JPH06207219A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH06207219A
JPH06207219A JP5001875A JP187593A JPH06207219A JP H06207219 A JPH06207219 A JP H06207219A JP 5001875 A JP5001875 A JP 5001875A JP 187593 A JP187593 A JP 187593A JP H06207219 A JPH06207219 A JP H06207219A
Authority
JP
Japan
Prior art keywords
rolling
annealing
steel sheet
thickness
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5001875A
Other languages
Japanese (ja)
Other versions
JP2758543B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Hideo Yamagami
日出雄 山上
Yasuyuki Hayakawa
康之 早川
Makoto Watanabe
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5001875A priority Critical patent/JP2758543B2/en
Publication of JPH06207219A publication Critical patent/JPH06207219A/en
Application granted granted Critical
Publication of JP2758543B2 publication Critical patent/JP2758543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To suppress deterioration in secondary recrystallization attending on the reduction in a steel sheet thickness and to produce a grain-oriented silicon steel sheet excellent in magnetic flux density and iron loss characteristics. CONSTITUTION:As starting material, a slab having a composition which contains, as inhibitor, 0.010-0.040% sol.Al, 45-70wt.%ppm N, and 0.005-0.050% Sb and where respective contents of sol.Al and N, [Al] and [N] (wt.%), satisfy and inquality 0.30<=27[N]/14[Al]<=0.06 is used. Further, cold rolling is performed three times and process annealing is performed twice. High temp. annealing is carried out at 1050-1150 deg.C for 30-90sec as one process annealing, and the low temp. annealing is performed at 900-1000 deg.C for 30-90sec as the other process annealing. As for a cold rolling, a first rolling is performed at >=10% draft, a second rolling at 45-60% draft, and a third rolling at 65-80% draft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】方向性けい素鋼板の製造方法に係
わり、この明細書で述べる技術内容は、板厚を薄くし
て、鉄損特性を向上させる技術に関する研究開発の成果
を提案することにある。
[Industrial application] The technical content described in this specification relates to the production method of grain-oriented silicon steel sheet, and proposes the results of research and development related to the technology of improving the iron loss characteristics by reducing the sheet thickness. It is in.

【0002】[0002]

【従来の技術】方向性けい素鋼板には、磁気特性として
磁束密度が高いこと及び鉄損が低いことが要求される。
近年のエネルギー危機を境にして、方向性けい素鋼板
は、より鉄損の低いものへの要望がますます強くなって
いる。方向性けい素鋼板の磁気特性は、磁束密度B
8 (磁化力 800 A/mにおける値)と鉄損特性W17/50(50
Hzで 1.7Tの最大磁化時の値)とで示され、現在におい
ては、磁束密度としてB8 で1.92T、鉄損特性としてW
17/50で0.90W/kgの如き優れた製品の工業的規模での製
造も可能となっている。
2. Description of the Related Art Directional silicon steel sheets are required to have high magnetic flux density and low iron loss as magnetic characteristics.
With the recent energy crisis as a borderline, the demand for grain-oriented silicon steel sheets with lower iron loss is increasing. The magnetic characteristics of grain-oriented silicon steel sheet are the magnetic flux density B
8 ( Magnetic force at 800 A / m) and iron loss characteristics W 17/50 (50
The value at the time of maximum magnetization of 1.7T in Hz) is present. At present, the magnetic flux density is 1.92T at B 8 and the iron loss characteristic is W.
It is also possible to manufacture excellent products such as 0.90 W / kg at 17/50 on an industrial scale.

【0003】かかる優れた磁気特性を有する材料は、鉄
の磁化容易軸である〈001〉方位が鋼板の圧延方向に
高度に揃った結晶組織で構成されるものであり、かよう
な集合組織は、方向性けい素鋼板の製造工程中、最終仕
上焼鈍の際にいわゆるゴス方位と称される(110)
〔001〕方位を有する結晶粒を優先的に巨大成長させ
る2次再結晶と呼ばれる現象を通じて形成される。この
(110)〔001〕方位の2次再結晶粒を十分に成長
させるための基本的な要件としては、2次再結晶過程に
おいて、(110)〔001〕方位以外の好ましくない
方位を有する結晶粒の成長を抑制するインヒビターの存
在と、(110)〔001〕方位の2次再結晶粒が十分
に発達するのに好適な1次再結晶組織の形成とが不可欠
であることは周知の事実である。
The material having such excellent magnetic properties is composed of a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet, and such a texture is , So-called Goss orientation during final finish annealing during the production process of grain-oriented silicon steel sheet (110)
It is formed through a phenomenon called secondary recrystallization in which crystal grains having a [001] orientation are preferentially grown hugely. The basic requirement for sufficiently growing the secondary recrystallized grains of the (110) [001] orientation is that a crystal having an unfavorable orientation other than the (110) [001] orientation in the secondary recrystallization process. It is well known that the presence of an inhibitor that suppresses grain growth and the formation of a primary recrystallized structure suitable for sufficient development of secondary recrystallized grains in the (110) [001] direction are essential. Is.

【0004】前者のインヒビターとしては、一般にMnS
,MnSe,AlN 等の微細析出物が利用され、さらにこれ
らに加えてSbやSnなどの粒界偏析型の元素を複合添加し
て上記微細析出型のインヒビターの結晶成長抑制力を補
強することが行われている。一方、後者の1次再結晶組
織の形成は、主として冷間圧延での最終圧延の圧下率で
もって制御され、インヒビターの抑制力の大きさに応じ
てかかる圧下率を整合させる必要があることが知られて
いる。例えば、AlN を主要インヒビターとする場合は、
最終圧延の圧下率が90%前後、具体的には80〜95%であ
り、MnSe又はMnS とSbとをインヒビターとする場合は、
60%前後が最終圧延の最適圧下率であることが知られて
いる。
As the former inhibitor, MnS is generally used.
, MnSe, AlN and other fine precipitates are used, and in addition to these, grain boundary segregation type elements such as Sb and Sn are added in combination to reinforce the crystal growth inhibitory effect of the above fine precipitation type inhibitors. Has been done. On the other hand, the formation of the latter primary recrystallized structure is controlled mainly by the rolling reduction of the final rolling in cold rolling, and it is necessary to match the rolling reduction depending on the inhibitory force of the inhibitor. Are known. For example, if AlN is the major inhibitor,
The rolling reduction of the final rolling is around 90%, specifically 80 to 95%, and when using MnSe or MnS and Sb as the inhibitor,
It is known that around 60% is the optimum rolling reduction for final rolling.

【0005】さて、方向性けい素鋼板の鉄損を低減する
ためには、 良好な2次再結晶を行わせ、磁束密度を高める、 鋼中に含有させるSiの量を増す、 2次再結晶の粒径を低減する、 鋼板の板厚を低減する、 ことが有効であることが知られている。このうち、の
磁束密度の向上については、B8 で既に飽和磁束密度の
95%程度に達している現状では、これ以上の飛躍は大き
く望めない。またのSi含有量の増加は、鋼板の加工性
を劣化させ、圧延が不可能となるので、現行以上の増加
は望めない。さらにの2次再結晶粒の粒径は、現状で
既に3〜6mmに達しているので、これ以上に低下させた
場合は2次再結晶そのものが不完全となって、B8 が低
下し、鉄損値は逆に増加する。の鋼板の板厚を低減す
る方法は、工業的には容易であり、鉄損特性の飛躍的な
向上が期待されるもので、これまでも多くの技術が開示
されてきた。
In order to reduce the iron loss of grain-oriented silicon steel sheets, good secondary recrystallization is performed to increase the magnetic flux density, the amount of Si contained in the steel is increased, and the secondary recrystallization is performed. It is known that it is effective to reduce the grain size of the steel sheet and to reduce the plate thickness of the steel sheet. For these, the improvement of the magnetic flux density is already saturated magnetic flux density B 8
With the current rate of 95%, we cannot expect any further leap. Further, since the increase of Si content deteriorates the workability of the steel sheet and makes rolling impossible, an increase over the current level cannot be expected. Further, the grain size of the secondary recrystallized grains has already reached 3 to 6 mm under the present circumstances. Therefore, if the grain size is further reduced, the secondary recrystallization itself becomes incomplete and B 8 is lowered. On the contrary, the iron loss value increases. The method for reducing the plate thickness of the steel sheet is industrially easy and is expected to dramatically improve the iron loss characteristics, and many techniques have been disclosed so far.

【0006】例えば、特公昭59-20745号公報には、MnSe
とSbをインヒビターとして含有する鋼素材に、最終圧延
を圧下率64%で施して板厚0.20mmの方向性けい素鋼板を
製造することが実施例3に開示されている。また特開昭
58-217630 号公報にはAlN とMnS をインヒビターとしCu
とSnを含有する鋼素材の、最終圧延の圧下率を89%とし
て板厚0.225mm の方向性けい素鋼板を製造することが実
施例1に開示されている。さらに特開昭59-126722 号公
報には、AlN とMnS をインヒビターとして含有する熱延
板に圧下率15〜40%の予備冷延を行った後、最終冷延を
80〜90%の圧下率で行なう方向性けい素鋼板の製造技術
が開示されている。
For example, Japanese Patent Publication No. 59-20745 discloses MnSe.
It is disclosed in Example 3 that a steel material containing Sb and Sb as inhibitors is subjected to final rolling at a rolling reduction of 64% to produce a grain-oriented silicon steel sheet having a sheet thickness of 0.20 mm. In addition,
58-217630 discloses Cu using AlN and MnS as inhibitors.
Example 1 discloses the production of a grain-oriented silicon steel sheet having a sheet thickness of 0.225 mm by making the final rolling reduction of the steel material containing Sn and Sn 89%. Further, in JP-A-59-126722, a hot-rolled sheet containing AlN and MnS as inhibitors was subjected to preliminary cold-rolling with a rolling reduction of 15 to 40%, and then the final cold-rolling was performed.
A technique for producing a grain-oriented silicon steel sheet with a reduction rate of 80 to 90% is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらの技術
では鋼板の板厚減少に伴う2次再結晶の劣化の抑制が十
分でなく、磁束密度の値や鉄損の値は十分なものとは云
えないものであった。
However, these techniques do not sufficiently suppress the deterioration of the secondary recrystallization due to the reduction of the plate thickness of the steel sheet, and the values of the magnetic flux density and the iron loss are not sufficient. It was something I couldn't say.

【0008】すなわち、これらの先行技術は、鋼板の板
厚の低減に伴う2次再結晶の劣化を抑制すべく、冷延2
回法に関して含有成分や冷延圧下率の検討を行っている
が、いずれも飛躍的な向上が得られなかったのである。
この理由は、冷延2回法を採用して、目標とする最終板
厚と得ようとした場合の第1回目の圧延の圧下率は、1
次再結晶組織にさほど大きな影響を及ぼさず、結局、1
次再結晶組織は最終冷延である第2回目の圧延の圧下率
で決定されるので、第1回目の圧延は、熱延板の厚み
と、第2回目の圧延前に必要とされる板厚との差を解消
するための単なる板厚調整のための圧延に過ぎないから
である。
[0008] That is, these prior arts use cold rolling 2 in order to suppress the deterioration of secondary recrystallization accompanying the reduction of the plate thickness of the steel plate.
Although the content of components and the cold rolling reduction rate are being investigated for the rolling method, no dramatic improvement was obtained.
The reason for this is that when the cold rolling double rolling method is adopted and the target final plate thickness is obtained, the rolling reduction of the first rolling is 1
It does not affect the secondary recrystallization structure so much,
Since the next recrystallization structure is determined by the rolling reduction of the second cold rolling, which is the final cold rolling, the first rolling is the thickness of the hot-rolled sheet and the sheet required before the second rolling. This is because it is merely rolling for adjusting the plate thickness to eliminate the difference from the thickness.

【0009】結局のところ、前掲特公昭59-20745号公報
に開示された、第2回目の圧延の圧下率は64%で、MnSe
+Sb系としては従来と同一であり、また前掲特開昭59-1
26722 号公報に開示されたAlN +MnS 系の第2回目の圧
延の圧下率は80〜90%で従来の冷延1回法の圧下率と変
わりがない。したがって、両者とも従来技術に対し、基
本的には大きな変化がないため、方向性けい素薄鋼板の
製造技術としても大幅な向上が認められなかったのであ
る。
After all, the rolling reduction of the second rolling, which is disclosed in Japanese Patent Publication No. 59-20745, is 64%.
The + Sb system is the same as the conventional one, and the above-mentioned JP-A-59-1
The rolling reduction of the second rolling of the AlN + MnS system disclosed in Japanese Patent No. 26722 is 80 to 90%, which is no different from the rolling reduction of the conventional cold rolling single rolling method. Therefore, both of them are basically the same as those of the conventional technique, so that no significant improvement was recognized as a technique for producing grain-oriented silicon thin steel sheets.

【0010】この発明は、上述した方向性けい素薄鋼板
の製造にかかわる磁気特性劣化の不利を解消して、磁気
特性の向上をもたらす方法を提案することを目的とす
る。
An object of the present invention is to propose a method for improving the magnetic properties by eliminating the disadvantage of the deterioration of the magnetic properties associated with the production of the grain-oriented silicon steel sheet described above.

【0011】[0011]

【課題を解決するための手段】この発明は、含けい素鋼
スラブを出発材として、この出発材に熱間圧延を施した
後、冷間圧延を、中間焼鈍を挟んで複数回施し、脱炭焼
鈍、次いで焼鈍分離剤を塗布してから最終仕上焼鈍を行
う方向性けい素鋼板の製造方法であって、前記出発材に
はsol.Al:0.010 〜0.040 wt%、N:45〜70 wt ppm 及
びSb:0.005 〜0.050 wt%を含み、かつsol.Al,Nの各
含有量〔Al〕,〔N〕(wt%)が次式 0.30≦27〔N〕/14〔Al〕≦0.60 を満足するスラブを用いること、前記冷間圧延を3回、
中間焼鈍を2回行うものとして、一方の中間焼鈍には10
50〜1150℃で30〜90秒間の高温焼鈍を、他方の中間焼鈍
には900 〜1000℃で30〜90秒間の低温焼鈍を行うこと、
冷間圧延は、第1回目の圧延の圧下率を10%以上、第2
回目の圧延の圧下率を45〜65%、第3回目の圧延の圧下
率を65〜80%で行うことの結合を特徴とする磁気特性に
優れた方向性けい素鋼板の製造方法である。
According to the present invention, a silicon steel-containing slab is used as a starting material, hot rolling is performed on the starting material, and then cold rolling is performed a plurality of times with intermediate annealing interposed therebetween, and then deannealed. A method for producing a grain-oriented silicon steel sheet, comprising performing carbon annealing, then applying an annealing separator, and then performing final finish annealing, wherein the starting material is sol.Al: 0.010 to 0.040 wt%, N: 45 to 70 wt. ppm and Sb: 0.005 to 0.050 wt% are included, and the contents of sol.Al and N [Al] and [N] (wt%) satisfy the following formula 0.30≤27 [N] / 14 [Al] ≤0.60. Using a satisfactory slab, performing the cold rolling three times,
Assuming two intermediate anneals, one intermediate anneal is 10
Perform high temperature annealing at 50 to 1150 ° C for 30 to 90 seconds and low temperature annealing at 900 to 1000 ° C for 30 to 90 seconds for the other intermediate annealing.
Cold rolling has a reduction rate of 10% or more in the first rolling,
This is a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, which is characterized by a combination of performing a rolling reduction of 45 to 65% for the third rolling and a rolling reduction of 65 to 80% for the third rolling.

【0012】以下、この発明の解明経緯について説明す
る。発明者らは、AlN を主インヒビターとする方向性け
い素薄鋼板の2次再結晶の劣化機構を研究し、この原因
が鋼板表層部のインヒビターの抑制力の劣化に起因する
ことを確認した。すなわち、圧延と焼鈍との繰返しによ
って鋼板表層部のインヒビターは粗大化し、2次再結晶
直前での鋼板表層部の抑制力が大幅に低減するのが一般
的であるが、他方で2次再結晶の良好な核生成領域は、
かかる鋼板表面から板厚の約10分の1の領域にあるた
め、板厚が薄くなればなる程、この鋼板表層部の抑制力
低下の影響を受け、良好な2次再結晶が困難となること
を見出したものである。この対策として発明者らは、先
に特開平2-115319号公報においてSbを添加することを提
案したが、この対策によっても、例えば板厚0.20mm以下
の製品については良好な磁気特性が得難かった。
The background of the clarification of the present invention will be described below. The inventors studied the deterioration mechanism of secondary recrystallization of grain-oriented silicon steel sheet using AlN 3 as a main inhibitor, and confirmed that the cause was due to the deterioration of inhibitor inhibitory power in the surface layer of the steel sheet. That is, it is general that the inhibitor in the surface layer portion of the steel sheet is coarsened by repeating the rolling and annealing, and the suppressing force of the surface layer portion of the steel sheet immediately before the secondary recrystallization is greatly reduced, but on the other hand, the secondary recrystallization is performed. The good nucleation region of
Since it is in a region of about 1/10 of the plate thickness from the surface of the steel plate, the thinner the plate thickness is, the more the influence of the reduction of the suppressing force of the surface layer of the steel plate becomes, and the more difficult the secondary recrystallization becomes. That is what I found. As a countermeasure against this, the inventors previously proposed adding Sb in Japanese Patent Laid-Open No. 2-115319, but even with this countermeasure, it is difficult to obtain good magnetic characteristics for a product having a plate thickness of 0.20 mm or less. It was

【0013】しかしながら、この研究の過程において、
Sbを含有する鋼にあっては製造工程の途中における窒素
の鋼中への多量の侵入を抑えるのが、良好な2次再結晶
を行うために有利であることがわかった。
However, in the course of this research,
It has been found that in the case of a steel containing Sb, it is advantageous to prevent a large amount of nitrogen from penetrating into the steel during the manufacturing process in order to perform good secondary recrystallization.

【0014】すなわち、鋼中に、Alを 0.025wt%含有す
る場合、全量をAlN として析出させるための必要N量は
次の計算により、 (14/27)・〔Al〕=(14/27) ×0.025 ≒ 0.013wt% (〔Al〕は、sol.Alの含有量(wt%)を表わす) 約130wt ppm が必要である。しかしながら、溶鋼中に13
0wt ppm ものNを含有させると、凝固時やスラブ再加熱
時においてN2ガスによるふくれを生じるため、溶鋼への
添加は最大限でも90wt ppmに抑える必要がある。したが
って、冷延工程途中で窒化処理を施して2次再結晶の前
に十分なN含有量を確保することが必要とされ、例えば
特開平 4-23522号公報では窒化処理によって150wt ppm
以上のNを確保することが望ましいとの指摘がなされて
いる。
That is, when 0.025 wt% of Al is contained in the steel, the necessary N amount for precipitating the total amount as AlN is calculated as follows: (14/27). [Al] = (14/27) × 0.025 ≈ 0.013wt% ([Al] represents the content (wt%) of sol.Al) About 130wtppm is required. However, in molten steel 13
If 0 wt ppm of N is contained, swelling due to N 2 gas occurs during solidification and slab reheating, so addition to molten steel must be suppressed to 90 wt ppm at the maximum. Therefore, it is necessary to perform a nitriding treatment during the cold rolling process to secure a sufficient N content before secondary recrystallization. For example, in Japanese Patent Laid-Open No. 4-23522, 150 wt ppm
It has been pointed out that it is desirable to secure the above N.

【0015】しかしながら、Sbを鋼中に含有する場合
は、冷延工程の途中での窒化が困難となる。しかも、窒
素含有量として150wt ppm (27〔N〕/14〔Al〕として
1.16)といった窒化は、逆に磁気特性を劣化させること
が発明者らの研究により判明した。Sbを含有する鋼の場
合は、2次再結晶直前でのN含有量として100wt ppm
(27〔N〕/14〔Al〕として0.77)以下に抑えることが
必要であることがわかった。
However, when Sb is contained in steel, nitriding becomes difficult during the cold rolling process. Moreover, the nitrogen content is 150 wt ppm (27 [N] / 14 [Al]
On the contrary, the nitriding such as 1.16) has been found by the inventors' studies to deteriorate the magnetic properties. In the case of steel containing Sb, the N content immediately before secondary recrystallization is 100 wt ppm
It has been found that it is necessary to suppress it to (0.77 as 27 [N] / 14 [Al]) or less.

【0016】Sbを鋼中に含有する場合の適正なN含有量
につき、発明者らの詳細な研究結果では、27〔N〕/14
〔Al〕の値は、0.62程度が最も良く、したがって0.025
wt%のAlを含有する場合には、初期含有窒素量は80wt p
pm程度が最も良好で、このことは発明者らによる前述の
特開平2-115319号公報の実施例で示してある。
Regarding the proper N content when Sb is contained in the steel, the detailed research results of the inventors show that it is 27 [N] / 14.
The value of [Al] is best around 0.62, so 0.025
When containing wt% Al, the initial nitrogen content is 80 wt p
The pm level is the best, and this is shown in the example of the above-mentioned JP-A-2-115319 by the inventors.

【0017】ところで、初期含有窒素量がさらに低い場
合には、通常の手法である冷延2回法の実験では、やは
り磁気特性が劣化したのであるが、その後、新たに冷延
3回法を用い、特定の中間焼鈍と冷延圧下率を採用した
場合では、極めて良好な磁気特性が得られることを新規
に見出し、これに関する種々の研究を行った結果、この
発明を完成させたのである。
By the way, when the initial content of nitrogen was further lower, the magnetic properties were deteriorated in the experiment of the cold rolling twice method which is a usual method, but after that, the cold rolling three times method was newly added. It was newly found that extremely good magnetic properties can be obtained by using a specific intermediate annealing and cold rolling reduction, and as a result of various studies on this, the present invention was completed.

【0018】次に、この発明の端緒となった実験につい
て述べる。 C:0.07wt%,Si:3.32wt%,Mn:0.07wt%,Al:0.02
5 wt%,P:0.005 wt%,S:0.003 wt%,Se:0.018
wt%,Sb:0.020 wt%及びN:0.0085wt%を含有する2.
0mm 厚の熱延板(a)と、C:0.07wt%,Si:3.35wt
%,Mn:0.07wt%,Al:0.025 wt%,P:0.007 wt%,
S:0.003 wt%,Se:0.018 wt%,Sb:0.020 wt%及び
N:0.0060wt%を含有する2.0mm 厚の熱延板(b)とを
用意した。
Next, the experiment that started the present invention will be described. C: 0.07 wt%, Si: 3.32 wt%, Mn: 0.07 wt%, Al: 0.02
5 wt%, P: 0.005 wt%, S: 0.003 wt%, Se: 0.018
wt%, Sb: 0.020 wt% and N: 0.0085 wt% 2.
0mm thick hot rolled sheet (a), C: 0.07wt%, Si: 3.35wt
%, Mn: 0.07 wt%, Al: 0.025 wt%, P: 0.007 wt%,
A 2.0 mm thick hot rolled plate (b) containing S: 0.003 wt%, Se: 0.018 wt%, Sb: 0.020 wt% and N: 0.0060 wt% was prepared.

【0019】これら2種の熱延板をそれぞれ2分割し、
一方は1000℃で40秒間の熱延板焼鈍の後、酸洗し、第1
回目の圧延を圧下率40%で施し、厚み1.20mmとした。次
に1100℃で1分間の中間焼鈍を施した後、第2回目の圧
延を圧下率85%で施し、最終板厚0.18mmとした〔冷延2
回法工程〕。
These two kinds of hot rolled sheets are divided into two,
One is annealed at 1000 ℃ for 40 seconds, then pickled, and then the first
The second rolling was performed at a reduction rate of 40% to a thickness of 1.20 mm. Next, after an intermediate annealing at 1100 ° C for 1 minute, the second rolling was performed at a reduction rate of 85% to give a final plate thickness of 0.18 mm [cold rolling 2
Circulation process].

【0020】残る一方は、1000℃で40秒間の熱延板焼鈍
の後、酸洗し、第1回目の圧延を圧下率30%で施し、厚
み1.40mmとした。次に1100℃で1分間の第1回目の中間
焼鈍を施した後、第2回目の圧延を圧下率50%で施し、
板厚0.70mmとした。次に950℃で1分間の第2回目の中
間焼鈍を施した後、第3回目の圧延を圧下率74%で施
し、0.18mmの最終板厚とした〔冷延3回法工程〕。
On the other hand, the hot rolled sheet was annealed at 1000 ° C. for 40 seconds, then pickled, and the first rolling was performed at a reduction rate of 30% to obtain a thickness of 1.40 mm. Next, after the first intermediate annealing at 1100 ° C for 1 minute, the second rolling was performed at a reduction rate of 50%,
The plate thickness was 0.70 mm. Next, after performing the second intermediate annealing at 950 ° C. for 1 minute, the third rolling was performed at a reduction rate of 74% to give a final plate thickness of 0.18 mm [three cold rolling process steps].

【0021】これらの鋼板は、 850℃で2分間、湿水素
雰囲気中での脱炭焼鈍の後、5%のTiO2を含有するMgO
を焼鈍分離剤として塗布し、1200℃で10時間の最終仕上
焼鈍を施した。最終仕上焼鈍後の各鋼板は未反応の焼鈍
分離剤を除去した後、張力コーティングの焼付を兼ねる
平坦化焼鈍を施した。かくして得られた鋼板の磁気特性
を測定した結果を表1に示す。
These steel sheets were decarburized and annealed in a wet hydrogen atmosphere at 850 ° C. for 2 minutes and then MgO containing 5% TiO 2 was added.
Was applied as an annealing separator and subjected to final finishing annealing at 1200 ° C. for 10 hours. After the final finish annealing, each steel sheet was subjected to flattening annealing which also serves as baking of tension coating after removing unreacted annealing separator. The results of measuring the magnetic properties of the steel sheet thus obtained are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】この実験結果からN含有量の低かった熱延
板(b)は、冷延3回法によって極めて優れた磁気特性
が得られることがわかる。
From the results of this experiment, it can be seen that the hot rolled sheet (b) having a low N content can obtain extremely excellent magnetic characteristics by the cold rolling three times method.

【0024】次に、冷延工程における各条件の適正範囲
を決めるため、前記の熱延板(b)を用い、第2回目の
圧延の圧下率と第3回目の圧延の圧下率とを種々に変更
し、第1回目の中間焼鈍を1100℃で1分間、第2回目の
中間焼鈍を 950℃で1分間として、他は前述の実験と同
一条件にて、冷延3回法での板厚0.18mmの方向性けい素
鋼板の製造実験を行った。かくして得られた鋼板の磁束
密度と第2回目、第3回目の冷延圧下率との関係につき
調べた結果を図1に示す。図1より第2回目の圧延での
好適な圧下率の範囲は45〜65%、第3回目の圧延での好
適な圧下率の範囲は65〜80%であることが示される。
Next, in order to determine the proper range of each condition in the cold rolling process, the above-mentioned hot rolled plate (b) is used and various reduction ratios of the second rolling and the third rolling are used. The first intermediate annealing was performed at 1100 ° C for 1 minute, the second intermediate annealing was performed at 950 ° C for 1 minute, and the other conditions were the same as those of the above-mentioned experiment. A manufacturing experiment of a grain-oriented silicon steel sheet having a thickness of 0.18 mm was conducted. FIG. 1 shows the results of an examination of the relationship between the magnetic flux density of the steel sheet thus obtained and the second and third cold rolling reductions. From FIG. 1, it is shown that the preferable range of the reduction rate in the second rolling is 45 to 65%, and the preferable range of the reduction rate in the third rolling is 65 to 80%.

【0025】さらに熱延板(b)を用い、第1回目の中
間焼鈍の温度と第2回目の中間焼鈍の温度を種々に変更
し、第1回目の圧延の圧下率を30%、第2回目の圧延の
圧下率を50%,第3回目の圧延の圧下率を74%として、
他は前述の実験と同一条件にて冷延3回法での板厚0.18
mmの方向性けい素鋼板の製造実験を行った。なお、中間
焼鈍の均熱時間はいずれも1分間とした。かくして得ら
れた鋼板の磁束密度と第1回目の中間焼鈍の温度、第2
回目の中間焼鈍の温度との関係につき調べた結果を図2
に示す。
Further, using the hot-rolled sheet (b), the temperature of the first intermediate annealing and the temperature of the second intermediate annealing are variously changed, and the rolling reduction of the first rolling is 30%, The rolling reduction of the third rolling is 50%, the rolling reduction of the third rolling is 74%,
Other than that, under the same conditions as the above-mentioned experiment, the thickness of the cold rolled 3 times method is 0.18
A manufacturing experiment of a grain-oriented silicon steel sheet of mm was conducted. The soaking time of the intermediate annealing was 1 minute in all cases. The magnetic flux density of the steel sheet thus obtained and the temperature of the first intermediate annealing, the second
Fig. 2 shows the results of the investigation of the relationship with the temperature of the second intermediate annealing.
Shown in.

【0026】図2より中間焼鈍の好適温度範囲は1050℃
〜1150℃の高温度範囲と 900℃〜1000℃の低温度範囲と
の組合せが好適であることが示される。なお、第1回目
の圧延の圧下率は10%以上であれば十分であり、また熱
延板焼鈍は磁気特性の安定化に有効であるものの、必ず
しも必要とはされなかった。
From FIG. 2, the preferred temperature range for the intermediate annealing is 1050 ° C.
A combination of a high temperature range of ˜1150 ° C. and a low temperature range of 900 ° C. to 1000 ° C. has been shown to be suitable. The rolling reduction of the first rolling is sufficient if it is 10% or more, and the hot-rolled sheet annealing is effective for stabilizing the magnetic properties, but it is not always necessary.

【0027】このような実験結果をもとに、発明者らが
種々検討を加えた結果、この発明の冷延3回法で磁気特
性が向上する機構は下記のように推定された。第1回目
の圧延は、鋼板に加工歪を加えて、次の第1回目の中間
焼鈍の昇温過程でAlN を析出させるのに必要である。し
たがって10%以上の圧下率を必要とする。第2回目の圧
延は、次の第2回目の中間焼鈍によって鋼板表層に(1
10)〔001〕組織を集積させるためであり、このた
め45〜65%の圧下率を必要とする。第3回目の圧延は次
の脱炭焼鈍によって形成される1次再結晶組織を鋼板の
抑制力と整合させるために必要で、薄鋼板特有の表層部
抑制力の劣化に合致させるため65〜80%の圧下率とする
ことが必要である。なお、65〜80%の圧下率に合致させ
るため、板厚中央部のインヒビター抑制力も若干弱めて
おくことが必要で、そのためには、Nの含有量を低めと
し、27〔Al〕/14〔N〕の値として0.30〜0.60とするこ
とが必要である。また、Sbは鋼板表面に偏析し、鋼板表
層部のインヒビターの大幅な抑制力の低下を防止すると
同時に、窒化を防止する作用をもつ。
As a result of various studies conducted by the present inventors based on the results of such experiments, the mechanism by which the magnetic properties are improved by the cold rolling three times method of the present invention was estimated as follows. The first rolling is necessary to apply work strain to the steel sheet and precipitate AlN in the temperature rising process of the next first intermediate annealing. Therefore, a reduction rate of 10% or more is required. The second rolling is carried out by the following second intermediate annealing on the steel sheet surface layer (1
10) It is for accumulating [001] texture, and for this reason, a reduction rate of 45 to 65% is required. The third rolling is necessary to match the primary recrystallization structure formed by the subsequent decarburization annealing with the restraining force of the steel sheet, and to match the deterioration of the restraining force of the surface layer portion peculiar to the thin steel sheet, 65 to 80 It is necessary to set the reduction rate to%. In order to match the reduction rate of 65 to 80%, it is necessary to slightly weaken the inhibitor suppressing force in the central portion of the plate thickness. For this purpose, the N content should be low and 27 [Al] / 14 [ It is necessary to set the value of N] to 0.30 to 0.60. In addition, Sb segregates on the surface of the steel sheet, and has the effect of preventing a significant reduction in the inhibitory force of the inhibitor at the surface layer of the steel sheet, and at the same time preventing nitriding.

【0028】さて、2回の中間焼鈍であるが、1回は高
温度の中間焼鈍が必要である。これは鋼中に含有するC
の作用によってγ変態を促進させ、冷却後のパーライト
組織や、粗大セメンタイトの析出によって、鋼板中央部
の組織のランダム化と細粒化に有効となるからである。
このためには、1050〜1150℃が必要である。1150℃を超
える場合は高温のためにインヒビターが劣化し不適合と
なる。同様の理由で焼鈍時間は、90秒間を超えると不適
合となる。また、1050℃〜1150℃の高温焼鈍を、中間焼
鈍で2回繰返すとやはり、インヒビターが劣化し、磁気
特性が低下する。
Although the intermediate annealing is performed twice, the high temperature intermediate annealing is required once. This is C contained in steel
This is because the γ-transformation is promoted by the action of, and the pearlite structure after cooling and the precipitation of coarse cementite are effective for randomizing and fine-graining the structure of the central portion of the steel sheet.
For this, 1050-1150 ° C is required. If the temperature exceeds 1150 ℃, the inhibitor deteriorates due to the high temperature and becomes incompatible. For the same reason, the annealing time becomes incompatible when it exceeds 90 seconds. Further, when the high temperature annealing at 1050 ° C to 1150 ° C is repeated twice in the intermediate annealing, the inhibitor is deteriorated and the magnetic properties are deteriorated.

【0029】以上の発見にもとづき、薄方向性けい素鋼
板の製造において極めて優れた磁気特性が得られる方法
を開発し、この発明を完成させたものである。
Based on the above findings, a method for obtaining extremely excellent magnetic properties in the production of thin grain-oriented silicon steel sheets was developed and the present invention was completed.

【0030】[0030]

【作用】この発明における出発材である、含けい素鋼ス
ラブの成分組成範囲について説明する。Cは、γ変態を
利用して熱間圧延組織の改善に有効な成分であるが、多
過ぎると脱炭が困難になるので0.03wt%以上0.09wt%以
下が好ましい。Siは、少ないと電気抵抗が小さくなって
良好な鉄損特性が得られず、一方多過ぎると冷間圧延が
困難になるので 2.5wt%以上 4.5wt%以下の範囲とする
のが望ましい。Mnは、インヒビター成分として利用し得
るが、多過ぎると溶体化が困難であるので、0.05wt%以
下の範囲が好適である。
The composition range of the silicon-containing steel slab, which is the starting material in the present invention, will be described. C is an effective component for improving the hot-rolled structure by utilizing the γ-transformation, but if it is too much, decarburization becomes difficult, so 0.03 wt% or more and 0.09 wt% or less is preferable. If Si is small, electric resistance is small and good iron loss characteristics cannot be obtained. On the other hand, if Si is too large, cold rolling becomes difficult. Therefore, it is preferable to set it in the range of 2.5 wt% or more and 4.5 wt% or less. Mn can be used as an inhibitor component, but if it is too much, it is difficult to form a solution, so a range of 0.05 wt% or less is preferable.

【0031】Alは、この発明の主インヒビターであるAl
N を構成するのに必須の成分であり、少ないとインヒビ
ター量の不足を招き、多過ぎると粗大析出を招くので0.
01wt%以上0.040 wt%以下の範囲とする。
Al is the main inhibitor of this invention, Al.
It is an essential component to form N, and if it is too small, the amount of inhibitor will be insufficient, and if it is too large, coarse precipitation will occur.
The range is from 01 wt% to 0.040 wt%.

【0032】Nもこの発明の主インヒビターであるAlN
を構成するのに必須の成分であるが、Alに対する必要量
よりも低くし、抑制力を若干低減する点がこの発明の肝
要な点である。このためには、Nの適正な含有量として
は45〜70wt ppmでかつ、Alとのモル濃度比を示す27
〔N〕/14〔Al〕の値において、0.30〜0.60の範囲に規
制することが必要である(ここにおいて、〔N〕,〔A
l〕はそれぞれN及びAlの含有量(wt%),27,14はそ
れぞれAl及びNの原子量である)。ここでNの含有量が
少ないと、インヒビターとしての抑制効果が消失し、逆
に多過ぎた場合、この発明の目的のためには抑制効果が
過剰となる。
N is also the main inhibitor of this invention, AlN
Although it is an essential component for forming Al, it is an important point of the present invention that the amount is suppressed below the necessary amount for Al and the suppressing power is slightly reduced. For this purpose, the proper content of N is 45 to 70 wt ppm, and the molar concentration ratio with Al is 27
In the value of [N] / 14 [Al], it is necessary to regulate within the range of 0.30 to 0.60 (here, [N], [A]
l] is the content of N and Al (wt%), and 27 and 14 are the atomic weights of Al and N, respectively). Here, when the content of N is small, the inhibitory effect as an inhibitor disappears, and when it is too large, the inhibitory effect becomes excessive for the purpose of the present invention.

【0033】Sbは、この発明の効果を得るためには、必
要不可欠の成分であり、偏析型元素としてのインヒビタ
ー抑制力の補助としての効果の他に、鋼板表層部の抑制
力の消失を抑える効果及び窒化を抑制する等の効果を有
する。したがって0.005 wt%以上は必要であるが、0.05
0 wt%を超えると鋼のぜい化をもたらし、圧延が困難と
なるので、0.005 〜0.050 wt%の範囲とする。
Sb is an essential component for obtaining the effect of the present invention. In addition to the effect of assisting the inhibitor suppressing force as a segregation type element, Sb suppresses the disappearance of the suppressing force of the steel sheet surface layer portion. It has an effect and an effect of suppressing nitriding. Therefore, 0.005 wt% or more is necessary, but 0.05
If it exceeds 0 wt%, it causes embrittlement of the steel and makes rolling difficult, so the range is from 0.005 to 0.050 wt%.

【0034】この他に、インヒビター成分としてS,S
e,Sn,Ge,Bi,Cu,Cr,P,B等を添加してもこの発
明の効果を妨げない。ここで、S,Se,Geについては0.
005 wt%以上0.05wt%以下が好ましく、Sn,Cr,Cuにつ
いては0.02wt%以上0.3 wt%以下、Biについては0.005
wt%以上0.02wt%以下、Pについては0.01wt%以上0.07
wt%以下、Bについては0.0005wt%以上0.0030wt%以下
の範囲が好適である。
In addition to this, S, S as an inhibitor component
Addition of e, Sn, Ge, Bi, Cu, Cr, P, B, etc. does not hinder the effect of the present invention. Here, 0 for S, Se, Ge.
005 wt% or more and 0.05 wt% or less are preferable, 0.02 wt% or more and 0.3 wt% or less for Sn, Cr, and Cu, and 0.005 for Bi.
wt% to 0.02 wt%, P is 0.01 wt% to 0.07
The range of 0.0005 wt% or more and 0.0030 wt% or less for B is preferable.

【0035】さらに熱間ぜい化に起因する表面欠陥防止
のために0.005 wt%以上0.020 wt%以下でのMoの添加は
好ましい。
Further, in order to prevent surface defects due to hot embrittlement, it is preferable to add Mo in an amount of 0.005 wt% or more and 0.020 wt% or less.

【0036】次に製造工程について述べる。かかる組成
を有する鋼は、インゴット又はスラブを必要に応じて再
圧延し、サイズを合わせた後、加熱して熱間圧延を施
す。スラブ加熱については1350〜1400℃での長時間加熱
や1400℃以上の短時間加熱、又はインヒビターとしてAl
N 単独の場合、1200〜1300℃での低温加熱を行なう等、
公知の手法を適用することができる。また、それに引続
く熱間圧延も従来の方法でよく、スラブ加熱を省略する
直接圧延法を適用してもよい。
Next, the manufacturing process will be described. For steel having such a composition, an ingot or a slab is re-rolled if necessary, and the size is adjusted, followed by heating and hot rolling. For slab heating, long-term heating at 1350 to 1400 ° C, short-time heating at 1400 ° C or higher, or Al as an inhibitor
In the case of N alone, perform low temperature heating at 1200-1300 ° C, etc.
A known method can be applied. Further, the subsequent hot rolling may be a conventional method, and a direct rolling method in which slab heating is omitted may be applied.

【0037】熱間圧延された後の鋼板は、必要に応じて
熱延板焼鈍が施され、酸洗後に、第1回目の圧延を行
う。この圧延は加工歪を付加し、次工程である第1回目
の中間焼鈍の昇温途中でAlN を析出させる目的で行い、
一定量以上の歪付加のために圧下率は10%以上を必要と
する。
The steel sheet after the hot rolling is subjected to hot-rolled sheet annealing as required, and after pickling, the first rolling is performed. This rolling is performed for the purpose of adding work strain and precipitating AlN during the temperature rise of the first intermediate annealing which is the next step,
A reduction rate of 10% or more is required to add a certain amount of strain.

【0038】第2回目の圧延は、次の工程である第2回
目の中間焼鈍による鋼板表層の再結晶集合組織として
(110)〔001〕組織を高めるためであるので、圧
下率として45〜65%とすることが必要である。すなわ
ち、圧下率が45%に足りない場合、集合組織の発達が不
十分となるし、逆に65%を超えると(111)強度が増
加し(110)〔001〕強度は低下する。これは2次
再結晶粒のうち、良好な析出核の減少を意味し、鋼板の
板厚が薄くなる程、かかる核の生成が不利となるので製
品の磁気特性の劣化を招く。したがって圧下率は45〜65
%が必要である。
The second rolling is to increase the (110) [001] structure as the recrystallization texture of the surface layer of the steel sheet by the second intermediate annealing which is the next step, so the rolling reduction is 45 to 65. % Is required. That is, when the rolling reduction is less than 45%, the texture development is insufficient, and conversely, when it exceeds 65%, the (111) strength increases and the (110) [001] strength decreases. This means a good reduction of the precipitation nuclei in the secondary recrystallized grains. The thinner the plate thickness of the steel sheet, the more disadvantageous the generation of such nuclei is, resulting in deterioration of the magnetic properties of the product. Therefore, the rolling reduction is 45 to 65.
%is necessary.

【0039】第3回目の圧延は、次の工程の脱炭焼鈍に
よって形成される1次再結晶組織を、鋼板内部及び鋼板
表層部の抑制力に整合させるために必要で、薄鋼板特有
の表層部抑制力の劣化状態に合致させるべく、圧下率を
65〜80%とすることが必要である。圧下率が80%を超え
る場合は、1次再結晶組織が細か過ぎて、2次再結晶不
良となるし、65%に満たない場合は、抑制力の方が強過
ぎる結果、方位の悪い粒が2次再結晶して磁気特性が劣
化するので不適合である。
The third rolling is necessary in order to match the primary recrystallization structure formed by the decarburization annealing in the next step with the restraining force inside the steel sheet and the surface layer portion of the steel sheet, and the surface layer peculiar to the thin steel sheet. In order to match the deterioration state of the part restraining force,
It is necessary to be 65 to 80%. If the rolling reduction exceeds 80%, the primary recrystallization structure becomes too fine and secondary recrystallization failure occurs. If it is less than 65%, the suppressing force becomes too strong, resulting in grains with bad orientation. Is not suitable because the secondary recrystallization causes deterioration of magnetic properties.

【0040】以上これらの圧延は、高温度のいわゆる温
間圧延としても良いし、また、パス間で時効処理を行っ
ても良い。これらの処理により、より良い磁気特性が期
待できる。
The above rolling may be so-called warm rolling at high temperature, or aging treatment may be performed between passes. With these treatments, better magnetic properties can be expected.

【0041】さて、これらの圧延の途中に挟まれる2回
の中間焼鈍であるが、1回は高温度の焼鈍が、他の1回
は低温度の焼鈍が必要で、これらの組合せが必要であ
る。高温度の中間焼鈍は1050℃〜1150℃とし、30秒間〜
90秒間の均熱時間が必要で、これは鋼中に含有するCの
作用によってγ変態を促進し、冷却後のパーライト組織
や粗大セメンタイトの析出によって鋼板の板厚中央部の
組織を改善することを目的とするからである。したがっ
て1050℃未満では変態量が少なく上記効果に乏しい。ま
た1150℃を超えた場合は高温によるインヒビターの劣化
を招き磁気特性が不良となる。また均熱時間が30秒間未
満では上記効果に乏しく、90秒間を超えるとインヒビタ
ーの劣化を招く。さらに冷却条件としては400 ℃以上の
領域における急冷が上述のパーライト組織の増加に有効
で好ましい。
There are two intermediate anneals sandwiched between these rollings. One is a high temperature anneal, the other is a low temperature anneal, and a combination of these is required. is there. High temperature intermediate annealing is 1050 ℃ ~ 1150 ℃, 30 seconds ~
A soaking time of 90 seconds is required, which promotes the γ transformation by the action of C contained in the steel, and improves the microstructure in the central portion of the steel sheet thickness by the precipitation of pearlite structure and coarse cementite after cooling. This is because the purpose is. Therefore, below 1050 ° C, the amount of transformation is small and the above effect is poor. On the other hand, if the temperature exceeds 1150 ° C, the inhibitor will deteriorate due to high temperature and the magnetic properties will become poor. If the soaking time is less than 30 seconds, the above effect is poor, and if it exceeds 90 seconds, the inhibitor is deteriorated. Further, as a cooling condition, rapid cooling in a region of 400 ° C. or higher is effective and preferable for increasing the pearlite structure.

【0042】低温度の中間焼鈍は圧延組織を再結晶さ
せ、次工程の圧延に備えることが目的である。この目的
のためには900 ℃〜1000℃で30秒間〜90秒間均熱の焼鈍
が必要であり、ここに900 ℃未満では再結晶に不十分で
あり、1000℃を超えるとインヒビターの劣化を招く。ま
た均熱時間が30秒間未満では再結晶に不十分であり、90
秒間を超えると、インヒビターが劣化し、磁気特性の低
下を招く。
The purpose of the low temperature intermediate annealing is to recrystallize the rolling structure and prepare for the next rolling step. For this purpose, soaking anneal at 900 ℃ ~ 1000 ℃ for 30 s ~ 90 s is required, below 900 ℃ is insufficient for recrystallization, and above 1000 ℃ causes deterioration of the inhibitor. . If the soaking time is less than 30 seconds, recrystallization is insufficient.
If it exceeds the second, the inhibitor is deteriorated and the magnetic properties are deteriorated.

【0043】中間焼鈍としては、かかる高温焼鈍と低温
焼鈍との組合せが必要で、例えば2回とも、高温焼鈍を
行った場合は、インヒビターを劣化させ、磁気特性の低
下を招く。高温焼鈍と低温焼鈍との順序は問わない。
The intermediate annealing requires a combination of such high temperature annealing and low temperature annealing. For example, when high temperature annealing is performed twice, the inhibitor is deteriorated and the magnetic properties are deteriorated. The order of high temperature annealing and low temperature annealing does not matter.

【0044】第3回目の圧延の後、鋼板は脱炭焼鈍に供
される。脱炭焼鈍としても、公知のいずれの技術の適用
も可能であるが、通常800 〜900 ℃で1分間〜2分間、
N2をバランスガスとした湿水素雰囲気中で行われる。な
お、この際に雰囲気による窒化処理を行っても良いが、
鋼中N含有量が100 wt ppmを超えると確実に磁気特性が
劣化するので、注意を要する。
After the third rolling, the steel sheet is subjected to decarburization annealing. For decarburizing annealing, any known technique can be applied, but usually at 800 to 900 ° C for 1 to 2 minutes,
It is performed in a wet hydrogen atmosphere using N 2 as a balance gas. At this time, nitriding may be performed in an atmosphere,
If the N content in steel exceeds 100 wt ppm, the magnetic properties will surely deteriorate, so caution is required.

【0045】脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布
しコイル状に巻きとり、最終仕上焼鈍に供す。焼鈍分離
剤としてはMgO を主剤としMgSO4 ,SrSO4 ,Sr(OH)2
TiO2等公知の添加剤を含有させることができる。
After the decarburization annealing, the surface of the steel sheet is coated with an annealing separator and wound into a coil to be subjected to final finishing annealing. The main component of the annealing separator is MgO, MgSO 4 , SrSO 4 , Sr (OH) 2 ,
Known additives such as TiO 2 can be contained.

【0046】最終仕上焼鈍は乾水素雰囲気中で、1200℃
近辺の温度に保持して行われるが、その昇温過程におい
て2次再結晶が生じる。通常2次再結晶の雰囲気として
はN2とH2との混合ガス雰囲気が使用され、特に2次再結
晶の前に一定温度で長時間保持することが磁気特性の向
上をもたらす。
Final finish annealing is performed at 1200 ° C. in a dry hydrogen atmosphere.
It is carried out while maintaining the temperature in the vicinity, but secondary recrystallization occurs in the temperature rising process. Usually, a mixed gas atmosphere of N 2 and H 2 is used as an atmosphere for secondary recrystallization, and in particular, holding for a long time at a constant temperature before secondary recrystallization brings about improvement in magnetic properties.

【0047】最終仕上焼鈍後の鋼板は未反応の焼鈍分離
剤を除去した後、平坦化焼鈍に供される。通常この際に
絶縁コーティング、特に張力コーティングが施こされて
製品となるが、レーザーやプラズマその他の手法によっ
て磁区細分化処理を施すことも可能であることは云うま
でもない。
The steel sheet after the final finish annealing is subjected to flattening annealing after removing the unreacted annealing separator. In this case, an insulating coating, particularly a tension coating, is usually applied at this time to obtain a product, but it goes without saying that it is also possible to perform a magnetic domain subdivision treatment by a laser, plasma or other method.

【0048】[0048]

【実施例】表2に示す成分組成になるスラブA〜Sを準
備した。
Example Slabs A to S having the composition shown in Table 2 were prepared.

【0049】[0049]

【表2】 [Table 2]

【0050】実施例1 表2に示したスラブのうち、記号A〜Dのスラブ各2本
ずつを1420℃、10分間均熱し、熱間圧延によって1本は
厚み2.0 mmのコイル、もう1本は厚み1.5 mmのコイルと
した。
Example 1 Of the slabs shown in Table 2, two slabs each having the symbols A to D were soaked at 1420 ° C. for 10 minutes, and hot rolled to obtain one coil having a thickness of 2.0 mm and another. Is a coil with a thickness of 1.5 mm.

【0051】厚み2.0 mmの熱延コイルは、1000℃で1分
間の熱延板焼鈍を施し酸洗後、圧下率25%の冷間圧延に
より厚み1.50mmにし、1100℃で1分間の第1回目の中間
焼鈍を施した後、圧下率50%の冷間圧延により厚み0.75
mmにし、950 ℃で1分間の第2回目の中間焼鈍を施した
後、圧下率76%の冷間圧延により最終板厚0.18 mm に仕
上げた〔実施例:冷延3回法〕。
The hot rolled coil having a thickness of 2.0 mm was annealed at 1000 ° C. for 1 minute, pickled, and then cold rolled at a reduction rate of 25% to a thickness of 1.50 mm. After the intermediate annealing for the second time, the thickness of 0.75 is obtained by cold rolling with a reduction rate of 50%.
After being subjected to the second intermediate annealing at 950 ° C. for 1 minute, the final plate thickness was finished to 0.18 mm by cold rolling with a rolling reduction of 76% (Example: Cold rolling 3 times method).

【0052】一方、厚み1.50mmの熱延コイルは1100℃で
1分間の熱延板焼鈍を施し酸洗後、圧下率50%の冷間圧
延により厚み0.75mmとし、950 ℃で1分間の中間焼鈍を
施した後、圧下率76%の冷間圧延により最終板厚0.18mm
に仕上げた〔従来例:冷延2回法〕。
On the other hand, the hot rolled coil having a thickness of 1.50 mm is annealed at 1100 ° C. for 1 minute, pickled, and then cold rolled at a reduction rate of 50% to a thickness of 0.75 mm, and an intermediate temperature of 950 ° C. for 1 minute. After annealing, final rolling thickness 0.18mm by cold rolling with a rolling reduction of 76%.
[Conventional example: cold rolling twice method].

【0053】これらのコイルは、いずれも850 ℃で2分
間、湿水素雰囲気中での脱炭焼鈍後、5%のTiO2を含有
するMgO を焼鈍分離剤として塗布した後、1200℃で10時
間の最終仕上焼鈍を施した。最終仕上焼鈍後の各コイル
は、未反応の焼鈍分離剤を除去した後、張力コーティン
グの焼付を兼ねる平坦化焼鈍を施した。かくして得られ
た鋼板の、磁気特性を測定した結果を図3に示す。図3
に示されるように、Sbを含有し、かつ冷延3回法で製造
された製品は極めて良好な磁気特性を示す。
Each of these coils was decarburized and annealed in a wet hydrogen atmosphere at 850 ° C. for 2 minutes, and then MgO containing 5% TiO 2 was applied as an annealing and separating agent, and then at 1200 ° C. for 10 hours. Was subjected to final finish annealing. After the final finish annealing, each coil was subjected to flattening annealing which also serves as baking of tension coating after removing unreacted annealing separating agent. The results of measuring the magnetic properties of the steel sheet thus obtained are shown in FIG. Figure 3
As shown in (3), the product containing Sb and manufactured by the cold rolling three times method shows extremely good magnetic properties.

【0054】実施例2 Al含有量及び最終冷延圧下率の影響を調べるために、表
2に示したスラブのうち、記号C,E,F,G及びHの
スラブを各3本ずつ1410℃、15分間均熱し、熱間圧延に
よってそれぞれ厚み1.3 mm、1.7 mm及び2.5 mmのコイル
に作製した。
Example 2 In order to investigate the influence of the Al content and the final cold rolling reduction, among the slabs shown in Table 2, three slabs with the symbols C, E, F, G and H, 1410 ° C. After soaking for 15 minutes, hot rolling was performed to form coils having thicknesses of 1.3 mm, 1.7 mm and 2.5 mm, respectively.

【0055】まず厚み1.3 mmの熱延コイルは、1000℃で
1分間の熱延板焼鈍を施し酸洗後、圧下率43%の冷間圧
延により厚み0.74mmとし、1100℃で1分間の第1回目の
中間焼鈍を施した後、圧下率50%の冷間圧延により厚み
0.38mmとして、950 ℃で1分間の第2回目の中間焼鈍を
施した後、圧下率61%の冷間圧延により厚み0.15mmに仕
上げた〔比較例〕。
First, a hot rolled coil having a thickness of 1.3 mm was annealed at 1000 ° C. for 1 minute, pickled, and then cold rolled at a reduction rate of 43% to a thickness of 0.74 mm, and then rolled at 1100 ° C. for 1 minute. After the first intermediate annealing, the thickness is reduced by cold rolling with a reduction rate of 50%.
After the second intermediate annealing at 950 ° C. for 1 minute at 0.38 mm, the thickness was finished to 0.15 mm by cold rolling with a rolling reduction of 61% [comparative example].

【0056】また厚み1.7 mmの熱延コイルは、1000℃で
1分間の熱延板焼鈍を施こし酸洗後、圧下率29%の冷間
圧延により厚み1.20mmとし、1100℃で1分間の第1回目
の中間焼鈍を施した後、圧下率50%の冷間圧延により厚
み0.60mmとして、950 ℃で1分間の第2回目の中間焼鈍
を施した後、圧下率75%の冷間圧延により厚み0.15mmに
仕上げた〔実施例〕。
A hot-rolled coil having a thickness of 1.7 mm was annealed at 1000 ° C. for 1 minute, pickled, and then cold-rolled at a reduction rate of 29% to a thickness of 1.20 mm, and then rolled at 1100 ° C. for 1 minute. After performing the first intermediate annealing, cold rolling with a reduction of 50% to a thickness of 0.60 mm, the second intermediate annealing for 1 minute at 950 ° C, and then the cold rolling with a reduction of 75%. Finished with a thickness of 0.15 mm (Example).

【0057】さらに厚み2.5 mmの熱延コイルは、1000℃
で1分間の熱延板焼鈍を施こし酸洗後、圧下率25%の冷
間圧延により厚み2.00mmとし、1100℃で1分間の第1回
目の中間焼鈍を施した後、圧下率50%の冷間圧延により
厚み1.00mmとして、950 ℃で1分間の第2回目の中間焼
鈍を施した後、圧下率85%の冷間圧延により厚み0.15mm
に仕上げた〔比較例〕。
Furthermore, the hot rolled coil having a thickness of 2.5 mm is 1000 ° C.
After 1 minute of hot-rolled sheet annealing, pickling, and cold rolling with a reduction rate of 25% to a thickness of 2.00 mm, the first intermediate annealing at 1100 ° C for 1 minute, then a reduction rate of 50% After the second intermediate annealing at 950 ° C for 1 minute to obtain a thickness of 1.00 mm by cold rolling, the thickness of 0.15 mm was obtained by cold rolling with a reduction rate of 85%.
(Comparative example).

【0058】これらの3種のコイルは、いずれも850 ℃
で2分間、湿水素雰囲気中での脱炭焼鈍後、5%のTiO2
と2%の Sr(OH)2・8H2O を含有するMgO を焼鈍分離剤
として塗布して1200℃で10時間の最終仕上焼鈍を施し
た。最終仕上焼鈍後の各コイルは未反応の焼鈍分離剤を
除去した後、張力コーティングの焼付を兼ねる平坦化焼
鈍を施した。かくして得られた鋼板の磁気特性を測定し
た結果を図4に示す。図4に示されるように、Alを0.01
2 %から0.037 %の範囲で含有し、かつ冷延3回法の第
3回目の圧下率が75%の場合に極めて良好な磁気特性の
製品が得られた。
These three types of coils are all 850 ° C.
After decarburization annealing in a wet hydrogen atmosphere for 2 minutes, 5% TiO 2
And MgO containing 2% of Sr (OH) 2 .8H 2 O were applied as annealing separators and subjected to final finishing annealing at 1200 ° C. for 10 hours. After the final finish annealing, each coil was subjected to flattening annealing which also serves as baking of tension coating after removing unreacted annealing separator. The results of measuring the magnetic properties of the steel sheet thus obtained are shown in FIG. As shown in FIG.
A product having extremely good magnetic properties was obtained when the content was in the range of 2% to 0.037% and the rolling reduction in the third cold rolling process was 75%.

【0059】実施例3 N含有量及び第2回めの冷延圧下率の影響を調べるため
に、表2に示したスラブのうち、記号C(N含有量55wt
ppm,27〔N〕/14〔Al〕=0.53)及び記号I(N含有
量83wt ppm ,I(N含有量83wt ppm , 27 〔N〕/14
〔Al〕=0.70)の2種のスラブを各3本ずつ1420℃、15
分間均熱し、熱間圧延によってそれぞれ厚み1.8 mm,2.0
mm及び2.8 mmのコイルを作製した。
Example 3 In order to investigate the effects of the N content and the second cold rolling reduction, among the slabs shown in Table 2, the symbol C (N content 55 wt.
ppm, 27 [N] / 14 [Al] = 0.53) and symbol I (N content 83 wt ppm, I (N content 83 wt ppm, 27 [N] / 14
[Al] = 0.70) 2 kinds of slabs, 3 for each, 1420 ℃, 15
Heat soaked for 1 minute, then hot rolled to a thickness of 1.8 mm, 2.0
mm and 2.8 mm coils were made.

【0060】厚み1.8 mmの熱延コイルは、1000℃で1分
間の熱延板焼鈍を施し、酸洗後圧下率44%の冷間圧延に
より厚み1.00mmとし、1100℃で1分間の第1回目の中間
焼鈍を施した後、圧下率40%の冷間圧延により厚み0.60
mmとして、さらに 950℃で1分間の第2回目の中間焼鈍
を施した後、圧下率75%の冷間圧延により厚み0.15mmに
仕上げた〔比較例〕。
The hot rolled coil having a thickness of 1.8 mm was annealed at 1000 ° C. for 1 minute, then cold-rolled at a reduction rate of 44% after pickling to a thickness of 1.00 mm, and the first coil was rolled at 1100 ° C. for 1 minute. After the second intermediate annealing, the thickness of 0.60 by cold rolling with a reduction rate of 40%.
After the second intermediate annealing was performed at 950 ° C. for 1 minute, the thickness was 0.15 mm by cold rolling with a rolling reduction of 75% (comparative example).

【0061】厚み2.0 mmの熱延コイルは1000℃で1分間
の熱延板焼鈍を施し、酸洗後、圧下率40%の冷間圧延に
より厚み1.20mmとし、1100℃で1分間の第1回目の中間
焼鈍を施した後、圧下率50%の冷間圧延により厚み0.60
mmとして、さらに 950℃で1分間の第2回目の中間焼鈍
を施した後、圧下率75%の冷間圧延により厚み0.15mmに
仕上げた〔実施例〕。
The hot rolled coil having a thickness of 2.0 mm was annealed for 1 minute at 1000 ° C., pickled, and then cold rolled at a reduction rate of 40% to a thickness of 1.20 mm. After the intermediate annealing for the second time, the thickness of 0.60 is obtained by cold rolling with a reduction rate of 50%.
After the second intermediate annealing at 950 ° C. for 1 minute, the thickness was 0.15 mm by cold rolling with a rolling reduction of 75% (Example).

【0062】厚み2.8 mmの熱延コイルは、1000℃で1分
間の熱延板焼鈍を施し、酸洗後、圧下率40%の冷間圧延
により厚み2.00mmとし、1100℃で1分間の第1回目の中
間焼鈍を施した後、圧下率70%の冷間圧延により厚み0.
60mmとして、さらに 950℃で1分間の第2回目の中間焼
鈍を施した後、圧下率75%の冷間圧延により厚み0.15mm
に仕上げた〔比較例〕。
The hot rolled coil having a thickness of 2.8 mm was subjected to hot rolled sheet annealing at 1000 ° C. for 1 minute, pickled, and then cold rolled at a reduction rate of 40% to a thickness of 2.00 mm, and then at 1100 ° C. for 1 minute. After the first intermediate annealing, the thickness is reduced to 0 by cold rolling with a rolling reduction of 70%.
The thickness is set to 60 mm, and after the second intermediate annealing at 950 ° C for 1 minute, the thickness is 0.15 mm by cold rolling with a reduction rate of 75%.
(Comparative example).

【0063】これらのコイルは、いずれも850 ℃で2分
間、湿水素雰囲気中での脱炭焼鈍後、5%のTiO2を含有
するMgO を焼鈍分離剤として塗布した後、1200℃で10時
間の最終仕上焼鈍を施した。最終仕上焼鈍後の各コイル
は未反応の焼鈍分離剤を除去した後、張力コーティング
の焼付を兼ねる平坦化焼鈍を施した。かくして得られた
鋼板の、磁気特性を測定した結果を表3に示す。
Each of these coils was decarburized and annealed in a wet hydrogen atmosphere at 850 ° C. for 2 minutes, and MgO containing 5% TiO 2 was applied as an annealing and separating agent, and then at 1200 ° C. for 10 hours. Was subjected to final finish annealing. After the final finish annealing, each coil was subjected to flattening annealing which also serves as baking of tension coating after removing unreacted annealing separator. Table 3 shows the results of measuring the magnetic properties of the steel sheet thus obtained.

【0064】[0064]

【表3】 [Table 3]

【0065】表3に示されるように、N含有量がこの発
明の範囲(45〜70ppm )を満足するスラブ記号Cにおい
て、第2回目の冷間圧延の圧下率がこの発明に従う50%
の場合に極めて良好な磁気特性が得られる。
As shown in Table 3, in the slab code C in which the N content satisfies the range of the present invention (45 to 70 ppm), the reduction ratio of the second cold rolling is 50% according to the present invention.
In this case, extremely good magnetic characteristics can be obtained.

【0066】実施例4 表2に示したスラブのうち、記号Cのスラブを4本、14
30℃で15分間均熱し熱間圧延によって、厚み2.2 mmのコ
イルとした。これらの熱延コイルに1000℃で40秒間の熱
延板焼鈍を施し、酸洗後、厚み1.50mmまで冷間圧延を施
した。
Example 4 Of the slabs shown in Table 2, four slabs with the symbol C were used, and 14 slabs were used.
A coil having a thickness of 2.2 mm was obtained by soaking at 30 ° C for 15 minutes and hot rolling. The hot rolled coils were annealed at 1000 ° C. for 40 seconds, pickled, and then cold rolled to a thickness of 1.50 mm.

【0067】中間焼鈍の影響を調べるために、これら4
本のコイルのうち2本は第1回目の中間焼鈍として、11
00℃で1分間の焼鈍を施した後、厚み0.67mmにまで冷間
圧延し、次いでこのうちの1本は、1100℃で1分間の焼
鈍を施した後、最終板厚0.20mmにまで冷間圧延した(比
較例)。残る1本は950 ℃で1分間の焼鈍を施した後、
最終板厚0.20mmにまで冷間圧延した(実施例)。
In order to investigate the effect of intermediate annealing, these 4
Two of the coils are for the first intermediate annealing.
After annealing at 00 ℃ for 1 minute, cold-rolled to a thickness of 0.67mm, then one of them was annealed at 1100 ℃ for 1 minute and then cooled to a final thickness of 0.20mm. Rolled (comparative example). The remaining one was annealed at 950 ℃ for 1 minute,
Cold rolling was performed to a final plate thickness of 0.20 mm (Example).

【0068】さらに、残る2本のコイルについては、第
1回目の中間焼鈍として、950 ℃で1分間の焼鈍を施し
た後、厚み0.67mmにまで冷間圧延し、次いでこのうちの
1本は1100℃で1分間の焼鈍を施した後、最終板厚0.20
mmにまで冷間圧延した(実施例)。残る1本は950 ℃で
1分間の焼鈍を施した後、最終板厚0.20mmにまで冷間圧
延した(比較例)。
Further, the remaining two coils were annealed at 950 ° C. for 1 minute as the first intermediate annealing, and then cold-rolled to a thickness of 0.67 mm, and then one of them was After annealing at 1100 ℃ for 1 minute, final thickness 0.20
Cold rolled to mm (Example). The remaining one was annealed at 950 ° C. for 1 minute and then cold-rolled to a final plate thickness of 0.20 mm (comparative example).

【0069】これらのコイルはいずれも、 850℃で2分
間、湿水素雰囲気中での脱炭焼鈍後、5%のTiO2を含有
するMgO を焼鈍分離剤として塗布し、1200℃で10時間の
最終仕上焼鈍を施した。最終仕上焼鈍後の各コイルは、
未反応の焼鈍分離剤を除去した後、張力コーティングの
焼付を兼ねる平坦化焼鈍を施した。かくして得られた鋼
板の磁気特性を測定した結果を表4に示す。
Each of these coils was decarburized and annealed in a wet hydrogen atmosphere at 850 ° C. for 2 minutes, and then MgO containing 5% TiO 2 was applied as an annealing and separating agent. Final finish annealing was performed. Each coil after the final finish annealing,
After removing the unreacted annealing separator, flattening annealing which also serves as baking of the tension coating was performed. The results of measuring the magnetic properties of the steel sheet thus obtained are shown in Table 4.

【0070】[0070]

【表4】 [Table 4]

【0071】表4に示されるように、第1回目の中間焼
鈍及び第2回目の中間焼鈍が、この発明に従う高温焼鈍
と低温焼鈍との組み合わせの場合に極めて、良好な磁気
特性が得られる。
As shown in Table 4, when the first intermediate annealing and the second intermediate annealing are the combination of the high temperature annealing and the low temperature annealing according to the present invention, very good magnetic properties are obtained.

【0072】実施例5 表2に示したスラブのうち、記号C及びK〜Sのスラブ
を1430℃で10分間均熱し熱間圧延によって厚み2.0 mmの
コイルとした。また記号Jのスラブを1220℃で40分間均
熱し熱間圧延によって厚み2.0mm のコイルとした。
Example 5 Of the slabs shown in Table 2, the slabs with symbols C and K to S were soaked at 1430 ° C. for 10 minutes and hot-rolled to form a coil having a thickness of 2.0 mm. The slab with the symbol J was soaked at 1220 ° C for 40 minutes and hot-rolled to form a coil having a thickness of 2.0 mm.

【0073】これらの熱延コイルに熱延板焼鈍を施すこ
となしに酸洗後、厚み1.20mmにまで冷間圧延し、第1回
目の中間焼鈍として、1100℃で1分間の焼鈍を施した
後、厚み0.60mmに冷間圧延した。さらに第2回目の中間
焼鈍として 950℃で1分間の焼鈍を施した後、最終板厚
0.15mmにまで冷間圧延し、 850℃で2分間、湿水素雰囲
気中での脱炭焼鈍後、5%のTiO2を含有するMgO を焼鈍
分離剤として塗布し、1200℃で10時間の最終仕上焼鈍を
施した。最終仕上焼鈍後の各コイルは、未反応の焼鈍分
離剤を除去した後、張力コーティングの焼付を兼ねる平
坦化焼鈍を施した。かくして得られた鋼板の磁気特性を
測定した結果を表5に示す。
These hot-rolled coils were pickled without annealing the hot-rolled sheet, cold-rolled to a thickness of 1.20 mm, and annealed at 1100 ° C. for 1 minute as the first intermediate annealing. Then, it was cold-rolled to a thickness of 0.60 mm. After the second intermediate annealing at 950 ° C for 1 minute, the final thickness
Cold rolled to 0.15mm, decarburization annealed at 850 ° C for 2 minutes in a wet hydrogen atmosphere, then coated with MgO containing 5% TiO 2 as an annealing separator, and finished at 1200 ° C for 10 hours. Finish annealing was performed. After the final finish annealing, each coil was subjected to flattening annealing which also serves as baking of tension coating after removing unreacted annealing separating agent. Table 5 shows the results of measuring the magnetic properties of the steel sheet thus obtained.

【0074】[0074]

【表5】 [Table 5]

【0075】[0075]

【発明の効果】かくして、AlN とSbを鋼中に含有させ、
NのAlに対する当量を低く規制し、かつ冷延3回法の各
圧延圧下率と中間焼鈍条件を規制するこの発明によっ
て、方向性けい素薄鋼板の磁気特性を著しく改善するこ
とができるようになった。
[Effects of the Invention] Thus, AlN and Sb are contained in the steel,
According to the present invention in which the equivalent weight of N to Al is regulated to be low, and the rolling reduction and the intermediate annealing conditions of the cold rolling triple rolling method are regulated, it is possible to remarkably improve the magnetic properties of the grain-oriented silicon steel sheet. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度に及ぼす第2回目の圧延と第3回目の
圧延の圧下率の影響を示す図である。
FIG. 1 is a diagram showing an influence of a rolling reduction of a second rolling and a third rolling on a magnetic flux density.

【図2】磁束密度に及ぼす第1回目と第2回目の中間焼
鈍の温度の影響を示す図である。
FIG. 2 is a diagram showing the influence of the temperatures of the first and second intermediate annealings on the magnetic flux density.

【図3】磁気特性に及ぼすSb量の影響を示すグラフであ
る。
FIG. 3 is a graph showing the effect of Sb amount on magnetic properties.

【図4】磁気特性に及ぼすAl含有量と第3回目の圧延の
圧下率の影響を示すグラフである。
FIG. 4 is a graph showing the influence of the Al content and the rolling reduction of the third rolling on the magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 康之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 渡辺 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Hayakawa 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Inside the Technical Research Division, Kawasaki Steel Corporation (72) Inventor Makoto Watanabe 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Corporation Technical Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼スラブを出発材として、この
出発材に熱間圧延を施した後、冷間圧延を、中間焼鈍を
挟んで複数回施し、脱炭焼鈍、次いで焼鈍分離剤を塗布
してから最終仕上焼鈍を行う方向性けい素鋼板の製造方
法であって、 前記出発材にはsol.Al:0.010 〜0.040 wt%、N:45〜
70 wt ppm 及びSb:0.005 〜0.050 wt%を含み、かつso
l.Al,Nの各含有量〔Al〕,〔N〕(wt%)が次式 0.30≦27〔N〕/14〔Al〕≦0.60 を満足するスラブを用いること、 前記冷間圧延を3回、中間焼鈍を2回行うものとして、 一方の中間焼鈍には1050〜1150℃で30〜90秒間の高温焼
鈍を、他方の中間焼鈍には900 〜1000℃で30〜90秒間の
低温焼鈍を行うこと、 冷間圧延は、第1回目の圧延の圧下率を10%以上、第2
回目の圧延の圧下率を45〜65%、第3回目の圧延の圧下
率を65〜80%で行うことの結合を特徴とする磁気特性に
優れた方向性けい素鋼板の製造方法。
1. A silicon-containing steel slab is used as a starting material, hot rolling is performed on the starting material, and then cold rolling is performed a plurality of times with an intermediate anneal interposed therebetween to perform decarburization annealing and then an annealing separator. A method for manufacturing a grain-oriented silicon steel sheet, which comprises applying final finishing annealing after coating, wherein the starting material is sol.Al: 0.010 to 0.040 wt%, N: 45 to
70 wt ppm and Sb: 0.005-0.050 wt% is included, and so
l. Use a slab whose Al and N contents [Al] and [N] (wt%) satisfy the following formula: 0.30 ≦ 27 [N] / 14 [Al] ≦ 0.60. Assuming that the first and second intermediate anneals are performed twice, one intermediate anneal is a high temperature anneal at 1050 to 1150 ° C for 30 to 90 seconds, and the other intermediate anneal is a low temperature anneal at 900 to 1000 ° C for 30 to 90 seconds. What to do, cold rolling, the rolling reduction of the first rolling is 10% or more,
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, which is characterized by a combination of performing a rolling reduction of 45 to 65% for the third rolling and a rolling reduction of 65 to 80% for the third rolling.
JP5001875A 1993-01-08 1993-01-08 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties Expired - Fee Related JP2758543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001875A JP2758543B2 (en) 1993-01-08 1993-01-08 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001875A JP2758543B2 (en) 1993-01-08 1993-01-08 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06207219A true JPH06207219A (en) 1994-07-26
JP2758543B2 JP2758543B2 (en) 1998-05-28

Family

ID=11513735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001875A Expired - Fee Related JP2758543B2 (en) 1993-01-08 1993-01-08 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2758543B2 (en)

Also Published As

Publication number Publication date
JP2758543B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP7221481B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP7159595B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP7159594B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
CN111566244A (en) Oriented electrical steel sheet and method for manufacturing the same
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JP7463976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP7214974B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0797631A (en) Production of high magnetix flux density grain oriented silicon steel sheet excellent in magnetic property and film property
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees