさせることで形成される。ここで、上記二次再結晶とは、粒界エネルギーを利用して、いわゆるゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させる現象のことをいう。 The grain-oriented electrical steel sheet is a soft magnetic material widely used as an iron core material for transformers, generators, motors, etc., and the <001> orientation, which is the axis for easy magnetization of iron, is highly aligned in the rolling direction of the steel sheet. It is characterized by having an aggregated structure. Such an texture is formed by causing secondary recrystallization in the finish annealing of the grain-oriented electrical steel sheet manufacturing process. Here, the above-mentioned secondary recrystallization is a phenomenon in which crystal grains in the {110} <001> orientation, which are so-called Goth orientations, are preferentially grown hugely by using grain boundary energy. say.

上記二次再結晶を起こさせる代表的な技術としては、インヒビターと呼ばれる析出物を利用する方法がある。この方法では、AlNやMnS、MnSeなどの析出物を鋼中に微細に分散させることで、仕上焼鈍における結晶粒の成長を制御し、最終的にGoss方位を有する結晶粒を選択的に成長させる技術である。 As a typical technique for causing the secondary recrystallization, there is a method using a precipitate called an inhibitor. In this method, precipitates such as AlN, MnS, and MnSe are finely dispersed in the steel to control the growth of crystal grains in finish annealing, and finally to selectively grow crystal grains having a Goss orientation. It is a technology.

上記技術において、結晶方位の集積度を高めて高い磁束密度を得る一つの手段として、特許文献1には、熱延板焼鈍後の炭化物状態と、続く冷間圧延の圧下率を制御し、{001}<110>方位の破壊と{111}<112>方位の形成を促進することで、磁気特性を改善する技術が開示されている。 In the above technique, as one means for increasing the degree of integration of crystal orientation and obtaining a high magnetic flux density, Patent Document 1 states that the charcoal state after hot-rolled sheet annealing and the reduction rate of subsequent cold rolling are controlled. A technique for improving magnetic characteristics by promoting destruction of 001} <110> orientation and formation of {111} <112> orientation is disclosed.

特開2013−139629号公報Japanese Unexamined Patent Publication No. 2013-139629

上記特許文献1に開示の{001}<110>方位を破壊する技術は、二次再結晶発現の安定化にも繋がるため、良好な磁気特性を安定して得るためには有効な手段である。また、{001}<110>方位の破壊には、熱延板焼鈍後のカーバイドを微細分散することも有効であるが、α−γ変態を利用するため、鋼素材(スラブ)のC含有量によって適正条件が変化すると考えられる。しかしながら、特許文献1には、C含有量の規定はあるものの、C含有量の上記影響については考慮されていない。 The technique for destroying the {001} <110> orientation disclosed in Patent Document 1 also leads to stabilization of secondary recrystallization expression, and is therefore an effective means for stably obtaining good magnetic properties. .. Further, in order to break the {001} <110> orientation, it is effective to finely disperse the carbide after annealing the hot-rolled plate, but since α-γ transformation is used, the C content of the steel material (slab) is used. It is thought that the appropriate conditions will change depending on the situation. However, although Patent Document 1 stipulates the C content, the above-mentioned effect of the C content is not taken into consideration.

しかしながら、発明者らの知見によれば、中間焼鈍を挟んで2回以上の冷間圧延を行う場合において、圧延能率の向上を意図して1回目の冷間圧延の圧延速度を500mpm超えとしたとき、最終製品の二次再結晶組織中に細粒組織が部分的に残存し、磁気特性が劣化している事例が散見された。 However, according to the findings of the inventors, when cold rolling is performed two or more times with intermediate annealing in between, the rolling speed of the first cold rolling is set to exceed 500 mpm with the intention of improving rolling efficiency. At that time, there were some cases where the fine-grained structure partially remained in the secondary recrystallization structure of the final product and the magnetic properties were deteriorated.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、1回目の冷間圧延で高速圧延を行った場合でも、磁気特性の不良原因となる{001}<110>方位を効果的に破壊し、磁気特性の更なる向上と安定製造を可能とする方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to cause a defect in magnetic properties even when high-speed rolling is performed in the first cold rolling {001} <. 110> The purpose of the present invention is to propose a method for producing grain-oriented electrical steel sheets, which effectively destroys the orientation and enables further improvement of magnetic properties and stable production.

発明者らは、上記課題の解決のため、鋼素材中のC含有量と、熱間圧延条件および冷間圧延条件に着目して鋭意検討を重ねた。その結果、中間焼鈍を挟んで2回以上の冷間圧延を行う方向性電磁鋼板の製造方法においては、熱間圧延における巻取温度と、1回目の冷間圧延における圧下率を素材のC含有量に応じて変化させることで、{001}<110>方位を効果的に破壊することでき、ひいては、良好な磁気特性を有する方向性電磁鋼板を安定して得られることを見出し、本発明を開発するに至った。 In order to solve the above problems, the inventors have made extensive studies focusing on the C content in the steel material, the hot rolling conditions and the cold rolling conditions. As a result, in the method for manufacturing grain-oriented electrical steel sheets in which cold rolling is performed two or more times with intermediate annealing in between, the winding temperature in hot rolling and the rolling reduction in the first cold rolling are contained in the material C. We have found that the {001} <110> orientation can be effectively destroyed by changing the amount according to the amount, and by extension, a grain-oriented electrical steel sheet having good magnetic characteristics can be stably obtained. It came to be developed.

上記知見に基づく本発明は、C:0.02〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.00mass%、sol.Al:0.01〜0.04mass%、N:0.004〜0.020mass%、SおよびSeの内から選ばれる1種または2種を合計で0.002〜0.040mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以上の温度に再加熱し、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、中間焼鈍を挟む2回以上の冷間圧延をし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記熱間圧延におけるコイル巻取温度CTが下記(1)式;
[C]×0.17×10+340≦CT≦[C]1.6×10+550 ・・・(1)
ここで、CT:熱延巻取温度(℃)、[C]:スラブのC含有量(mass%)
を満たし、上記2回以上の冷間圧延の1回目の冷間圧延における圧下率R(%)が15%以上でかつ下記(2)式;
−600×[C]+57≦R≦−550×[C]+81.5・・・(2)
ここで、[C]:スラブのC含有量(mass%)、R:1回目の冷延圧下率(%)
を満たすことを特徴とする方向性電磁鋼板の製造方法を提案する。
Based on the above findings, the present invention describes C: 0.02 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.00 mass%, sol. Al: 0.01 to 0.04 mass%, N: 0.004 to 0.020 mass%, one or two selected from S and Se are contained in a total of 0.002 to 0.040 mass%, and the balance A steel slab having a component composition consisting of Fe and unavoidable impurities is reheated to a temperature of 1300 ° C. or higher, hot-rolled to obtain a hot-rolled plate, and the hot-rolled plate is annealed by hot-rolled plate and then intermediate. It consists of a series of steps of cold rolling two or more times with annealing in between, primary recrystallization annealing that also serves as decarburization annealing, applying an annealing separator mainly containing MgO to the surface of the steel plate, and then performing finish annealing. In the method for manufacturing a directional electromagnetic steel sheet, the coil winding temperature CT in the hot rolling is the following equation (1);
[C] × 0.17 × 10 4 + 340 ≦ CT ≦ [C] 1.6 × 10 4 +550 ··· (1)
Here, CT: hot rolling temperature (° C.), [C]: C content (mass%) of the slab.
The reduction ratio R (%) in the first cold rolling of the above two or more cold rollings is 15% or more, and the following equation (2);
-600 x [C] +57 ≤ R ≤ -550 x [C] + 81.5 ... (2)
Here, [C]: C content (mass%) of the slab, R: 1st cold rolling reduction rate (%)
We propose a method for manufacturing grain-oriented electrical steel sheets, which is characterized by satisfying the above conditions.

本発明の上記方向性電磁鋼板の製造方法は、上記中間焼鈍を挟む2回以上の冷間圧延における最終冷間圧延の圧下率を85%以上とすることを特徴とする。 The method for producing a grain-oriented electrical steel sheet of the present invention is characterized in that the rolling reduction of the final cold rolling in two or more cold rollings sandwiching the intermediate annealing is 85% or more.

本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼スラブは、上記成分組成に加えてさらに、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%%、Ni:0.01〜0.50mass%、Bi:0.005〜0.50mass%、B:0.0002〜0.0025mass%、Nb:0.0010〜0.0100mass%、Sn:0.010〜0.400mass%、Sb:0.010〜0.150mass%、Mo:0.010〜0.200mass%、P:0.010〜0.150mass%、V:0.0005〜0.0100mass%およびTi:0.0005〜0.0100mass%のうちから選ばれる少なくとも1種の成分を含有することを特徴とする。 In addition to the component composition, the steel slab used in the method for producing a grain-oriented electrical steel sheet of the present invention further contains Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass %%, and Ni. : 0.01 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, B: 0.0002 to 0.0025 mass%, Nb: 0.0010 to 0.0100 mass%, Sn: 0.010 to 0 .400 mass%, Sb: 0.010 to 0.150 mass%, Mo: 0.010 to 0.200 mass%, P: 0.010 to 0.150 mass%, V: 0.0005 to 0.0100 mass% and Ti: It is characterized by containing at least one component selected from 0.0005 to 0.0100 mass%.

本発明によれば、鋼素材中のC含有量に応じて、熱間圧延における巻取温度と、冷間圧延における圧下率を適正化するので、{001}<110>方位を効果的に破壊することでき、ひいては、良好な磁気特性を有する方向性電磁鋼板を安定して得ることが可能となる。 According to the present invention, the take-up temperature in hot rolling and the rolling reduction in cold rolling are optimized according to the C content in the steel material, so that the {001} <110> orientation is effectively destroyed. As a result, it becomes possible to stably obtain a grain-oriented electrical steel sheet having good magnetic characteristics.

素材のC含有量と1回目の冷延圧下率Rが磁束密度Bに及ぼす影響を示すグラフである。It is a graph which shows the influence which the C content of a material and the first cold rolling rolling reduction ratio R have on the magnetic flux density B 8. 素材のC含有量と大気中焼鈍温度(巻取温度)が磁束密度Bに及ぼす影響を示すグラフである。C content of the material and the atmosphere during the annealing temperature (the coiling temperature) is a graph showing the effect on the magnetic flux density B 8.

まず、本発明を開発する契機となった実験について説明する。
表1に記載した成分組成を有し、残部がFeおよび不可避的不純物からなるA〜Dの4種の鋼を実験室的に真空溶解炉で溶製し、鋳造して鋼塊とした後、該鋼塊を1420℃の温度に再加熱し、熱間圧延して板厚1.6〜3.5mmの厚さの熱延板とし、その後、該熱延板に、熱間圧延でのコイル巻取後の熱履歴を模擬して、400〜800℃×10hrの大気中焼鈍を施した後、最高到達温度1000℃の熱延板焼鈍を施した。その後、上記熱延板を、定常時の圧延速度700mpmで1回目の冷間圧延して中間板厚1.4mmとし、1100℃の中間焼鈍を施した後、2回目の冷間圧延(最終冷間圧延)して最終板厚0.23mmの冷延板に仕上げた後、50vol%H−50vol%N、露点55℃の湿潤雰囲気下で、均熱温度840℃、均熱時間150sの脱炭をともなう一次再結晶焼鈍を施した。その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、二次再結晶させた後、水素雰囲気下で1200℃の温度で5hr保持して純化処理する仕上焼鈍を施した。
First, the experiment that triggered the development of the present invention will be described.
Four types of steels A to D having the component compositions shown in Table 1 and the balance consisting of Fe and unavoidable impurities were rolled in a laboratory in a vacuum melting furnace and cast into ingots. The ingot is reheated to a temperature of 1420 ° C. and hot-rolled to obtain a hot-rolled plate having a thickness of 1.6 to 3.5 mm, and then the hot-rolled plate is coiled by hot rolling. After simulating the thermal history after winding, annealing was performed in the air at 400 to 800 ° C. × 10 hr, and then hot-rolled sheet was annealed at a maximum reaching temperature of 1000 ° C. After that, the hot-rolled sheet was first cold-rolled at a steady rolling speed of 700 mpm to an intermediate plate thickness of 1.4 mm, subjected to intermediate annealing at 1100 ° C., and then second cold-rolled (final cold). after finishing the cold-rolled sheet of final thickness 0.23mm between rolling) to, 50vol% H 2 -50vol% N 2, under a humid atmosphere with a dew point of 55 ° C., soaking temperature 840 ° C., the soaking time 150s Primary recrystallization annealing with decarburization was performed. Then, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, dried, and then recrystallized secondarily, and then subjected to finish annealing in a hydrogen atmosphere at a temperature of 1200 ° C. for 5 hours for purification treatment.

Figure 2021139040
Figure 2021139040

斯くして得た仕上焼鈍板から磁気測定用試験片を採取し、磁束密度B(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。図1は、上記測定結果について、熱間圧延後に500℃で大気中焼鈍を行ったときの、C含有量と1回目の冷延圧下率Rが磁束密度Bに及ぼす影響を示したものである。また、図2は、1回目の冷延圧下率Rを、図1から読み取ったC含有量ごとの磁束密度が最良値となる圧下率としたときの、C含有量と大気中焼鈍温度が磁束密度Bに及ぼす影響を示したものである。これらの図から、鋼素材中のC含有量によって、高磁束密度が得られる1回目の冷延圧下率Rや大気中焼鈍温度の範囲が変化していること、すなわち、高磁束密度の製品板を得るためには、熱間圧延後のコイル巻取温度および1回目の冷間圧延の圧下率Rを変化させる必要があることがわかる。 A test piece for magnetic measurement was taken from the finished annealed plate thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C 2550. FIG. 1 shows the effects of the C content and the first cold rolled rolling reduction ratio R on the magnetic flux density B 8 when annealing in the atmosphere at 500 ° C. after hot rolling. be. Further, FIG. 2 shows that the C content and the annealing temperature in the atmosphere are the magnetic fluxes when the first cold rolling reduction R is the reduction rate at which the magnetic flux density for each C content read from FIG. 1 is the best value. The effect on the density B 8 is shown. From these figures, the range of the first cold rolled rolling reduction R and the atmospheric annealing temperature at which a high magnetic flux density can be obtained changes depending on the C content in the steel material, that is, the product plate with a high magnetic flux density. It can be seen that it is necessary to change the coil winding temperature after hot rolling and the reduction ratio R of the first cold rolling in order to obtain the above.

上記結果のように、熱間圧延後のコイル巻取温度および1回目の冷間圧延の圧下率Rによって磁気特性が変化するメカニズムについて、発明者らは以下のように考えている。
Cは、オーステナイト安定化元素であるため、鋼素材中のC含有量を高めることで、γ相率や微細カーバイドの析出量が増加し、カーバイドと地鉄との硬度差によって、冷間圧延における歪導入起点が増加し、歪導入量が増加するため、破壊し難い(再結晶し難い){001}<110>方位を破壊することができる。特に、微細カーバイドは、冷間圧延時に導入される結晶粒内の歪量を増加するので、中間焼鈍時や一次再結晶焼鈍時に核生成し易くなり、再結晶が促進されることで、{001}<110>方位が破壊される。同様に考えると、冷延圧下率を高めた場合、冷間圧延で導入される歪量が増加するため、再結晶が促進されると考えられる。また、C含有量が高いと、γ相率が増加し、再結晶が促進されるため、冷延圧下率は低くても再結晶が生じる。また、C含有量が多過ぎる場合は、冷延圧下率が高くなると導入される歪量が増加し過ぎるため、中間焼鈍板の結晶粒径が微細化して{110}<001>方位の核生成頻度が減少し、磁性不良となる。一方、C含有量が低いと、導入する歪量を増加するため、冷延圧下率を高める必要があると考えられる。
As shown in the above results, the inventors consider the mechanism by which the magnetic characteristics change depending on the coil winding temperature after hot rolling and the rolling reduction R of the first cold rolling as follows.
Since C is an austenite stabilizing element, increasing the C content in the steel material increases the γ phase ratio and the amount of fine carbide precipitated, and due to the difference in hardness between the carbide and the ground iron, in cold rolling. Since the strain introduction starting point increases and the strain introduction amount increases, it is possible to destroy the {001} <110> orientation that is difficult to break (difficult to recrystallize). In particular, fine carbide increases the amount of strain in the crystal grains introduced during cold rolling, so that nucleation is likely to occur during intermediate annealing and primary recrystallization annealing, and recrystallization is promoted, thereby causing {001. } <110> The orientation is destroyed. Similarly, when the cold rolling rolling reduction ratio is increased, the amount of strain introduced in cold rolling increases, and it is considered that recrystallization is promoted. Further, when the C content is high, the γ phase ratio increases and recrystallization is promoted, so that recrystallization occurs even if the cold rolling reduction rate is low. Further, when the C content is too large, the amount of strain introduced increases too much when the cold rolling reduction rate becomes high, so that the crystal grain size of the intermediate annealed plate becomes finer and nucleation in the {110} <001> direction is formed. The frequency decreases and magnetic defects occur. On the other hand, if the C content is low, the amount of strain to be introduced increases, so it is considered necessary to increase the cold rolling reduction rate.

また、熱延板の表面にスケールが付いた状態で高温に保持されると、脱炭により鋼板中のC量が減少するが、適正な冷延圧下率はC含有量に依存するため、熱間圧延後の高温保持温度、すなわち、コイル巻取温度についても制御することが必要となる。例えば、図2では、C含有量が0.09mass%の磁束密度は、これより少ないC含有量の場合に比べ、コイル巻取温度が高い温度域で良好となっているが、これは、コイル巻取温度を高温にした方が鋼板中のC含有量が減少するので、1回目の冷延圧下率が適正値により近くなり、磁束密度が向上したものと考えられる。
本発明は、上記の新規な知見に基づくものである。
Further, if the surface of the hot-rolled sheet is kept at a high temperature with the scale attached, the amount of C in the steel sheet decreases due to decarburization, but the appropriate cold-rolled rolling reduction rate depends on the C content, so heat. It is also necessary to control the high temperature holding temperature after inter-rolling, that is, the coil winding temperature. For example, in FIG. 2, the magnetic flux density having a C content of 0.09 mass% is better in a temperature range where the coil winding temperature is higher than that in the case of a C content lower than this. It is considered that the C content in the steel sheet decreases when the winding temperature is raised, so that the first cold rolling reduction ratio becomes closer to the appropriate value and the magnetic flux density is improved.
The present invention is based on the above novel findings.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.02〜0.10mass%
Cは、0.02mass%に満たないと、微細カーバイドの析出が不足したり、素材の鋼組織がα単相となり、鋳造時や熱間圧延時に鋼が脆化し、スラブに割れが生じたり、熱延後の鋼板エッジに耳割れが生じたりして、製造に支障を来たす欠陥を生ずるようになる。一方、0.10mass%を超えると、脱炭焼鈍で、磁気時効の起きない0.005mass%以下に低減することが困難となる。よって、C含有量は0.02〜0.10mass%の範囲とする。好ましくは0.025〜0.08mass%の範囲である。
Next, the composition of the steel material (slab) used in the production of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.02 to 0.10 mass%
If C is less than 0.02 mass%, the precipitation of fine carbide is insufficient, the steel structure of the material becomes α single phase, the steel becomes brittle during casting and hot rolling, and the slab cracks. Ear cracks may occur on the edges of the steel sheet after hot rolling, resulting in defects that hinder manufacturing. On the other hand, if it exceeds 0.10 mass%, it becomes difficult to reduce it to 0.005 mass% or less, which does not cause magnetic aging due to decarburization annealing. Therefore, the C content is in the range of 0.02 to 0.10 mass%. It is preferably in the range of 0.025 to 0.08 mass%.

Si:2.0〜5.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、5.0mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Si含有量は2.0〜5.0mass%の範囲とする。好ましくは2.5〜4.0mass%の範囲である。
Si: 2.0-5.0 mass%
Si is an element necessary to increase the specific resistance of steel and reduce iron loss. The above effect is not sufficient if it is less than 2.0 mass%, while if it exceeds 5.0 mass%, the workability is lowered and it becomes difficult to manufacture by rolling. Therefore, the Si content is in the range of 2.0 to 5.0 mass%. It is preferably in the range of 2.5 to 4.0 mass%.

Mn:0.01〜1.0mass%
Mnは、鋼の熱間加工性を改善するのに必要な元素である。上記効果は、0.01mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mn含有量は0.01〜1.0mass%の範囲とする。好ましくは0.02〜0.30mass%の範囲である。
Mn: 0.01 to 1.0 mass%
Mn is an element required to improve the hot workability of steel. The above effect is not sufficient if it is less than 0.01 mass%, while if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, the Mn content is set in the range of 0.01 to 1.0 mass%. It is preferably in the range of 0.02 to 0.30 mass%.

sol.Al:0.01〜0.04mass%
Alは、AlNを形成して析出し、仕上焼鈍において、正常粒成長を抑制するインヒビターとして機能する元素であり、方向性電磁鋼板の製造においては重要な元素である。しかし、Al含有量が、酸可溶性Al(sol.Al)で0.01mass%に満たないと、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、0.04mass%を超えると、AlNがオストワルド成長して粗大化し、やはり正常粒成長の抑制力が不足する。そのため、Alの含有量はsol.Alで0.01〜0.04mass%の範囲とする。好ましくは0.012〜0.030mass%の範囲である
sol. Al: 0.01 to 0.04 mass%
Al is an element that forms and precipitates AlN and functions as an inhibitor that suppresses normal grain growth in finish annealing, and is an important element in the production of grain-oriented electrical steel sheets. However, if the Al content is less than 0.01 mass% of acid-soluble Al (sol.Al), the absolute amount of the inhibitor is insufficient, and the ability to suppress normal grain growth is insufficient. On the other hand, if it exceeds 0.04 mass%, AlN grows Ostwald and becomes coarse, and the ability to suppress normal grain growth is also insufficient. Therefore, the Al content is sol. The range of Al is 0.01 to 0.04 mass%. It is preferably in the range of 0.012 to 0.030 mass%.

N:0.004〜0.020mass%
Nは、Alと結合して、インヒビターとなるAlNを形成して析出するが、含有量が0.004mass%未満では、インヒビターの絶対量が不足し、正常粒成長の抑制力が不足する。一方、含有量が0.020mass%を超えると、熱間圧延時にスラブが膨れを起こすおそれがある。そのため、Nの含有量は0.004〜0.020mass%の範囲とする。好ましくは0.006〜0.010mass%の範囲である
N: 0.004 to 0.020 mass%
N binds to Al to form and precipitate AlN as an inhibitor, but if the content is less than 0.004 mass%, the absolute amount of the inhibitor is insufficient and the ability to suppress normal grain growth is insufficient. On the other hand, if the content exceeds 0.020 mass%, the slab may swell during hot rolling. Therefore, the content of N is set in the range of 0.004 to 0.020 mass%. It is preferably in the range of 0.006 to 0.010 mass%.

SおよびSeの内の1種または2種:合計で0.002〜0.040mass%
SおよびSeは、Mnと結合してインヒビターとなるMnSやMnSeを形成する。しかし、単独もしくは合計で0.002mass%に満たないと、インヒビター効果が十分に得られない。一方、0.040mass%を超えると、インヒビターがオストワルド成長して粗大化し、正常粒成長の抑制力が不足する。よって、SおよびSeの含有量は、合計で0.002〜0.040mass%の範囲とする。好ましくは0.005〜0.030mass%の範囲である。
One or two of S and Se: 0.002-0.040 mass% in total
S and Se combine with Mn to form MnS and MnSe that serve as inhibitors. However, if it is less than 0.002 mass% alone or in total, the inhibitor effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.040 mass%, the inhibitor grows Ostwald and becomes coarse, and the inhibitory power of normal grain growth becomes insufficient. Therefore, the total content of S and Se is in the range of 0.002 to 0.040 mass%. It is preferably in the range of 0.005 to 0.030 mass%.

本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、実質的にFeおよび不可避的不純物である。しかし、上記成分組成に加えてさらに、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%%、Ni:0.01〜0.50mass%、Bi:0.005〜0.50mass%、B:0.0002〜0.0025mass%、Nb:0.0010〜0.0100mass%、Sn:0.010〜0.400mass%、Sb:0.010〜0.150mass%、Mo:0.010〜0.200mass%、P:0.010〜0.150mass%、V:0.0005〜0.0100mass%およびTi:0.0005〜0.0100mass%のうちから選ばれる少なくとも1種を含有することができる。上記各元素は、方向性電磁鋼板の磁気特性を向上させる効果を有しているが、含有量が上記下限値より低いと、十分な磁気特性向上効果を得ることができない。一方、含有量が上記上限値を超えると、二次再結晶粒の発達が阻害されるようになり、却って磁気特性が劣化するおそれがある。 In the steel material used for producing the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is substantially Fe and unavoidable impurities. However, in addition to the above component composition, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass %%, Ni: 0.01 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, B: 0.0002 to 0.0025 mass%, Nb: 0.0010 to 0.0100 mass%, Sn: 0.010 to 0.400 mass%, Sb: 0.010 to 0.150 mass%, Mo : 0.010 to 0.200 mass%, P: 0.010 to 0.150 mass%, V: 0.0005 to 0.0100 mass% and Ti: 0.0005 to 0.0100 mass% At least one selected from Can be contained. Each of the above elements has an effect of improving the magnetic characteristics of the grain-oriented electrical steel sheet, but if the content is lower than the above lower limit value, a sufficient effect of improving the magnetic characteristics cannot be obtained. On the other hand, if the content exceeds the above upper limit value, the development of secondary recrystallized grains is inhibited, and the magnetic characteristics may be deteriorated.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、本発明の方向性電磁鋼板の鋼素材(スラブ)は、通常公知の精錬プロセスで本発明に適合する上記成分組成を有する鋼を溶製した後、常法の連続鋳造法あるいは造塊−分塊圧延法で製造することができる。なお、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
First, the steel material (slab) of the grain-oriented electrical steel sheet of the present invention is obtained by melting a steel having the above-mentioned component composition suitable for the present invention by a commonly known refining process, and then rolling it by a conventional continuous casting method or ingot-forming. It can be manufactured by the ingot rolling method. A thin slab having a thickness of 100 mm or less may be produced by a direct casting method.

次いで、上記鋼素材(スラブ)は、1250℃以上の温度に再加熱した後、熱間圧延し、所定の板厚の熱延板とする。スラブの再加熱温度が1250℃未満では、添加したインヒビター形成成分が鋼中に十分に固溶しない。好ましいスラブ加熱温度は1300℃以上である。スラブを加熱する手段は、ガス炉、誘導加熱炉、通電炉などの公知の手段を用いることができる。 Next, the steel material (slab) is reheated to a temperature of 1250 ° C. or higher and then hot-rolled to obtain a hot-rolled plate having a predetermined plate thickness. If the reheating temperature of the slab is less than 1250 ° C., the added inhibitor-forming component does not sufficiently dissolve in the steel. The preferred slab heating temperature is 1300 ° C. or higher. As the means for heating the slab, known means such as a gas furnace, an induction heating furnace, and an energizing furnace can be used.

次いで、上記再加熱したスラブは、熱間圧延に供する。熱間圧延における圧延温度は、通常公知の条件で行えばよく、特別な制限はないが、熱間圧延後、コイルに巻き取るときの温度、すなわち、コイル巻取温度CT(℃)は、下記(1)式;
[C]×0.17×10+340≦CT≦[C]1.6×10+550 ・・・(1)
ここで、CT:熱延巻取温度(℃)、[C]:スラブのC含有量(mass%)
を満たすよう制御することが必要である。
The reheated slab is then subjected to hot rolling. The rolling temperature in hot rolling may be carried out under known conditions and is not particularly limited. However, the temperature at which the coil is wound around the coil after hot rolling, that is, the coil winding temperature CT (° C.) is as follows. Equation (1);
[C] × 0.17 × 10 4 + 340 ≦ CT ≦ [C] 1.6 × 10 4 +550 ··· (1)
Here, CT: hot rolling temperature (° C.), [C]: C content (mass%) of the slab.
It is necessary to control to satisfy.

コイル巻取温度が、上記(1)式の右辺より高いと、スケール脱炭が促進するため、熱延板焼鈍後の1回目の冷間圧延の圧下率Rが適正範囲から外れる可能性がある。ただし、素材中のC含有量が0.07mass%を超えている場合は、脱炭した方がむしろ磁気特性に有利な条件となる。逆に、コイル巻取温度が上記(1)式の左辺より低いと、スケール脱炭は抑制されるが、熱延後の再結晶まで抑制されてしまう。 If the coil winding temperature is higher than the right side of the above equation (1), scale decarburization is promoted, so that the reduction ratio R of the first cold rolling after hot-rolled sheet annealing may deviate from the appropriate range. .. However, when the C content in the material exceeds 0.07 mass%, decarburization is rather advantageous for the magnetic characteristics. On the contrary, when the coil winding temperature is lower than the left side of the above equation (1), scale decarburization is suppressed, but recrystallization after hot rolling is also suppressed.

次いで、上記熱間圧延後の熱延板は、熱延組織を完全に再結晶させるため、熱延板焼鈍を施す。この熱延板焼鈍の温度は、950〜1200℃の範囲とするのが好ましい。950℃未満では、熱延組織を完全に再結晶できないおそれがある。一方、1200℃を超えると熱延板焼鈍後の結晶粒径が粗大化し、整粒の一次再結晶組織を得ることが難しくなる。より好ましくは1000〜1100℃の範囲である。 Next, the hot-rolled plate after the hot-rolling is annealed by hot-rolling in order to completely recrystallize the hot-rolled structure. The temperature of the hot-rolled sheet annealing is preferably in the range of 950 to 1200 ° C. Below 950 ° C, the hot-rolled structure may not be completely recrystallized. On the other hand, if the temperature exceeds 1200 ° C., the crystal grain size after annealing on the hot-rolled plate becomes coarse, and it becomes difficult to obtain a primary recrystallized structure for sizing. More preferably, it is in the range of 1000 to 1100 ° C.

次いで、上記熱延板焼鈍後の熱延板は、中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。ここで、上記2回以上の冷間圧延における1回目の冷間圧延の圧下率R(%)は、下記(2)式;
−600×[C]+57≦R≦−550×[C]+81.5 ・・・(2)
ここで、[C]:スラブのC含有量(mass%)、R:1回目の冷延圧下率(%)
を満たすよう制御することが必要である。
これは、素材中のC含有量が多いほど{001}<110>方位は破壊され易いため、1回目の冷延圧下率は低くてもよいが、C含有量が少なくなるにつれて、γ相量や微細カーバイドが減少するため、{001}<110>方位が破壊され難くなる。そのため1回目の冷延圧下率Rを、素材中のC含有量に応じて増減することで、{001}<110>方位の破壊を促進することができる。しかし、1回目の冷延圧下率Rが上記(2)式の右辺を超えて大きくなり過ぎると、{110}<001>方位まで減少し、二次再結晶不良による磁気特性劣化の原因となる。一方、1回目の冷延圧下率Rが上記(2)式の左辺より小さくなり過ぎると、圧延で導入される歪量が少な過ぎて、続く中間焼鈍での再結晶が進まず、磁性不良の原因となるおそれがある。また、同じ理由から、C含有量が多い場合でも、1回目の冷延圧下率Rは、少なくとも15%とする必要がある。
Next, the hot-rolled plate after the hot-rolled plate is annealed is made into a cold-rolled plate having a final plate thickness by two or more cold rollings sandwiching the intermediate annealing. Here, the rolling reduction R (%) of the first cold rolling in the above two or more cold rollings is the following equation (2);
-600 x [C] +57 ≤ R ≤ -550 x [C] + 81.5 ... (2)
Here, [C]: C content (mass%) of the slab, R: 1st cold rolling reduction rate (%)
It is necessary to control to satisfy.
This is because the {001} <110> orientation is more easily destroyed as the C content in the material increases, so the first cold rolling reduction may be lower, but as the C content decreases, the γ phase amount And fine carbide is reduced, so that the {001} <110> orientation is less likely to be destroyed. Therefore, by increasing or decreasing the first cold rolling reduction ratio R according to the C content in the material, it is possible to promote the destruction of the {001} <110> orientation. However, if the first cold rolling reduction ratio R exceeds the right side of the above equation (2) and becomes too large, it decreases to the {110} <001> direction, which causes deterioration of magnetic characteristics due to secondary recrystallization failure. .. On the other hand, if the first cold-rolled rolling reduction ratio R is too smaller than the left side of the above equation (2), the amount of strain introduced in rolling is too small, and recrystallization in the subsequent intermediate annealing does not proceed, resulting in poor magnetism. It may cause it. Further, for the same reason, even when the C content is high, the first cold-rolled rolling reduction ratio R needs to be at least 15%.

なお、本発明の趣旨、すなわち、破壊し難い{001}<110>方位に効果的に歪を導入して、その後の再結晶を促進する観点から、1回目の冷間圧延は、定常時の圧延速度を400mpm以上として行うのが好ましい。より好ましくは500mpm以上、さらに好ましくは600mpm以上である。 It should be noted that the first cold rolling is carried out in a steady state from the viewpoint of the purpose of the present invention, that is, from the viewpoint of effectively introducing strain in the {001} <110> orientation which is difficult to break and promoting recrystallization thereafter. It is preferable that the rolling speed is 400 mpm or more. It is more preferably 500 mpm or more, still more preferably 600 mpm or more.

次いで、上記1回目の冷間圧延後の冷延板は、2回目の冷間圧延を行う前に中間焼鈍を施す。上記中間焼鈍の温度は1000〜1200℃の範囲とするのが好ましい。焼鈍温度が1000℃未満では、圧延組織を完全に再結晶させることができない。一方、1200℃を超えると、中間焼鈍後の結晶粒径が粗大化し、整粒の一次再結晶組織を得ることが難しくなる。より好ましくは1020〜1100℃の範囲である。 Next, the cold-rolled sheet after the first cold rolling is subjected to intermediate annealing before the second cold rolling. The temperature of the intermediate annealing is preferably in the range of 1000 to 1200 ° C. If the annealing temperature is less than 1000 ° C., the rolled structure cannot be completely recrystallized. On the other hand, if the temperature exceeds 1200 ° C., the crystal grain size after intermediate annealing becomes coarse, and it becomes difficult to obtain a sized primary recrystallized structure. More preferably, it is in the range of 1020 to 1100 ° C.

次いで、上記中間焼鈍を施した冷延板は、少なくとも1回の冷間圧延を行い、必要に応じて中間焼鈍を行い、最終板厚の冷延板とする。このときの最終板厚とする最終冷間圧延の圧下率は、優れた磁気特性を得るためには、85%以上とするのが好ましい。より好ましくは89%以上である。ただし、最終冷間圧延の圧下率の増加に伴い{110}<001>方位が減少するため、上限は92%とするのが好ましい。 Next, the cold-rolled plate that has been subjected to the intermediate annealing is subjected to cold rolling at least once, and if necessary, intermediate-annealed to obtain a cold-rolled plate having a final plate thickness. The rolling reduction of the final cold rolling, which is the final plate thickness at this time, is preferably 85% or more in order to obtain excellent magnetic properties. More preferably, it is 89% or more. However, since the {110} <001> orientation decreases as the reduction rate of the final cold rolling increases, the upper limit is preferably 92%.

次いで、上記最終板厚とした冷延板は、脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この一次再結晶焼鈍は、脱炭性を確保する観点から、湿潤雰囲気下で、800〜900℃の温度で行うことが望ましい。上記湿潤雰囲気の露点は50〜70℃の範囲とし、脱炭量に応じて調整するのが望ましい。この焼鈍により、鋼板中のCは0.005mass%以下まで低減される。 Next, the cold-rolled plate having the final plate thickness is subjected to primary recrystallization annealing that also serves as decarburization annealing. From the viewpoint of ensuring decarburization, this primary recrystallization annealing is preferably performed at a temperature of 800 to 900 ° C. in a moist atmosphere. It is desirable that the dew point of the moist atmosphere is in the range of 50 to 70 ° C. and adjusted according to the amount of decarburization. By this annealing, C in the steel sheet is reduced to 0.005 mass% or less.

次いで、上記一次再結晶焼鈍後の鋼板は、仕上焼鈍においてフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、二次再結晶を発現させるとともに純化処理する仕上焼鈍を施す。上記仕上焼鈍は、昇温過程の800〜950℃の温度域において5〜200hr間保持する保定処理を施して二次再結晶を発現させ、引続き950〜1050℃間を5〜30℃/hrの平均昇温速度で加熱して二次再結晶を完了させた後、あるいは、上記保定処理を施した後、一旦、700℃以下まで冷却した後、再加熱し、950〜1050℃間を5〜30℃/hrの昇温速度で加熱して二次再結晶を完了させた後、さらに加熱して、1100℃以上の温度に2hr以上保持する純化処理を施すことが好ましい。この純化処理において、フォルステライト被膜が形成されるとともに、鋼板中のAl,N,SおよびSeは不純物レベルまで低減される。なお、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、焼鈍分離剤を適用しないか、フォルステライト被膜を形成するMgOは使用せずにシリカやアルミナ等からなる焼鈍分離剤を用いるのが好ましい。 Next, when the forsterite film is formed on the steel sheet after the primary recrystallization annealing, an annealing separator mainly containing MgO is applied to the surface of the steel sheet, dried, and then secondary recrystallization is expressed. At the same time, finish annealing for purification treatment is performed. In the finish annealing, secondary recrystallization is carried out by performing a retention treatment of holding for 5 to 200 hr in a temperature range of 800 to 950 ° C. in the temperature raising process, and subsequently, the temperature is 5 to 30 ° C./hr between 950 and 950 ° C. After the secondary recrystallization is completed by heating at an average temperature rise rate, or after the above-mentioned retention treatment, the temperature is once cooled to 700 ° C. or lower, and then reheated, and the temperature is between 950 and 50 ° C. for 5 to 50 ° C. It is preferable to heat at a heating rate of 30 ° C./hr to complete the secondary recrystallization, and then further heat the mixture to perform a purification treatment for maintaining the temperature at 1100 ° C. or higher for 2 hr or longer. In this purification treatment, a forsterite film is formed and Al, N, S and Se in the steel sheet are reduced to the impurity level. When emphasizing punching workability and not forming a forsterite film, do not apply an annealing separator, or use an annealing separator made of silica, alumina, etc. without using MgO that forms a forsterite film. It is preferable to use it.

次いで、上記仕上焼鈍後の鋼板は、鋼板表面に残留した未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を行った後、形状矯正と鉄損特性改善のため、平坦化焼鈍を施すことが好ましい。 Next, the steel sheet after finish annealing is flattened for shape correction and improvement of iron loss characteristics after being washed with water, brushed, pickled, etc. in order to remove the unreacted annealing separator remaining on the surface of the steel sheet. It is preferable to perform annealing.

なお、鋼板(製品板)を積層して使用する場合には、鋼板間の絶縁性を確保するため、上記平坦化焼鈍において、または、その前後において、鋼板表面に絶縁被膜を被成することが好ましい。また、より鉄損を低減するためには、上記絶縁被膜は、鋼板に引張張力を付与する張力付与型の絶縁被膜を適用するのが望ましい。また、上記鉄損低減効果をより高めるためには、バインダーを介して絶縁被膜を被成したり、物理蒸着法や化学蒸着法で無機物層を鋼板表面に形成した後、絶縁被膜を被成したりし、被膜の密着性を向上させるのが好ましい。 When steel sheets (product plates) are laminated and used, an insulating film may be applied to the surface of the steel sheets during or before and after the flattening annealing in order to ensure the insulating property between the steel sheets. preferable. Further, in order to further reduce the iron loss, it is desirable to apply a tension-applying type insulating film that applies tensile tension to the steel sheet. Further, in order to further enhance the iron loss reduction effect, an insulating film is formed via a binder, or an inorganic layer is formed on the surface of the steel sheet by a physical vapor deposition method or a chemical vapor deposition method, and then the insulating film is formed. It is preferable to improve the adhesion of the film.

表2に記載の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、該スラブを1360℃の温度に再加熱した後、熱間圧延し、表3に示した板厚の熱延板とした後、同じく表3に示した温度でコイルに巻き取った。その後、上記熱間圧延後の鋼板は、1050℃×20sの熱延板焼鈍を施した後、定常時の圧延速度を600mpmとする1回目の冷間圧延で、中間板厚1.8mmの冷延板とし、1060℃×60sの中間焼鈍を施した後、2回目の冷間圧延(最終冷間圧延の圧下率:87%)して、最終板厚0.23mmの冷延板に仕上げた。その後、60vol%H−40vol%N、露点55℃の湿潤雰囲気下で、830℃×150sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、800〜950℃の温度域において10hr間保持する保定処理を施して二次再結晶を発現させ、引続き950〜1050℃間を20℃/hrの平均昇温速度で加熱して二次再結晶を完了させた後、水素雰囲気下で、1200℃の温度に10hr間保持して純化処理する仕上焼鈍を施し、製品板とした。 A steel slab having the composition shown in Table 2 and having the balance of Fe and unavoidable impurities was produced by a continuous casting method, the slab was reheated to a temperature of 1360 ° C., and then hot-rolled to obtain Table 3. After the hot-rolled plate having the plate thickness shown in (1) was obtained, the plate was wound around a coil at the same temperature shown in Table 3. After that, the steel sheet after hot rolling was subjected to hot-rolled sheet annealing at 1050 ° C. × 20 s, and then subjected to the first cold rolling at a steady rolling speed of 600 mpm. The rolled sheet was subjected to intermediate annealing at 1060 ° C. × 60 s, and then cold-rolled for the second time (reduction rate of final cold rolling: 87%) to finish a cold-rolled sheet with a final plate thickness of 0.23 mm. .. Then, 60vol% H 2 -40vol% N 2, under a humid atmosphere with a dew point of 55 ° C., subjected to primary recrystallization annealing, which also serves as a decarburization annealing at 830 ° C. × 150s, annealing separator to the steel sheet surface mainly comprising MgO After coating and drying, secondary recrystallization is carried out by retaining treatment in a temperature range of 800 to 950 ° C. for 10 hr, and subsequently heated between 950 to 950 ° C. at an average heating rate of 20 ° C./hr. After the secondary recrystallization was completed, the product plate was subjected to finish annealing in which the temperature was maintained at 1200 ° C. for 10 hours for purification treatment in a hydrogen atmosphere.

斯くして得た製品板から、磁気測定用試験片を採取し、JIS C2550に記載の方法で、磁束密度B(800A/mで励磁した時の磁束密度)を測定し、その結果を表3に併記した。この表から、本発明に適合する成分組成を有する鋼素材を用い、熱延後の巻取温度と1回目の冷延圧下率を本発明範囲内に制御することで、良好な磁気特性の方向性電磁鋼板が得られることがわかる。 A test piece for magnetic measurement was collected from the product plate thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C2550, and the results are shown in the table. It is also described in 3. From this table, by using a steel material having a component composition suitable for the present invention and controlling the winding temperature after hot rolling and the first cold rolling reduction rate within the range of the present invention, the direction of good magnetic properties It can be seen that an electrical steel sheet can be obtained.

Figure 2021139040
Figure 2021139040

Figure 2021139040
Figure 2021139040

Figure 2021139040
Figure 2021139040

C:0.037mass%、Si:3.3mass%、Mn:0.060mass%、sol.Al:0.027mass%、N:0.020mass%、S:0.002mass%およびSe:0.010mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、該スラブを1400℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とした。このときのコイル巻取温度を表4に示した。その後、1000℃×40sの熱延板焼鈍を施した後、定常時の圧延速度を800mpmとする1回目の冷間圧延で、1.2mm、1.5mmおよび1.7mmの中間板厚とし、1030℃×40sの中間焼鈍を施した後、2回目の冷間圧延で最終板厚0.20mmの冷延板に仕上げた。その後、55vol%H−45vol%N、露点60℃の湿潤雰囲気下で、850℃×60sの脱炭焼鈍を兼ねた一次再結晶焼鈍を施し、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、800〜950℃の温度域において30hr間保持する保定処理を施して二次再結晶を発現させ、引続き950〜1050℃間を10℃/hrの平均昇温速度で加熱して二次再結晶を完了させた後、水素雰囲気下で、1225℃の温度に10hr保持する純化処理する仕上焼鈍を施し、製品板とした。 C: 0.037 mass%, Si: 3.3 mass%, Mn: 0.060 mass%, sol. A steel slab containing Al: 0.027 mass%, N: 0.020 mass%, S: 0.002 mass% and Se: 0.010 mass%, and the balance consisting of Fe and unavoidable impurities was produced by a continuous casting method. The slab was reheated to a temperature of 1400 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.0 mm. The coil winding temperature at this time is shown in Table 4. Then, after hot rolling plate annealing at 1000 ° C. × 40 s, the first cold rolling at a steady rolling speed of 800 mpm was performed to obtain intermediate plate thicknesses of 1.2 mm, 1.5 mm and 1.7 mm. After intermediate annealing at 1030 ° C. × 40 s, a cold rolled plate with a final plate thickness of 0.20 mm was finished by the second cold rolling. Then, 55vol% H 2 -45vol% N 2, under a humid atmosphere with a dew point of 60 ° C., subjected to primary recrystallization annealing, which also serves as a decarburization annealing at 850 ° C. × 60s, annealing separator to the steel sheet surface mainly comprising MgO After coating and drying, secondary recrystallization is carried out by retaining treatment in a temperature range of 800 to 950 ° C. for 30 hr, and subsequently heated between 950 to 950 ° C. at an average heating rate of 10 ° C./hr. After the secondary recrystallization was completed, the product plate was subjected to finish annealing for purification treatment in which the temperature was maintained at 1225 ° C. for 10 hours in a hydrogen atmosphere.

斯くして得た製品板から、磁気測定用試験片を採取し、JIS C2550に記載の方法で、磁束密度B(800A/mで励磁した時の磁束密度)を測定し、その結果を表4に併記した。この表から、本発明に適合する成分組成を有する鋼素材を用い、熱延後の巻取温度と1回目の冷延圧下率を本発明範囲内に制御し、さらに、最終冷延の圧下率を85%以上とすることで、磁気特性がより良好な方向性電磁鋼板が得られることがわかる。 A test piece for magnetic measurement was collected from the product plate thus obtained, and the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) was measured by the method described in JIS C2550, and the results are shown in the table. It is also described in 4. From this table, using a steel material having a composition suitable for the present invention, the winding temperature after hot rolling and the first cold rolling reduction rate are controlled within the range of the present invention, and the final cold rolling reduction rate is further controlled. It can be seen that a grain-oriented electrical steel sheet having better magnetic characteristics can be obtained by setting the value to 85% or more.

Figure 2021139040
Figure 2021139040

Claims (3)

C:0.02〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.00mass%、sol.Al:0.01〜0.04mass%、N:0.004〜0.020mass%、SおよびSeの内から選ばれる1種または2種を合計で0.002〜0.040mass%含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以上の温度に再加熱し、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、中間焼鈍を挟む2回以上の冷間圧延をし、脱炭焼鈍を兼ねた一次再結晶焼鈍し、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
上記熱間圧延におけるコイル巻取温度CTが下記(1)式を満たし、
上記2回以上の冷間圧延の1回目の冷間圧延における圧下率R(%)が15%以上でかつ下記(2)式を満たすことを特徴とする方向性電磁鋼板の製造方法。

[C]×0.17×10+340≦CT≦[C]1.6×10+550 ・・・(1)
−600×[C]+57≦R≦−550×[C]+81.5 ・・・(2)
ここで、CT:熱延巻取温度(℃)、[C]:スラブのC含有量(mass%)、R:1回目の冷延圧下率(%)
C: 0.02 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.00 mass%, sol. Al: 0.01 to 0.04 mass%, N: 0.004 to 0.020 mass%, one or two selected from S and Se are contained in a total of 0.002 to 0.040 mass%, and the balance A steel slab having a component composition consisting of Fe and unavoidable impurities is reheated to a temperature of 1300 ° C. or higher, hot-rolled to obtain a hot-rolled plate, and the hot-rolled plate is annealed by hot-rolled plate and then intermediate. It consists of a series of steps of cold rolling two or more times with annealing in between, primary recrystallization annealing that also serves as decarburization annealing, applying an annealing separator mainly containing MgO to the surface of the steel plate, and then performing finish annealing. In the method of manufacturing directional electromagnetic steel sheets
The coil winding temperature CT in the hot rolling satisfies the following equation (1).
A method for producing a grain-oriented electrical steel sheet, characterized in that the reduction ratio R (%) in the first cold rolling of the two or more cold rollings is 15% or more and the following formula (2) is satisfied.
Serial [C] × 0.17 × 10 4 + 340 ≦ CT ≦ [C] 1.6 × 10 4 +550 ··· (1)
-600 x [C] +57 ≤ R ≤ -550 x [C] + 81.5 ... (2)
Here, CT: hot rolling temperature (° C.), [C]: C content of slab (mass%), R: 1st cold rolling reduction rate (%)
上記中間焼鈍を挟む2回以上の冷間圧延における最終冷間圧延の圧下率を85%以上とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the rolling reduction of the final cold rolling in two or more times of cold rolling sandwiching the intermediate annealing is 85% or more. 上記鋼スラブは、上記成分組成に加えてさらに、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%%、Ni:0.01〜0.50mass%、Bi:0.005〜0.50mass%、B:0.0002〜0.0025mass%、Nb:0.0010〜0.0100mass%、Sn:0.010〜0.400mass%、Sb:0.010〜0.150mass%、Mo:0.010〜0.200mass%、P:0.010〜0.150mass%、V:0.0005〜0.0100mass%およびTi:0.0005〜0.0100mass%のうちから選ばれる少なくとも1種の成分を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further contains Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass %%, Ni: 0.01 to 0.50 mass%, Bi: 0. .005 to 0.50 mass%, B: 0.0002 to 0.0025 mass%, Nb: 0.0010 to 0.0100 mass%, Sn: 0.010 to 0.400 mass%, Sb: 0.010 to 0.150 mass %, Mo: 0.010 to 0.200 mass%, P: 0.010 to 0.150 mass%, V: 0.0005 to 0.0100 mass% and Ti: 0.0005 to 0.0100 mass%. The method for producing a directional electromagnetic steel sheet according to claim 1 or 2, which comprises at least one component.
JP2021004038A 2020-02-28 2021-01-14 Manufacturing method of grain-oriented electrical steel sheet Active JP7463976B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020033797 2020-02-28
JP2020033797 2020-02-28

Publications (2)

Publication Number Publication Date
JP2021139040A true JP2021139040A (en) 2021-09-16
JP7463976B2 JP7463976B2 (en) 2024-04-09

Family

ID=77667905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004038A Active JP7463976B2 (en) 2020-02-28 2021-01-14 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7463976B2 (en)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139723A (en) * 1987-11-27 1989-06-01 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet excellent in magnetic property
JPH03294423A (en) * 1990-04-12 1991-12-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and film characteristic
JPH06207219A (en) * 1993-01-08 1994-07-26 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07138640A (en) * 1993-11-10 1995-05-30 Nippon Steel Corp Production of non-oriented electrical steel sheet having excellent magnetic flux density
JPH07268470A (en) * 1994-03-30 1995-10-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with low iron loss
JPH07268471A (en) * 1994-03-31 1995-10-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having high magnetic flux density
JPH10500454A (en) * 1995-03-14 1998-01-13 ユジノール サシロール Method of manufacturing grain-oriented electrical steel sheet for transformer
JPH10121135A (en) * 1996-10-11 1998-05-12 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density
JPH10140243A (en) * 1996-11-13 1998-05-26 Kawasaki Steel Corp Production of high magnetic flux density grain oriented electrical steel sheet having extremely low iron loss
JPH11124627A (en) * 1997-10-17 1999-05-11 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001123229A (en) * 1999-10-28 2001-05-08 Kawasaki Steel Corp Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JP2001262233A (en) * 2000-03-17 2001-09-26 Kawasaki Steel Corp Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
JP2001295062A (en) * 2000-04-12 2001-10-26 Kawasaki Steel Corp Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic
JP2002129235A (en) * 2000-10-23 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent film characteristic
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2002212635A (en) * 2001-01-12 2002-07-31 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2005290446A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and in characteristics of coating
JP2006241503A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2006274405A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet
JP2013064178A (en) * 2011-09-16 2013-04-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic
JP2013133503A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
JP2016089198A (en) * 2014-10-31 2016-05-23 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet excellent in magnetic properties

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317305B2 (en) 2000-01-13 2009-08-19 新日本製鐵株式会社 Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction
JP7028215B2 (en) 2019-03-28 2022-03-02 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139723A (en) * 1987-11-27 1989-06-01 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet excellent in magnetic property
JPH03294423A (en) * 1990-04-12 1991-12-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and film characteristic
JPH06207219A (en) * 1993-01-08 1994-07-26 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07138640A (en) * 1993-11-10 1995-05-30 Nippon Steel Corp Production of non-oriented electrical steel sheet having excellent magnetic flux density
JPH07268470A (en) * 1994-03-30 1995-10-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with low iron loss
JPH07268471A (en) * 1994-03-31 1995-10-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having high magnetic flux density
JPH10500454A (en) * 1995-03-14 1998-01-13 ユジノール サシロール Method of manufacturing grain-oriented electrical steel sheet for transformer
JPH10121135A (en) * 1996-10-11 1998-05-12 Kawasaki Steel Corp Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density
JPH10140243A (en) * 1996-11-13 1998-05-26 Kawasaki Steel Corp Production of high magnetic flux density grain oriented electrical steel sheet having extremely low iron loss
JPH11124627A (en) * 1997-10-17 1999-05-11 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001123229A (en) * 1999-10-28 2001-05-08 Kawasaki Steel Corp Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JP2001262233A (en) * 2000-03-17 2001-09-26 Kawasaki Steel Corp Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
JP2001295062A (en) * 2000-04-12 2001-10-26 Kawasaki Steel Corp Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic
JP2002129235A (en) * 2000-10-23 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent film characteristic
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2002212635A (en) * 2001-01-12 2002-07-31 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2005290446A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and in characteristics of coating
JP2006241503A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2006274405A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP2012188733A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Manufacturing method for grain-oriented electrical steel sheet
JP2013064178A (en) * 2011-09-16 2013-04-11 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
JP2013133503A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
JP2016089198A (en) * 2014-10-31 2016-05-23 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet excellent in magnetic properties

Also Published As

Publication number Publication date
JP7463976B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US9805851B2 (en) Grain-oriented electrical steel sheet and method of producing the same
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP7159595B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH1060532A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JP6879320B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2021139040A (en) Manufacturing method of directional magnetic steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
WO2023157938A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP6866901B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7463976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150